
Late Initialization for θ-Constrained

Multi-Dimensional Aggregation

Author
Christian Ammendola

Supervisor
Prof. Johann Gamper

March 2011

Abstract

In today’s information society the analysis of large amounts of data is
an important task in different areas, such as in business intelligence and
scientific fields, requiring, among others, techniques for the flexible formu-
lation and efficient evaluation of complex multi-dimensional aggregation
queries. Online analytical processing (OLAP) is a mature field concerned
with the analysis of multi-dimensional data. Since the definition of SQL:99
[10] and the introduction of window functions in SQL:2003 [12] different
OLAP techniques are integrated also in the SQL standard. However, SQL
still lacks of a broad support for complex analytical queries such as cu-
mulative aggregation over more than one dimension. θ-constrained multi-
dimensional aggregation (θ–MDA) [2], an operator supporting a flexible
formulation and efficient evaluation of complex multi-dimensional aggre-
gation queries based on θ-conditions, overcomes the limitations of SQL.
The evaluation approach for θ–MDA handles the computation of the re-
sult groups and the computation of the aggregates separately. In cases
in which both the result groups and the aggregates are derived from the
same input relation this results into two scans of that relation. Due to
the fact, that in typical θ–MDA scenarios the input relation is very large,
for example, several hundred millions of tuples, loading and scanning it
twice is very costly. In this thesis we propose an approach that requires
only one scan of the input relation for θ–MDA queries in which both the
result groups and the aggregates are computed from the same input re-
lation. The main idea of our approach, to which we refer to as θ–MDA
with late initialization, is to compute the result groups on demand while
the aggregates are computed. We investigate differences in the on-the-fly
computation of result groups which arise due to the use of different con-
straint operators, such as =, ≤, and 6=, in the θ-conditions and design a
solution that handles these differences. We propose an algorithm for our
approach and evaluate its performance with respect to the evaluation ap-
proaches presented in [2] by implementing them as Java programs on top
of an Oracle database. The data set used in the evaluation experiments is
generated by using the dbgen tool of the TPC-H benchmark framework.
θ–MDA with late initialization performs better in all tested settings and
the single load and scan of the input relation reduces the evaluation run-
time by up to 65 percent for an input relation with 10 million tuples (on
average the improvement was about 54 percent). Further, in contrast to
the evaluation strategies in [2], our approach results not to be sensitive
to the type of constraint operators used in the θ-conditions, for scenar-
ios with input tables having up to 10 million tuples and up to 500 result
groups. Indeed, the θ–MDA strategies presented in [2] feature a runtime
being many times faster for queries with only equality constraint opera-
tors as compared to queries with constraint operators different than =.
θ–MDA with late initialization aligns the execution times of the latter to
queries with only equality constraint operators. The evaluation strategy
for θ-MDA presented in this thesis represents a step forward with respect
to the goal of efficient evaluation of complex multi-dimensional aggrega-
tion queries. The proposed solution was designed to work particularly
well for cases in which the number of result groups is rather small. Future
work could be to investigate limitations of our approach with respect to
a growing number of result groups and to search for strategies to handle
these limitations.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Complex Aggregation Queries: An Example 1
1.3 θ-Constrained Multi-Dimensional Aggregation and its Limitations 3
1.4 Contribution . 4
1.5 Organization of the Thesis . 5

2 Related Work 6

3 θ-Constrained Multi-Dimensional Aggregation 8

4 Late Initialization for θ–MDA 13
4.1 Definition . 13
4.2 Case Analysis . 16

4.2.1 θ-Conditions with the Constraint Operator = 16
4.2.2 θ-Conditions with the Constraint Operators ≤, ≥, <, > . 18
4.2.3 θ-Conditions with the Constraint Operator 6= 20

4.3 Reducing θ to Equality Constraints 21
4.4 Optimization with Multiple Group Tables 25

5 Evaluation of θ–MDA 28
5.1 Algorithm . 28
5.2 Complexity Analysis . 31

5.2.1 Complexity for Constraint Operator = 31
5.2.2 Complexity for Constraint Operator ≤, ≥, <, > 33
5.2.3 Complexity for Constraint Operator 6= 34

5.3 Implementation . 35

6 Experiments 40
6.1 Setup and Data . 40
6.2 Results . 41

6.2.1 Scaling |r| . 41
6.2.2 Scaling |b| . 43
6.2.3 Scaling |θ| . 45
6.2.4 Scaling |Θ| . 48

7 Conclusions and Future Work 50

List of Tables

1 Query 1 Computation Steps. 10
2 Example of θ–MDA with Late Initialization 15
3 Example of Late Initialization for Equality 18
4 Example of Late Initialization for Less-Equal 20
5 Example of Late Initialization for Not-Equal 21
6 Step 3 of Algorithm IndexedTCMDA-LI 30
7 Time Complexity for only Constraint Operators = 32
8 Time Complexity for Constraint Operators ≤, ≥, <, > 34
9 Time Complexity for only Constraint Operators 6= 35

List of Figures

1 Running Example . 2
2 θ–MDA Operator Overview . 3
3 Query Evaluation Workflow . 14
4 θ–MDA with Late Initialization - General Solution (Example) . . 23
5 Transformation of xeq to x for Aggregate CSD,U 24
6 Transformation of xeq to x for Aggregate NCSD 24
7 Transformation of xeq to x for Aggregate CCSD,U 25
8 θ–MDA with Late Initialization - Optimized Solution (Example) 27
9 BasicTCMDA Program Workflow 36
10 IndexedTCMDA Program Workflow 37
11 Hash Index Structure for θ1 of in Example 1 38
12 Hierarchical Index Structure for θ4 of Example 1 39
13 IndexedTCMDA-LI Program Workflow 39
14 Experiment Results with Scaling |r| 42
15 Comparison of Constraint Operators with Scaling |r| 43
16 Experiment Results with Scaling |b| 44
17 Comparison of Constraint Operators with Scaling |b| 45
18 Experiment Results with Scaling |θ| 46
19 Comparison of Constraint Operators with Scaling |θ| 47
20 Experiment Results with Scaling |Θ| 48
21 Comparison of Conatraint Operators with Scaling |Θ| 49

1 Introduction

1.1 Motivation

Multi-dimensional aggregation queries are an important class of queries in data
analysis finding application in several areas such as business intelligence [19],
data stream analysis [8] and various scientific disciplines [2]. Especially online
analytical processing (OLAP) is a mature approach concerned with the analysis
of multi-dimensional data which has its roots in 1962 [13]. The first time the
term OLAP was used, however, is in 1993 when Ted Codd published a white
paper [6] defining 12 rules for the development of an OLAP product. Today
OLAP is extensively used in business intelligence and features a broad tool
support [21].

Since SQL/OLAP [11], an extension of SQL:99 [10], OLAP techniques for
simple multi-dimensional data aggregation are supported directly by SQL, how-
ever, encountering limitations in the possibilities of formulating complex multi-
dimensional aggregation queries. Although, with the introduction of window
functions in SQL:2003 [12] some of these limitations have been faced, there are
still aggregation queries which cannot be easily expressed in SQL resulting in
complex formulations which cannot be handled effectively by the optimizer of
database management systems. One class of such queries are cumulative aggre-
gation over more than one dimension.

In order to face the limitations of SQL for complex multi-dimensional aggre-
gation queries, in [2] an operator, referred to as θ-constrained multi-dimensional
aggregation (θ–MDA), is presented. This operator allows an easy formulation
and efficient computation of aggregation queries over multi-dimensional data
based on an approach which separates the definition of the result groups and of
the aggregates in a clean way. Although, compared to SQL, θ–MDA features
good performance in the execution of multi-dimensional aggregation queries, in
some settings there is space for improvement. Indeed, queries in which the result
groups are a selection-projection (SP) of the source relation result in loading
and scanning that input relation twice. Due to the fact, that the source relation
in typical θ–MDA scenarios is very large avoiding to scan it repeatedly would
result is an improved performance.

1.2 Complex Aggregation Queries: An Example

An example of complex aggregation queries are moving and cumulative aggrega-
tions over one or more dimensions. As aforementioned not all such queries can
be easily expressed in SQL and be handled efficiently by database management
systems. With the introduction of window functions in SQL:2003 [12] a broader
support for analytical queries was provided, such as moving and cumulative ag-
gregation. However, there are still limitations. Indeed, window functions rely on
a sorted input relation for the computation of the aggregates, thus, queries, for
which no appropriate ordering of the input relation exists, are not supported.
In order to illustrate this phenomenon, we continue with an example in the
following.

Figure 1(a) presents a relation which will be used in all examples throughout
the thesis. The table contains tuples representing services done for patients in
a hospital. Each row represents a service performed for some patient such as

1

a blood or urine test. The relation consists of four columns: the first column,
ServiceDate (SD), represents the date when the service was performed; the
second column, ServiceCode (SC), represents the code of the performed service
which identifies it uniquely; the third column, Urgency (U), specifies how urgent
the need for the service has been (the higher the value the less urgent the need
for the service); finally, the fourth column, PatiengAge (PA), specifies the age
of the patient who got the service.

LaboratoryServices (LS)
SD SC U PA

r1 2010-11-12 U1 1 24
r2 2010-11-12 H7 2 47
r3 2010-11-12 U3 2 33
r4 2010-11-12 U1 3 28
r5 2010-11-13 H7 1 56
r6 2010-11-13 H7 2 16
r7 2010-11-13 F5 3 35
r8 2010-11-13 U1 3 21
r9 2010-11-14 U1 2 52

(a) LaboratoryServices Relation Instance.

x
SD U CSD,U NCSD CCSD CCSD,U

x1 2010-11-12 1 1 5 4 1
x2 2010-11-12 2 2 5 4 3
x3 2010-11-12 3 1 5 4 4
x4 2010-11-13 1 1 5 8 2
x5 2010-11-13 2 1 5 8 5
x6 2010-11-13 3 2 5 8 8
x7 2010-11-14 2 1 8 9 6

(b) Result of Query 1.

Figure 1: Running Example

In the following we present Query 1, a complex multi-dimensional aggrega-
tion query which cannot be expressed directly based on SQL window functions.
The input relation used in the query is LS of Figure 1(a).

Query 1 : Compute the number of services per day and urgency, the
negated number of services per day, the cumulative number of services
per day, and the cumulative number of services per day and urgency.

The result of Query 1 is shown in Figure 1(b). The first aggregate CSD,U ,
which counts all the services (i.e. tuples of the input relation) provided per
day and urgency, can be expressed using the GROUP BY clause of SQL. For the
computation of the second aggregate NCSD, which counts the total number of
provided services besides those of a specific day, two SQL queries using GROUP

BY have to be joined. Next, the computation of the aggregate CCSD that
counts all services provided until a specific day, can be accomplished by the use
of window functions, which allow to express cumulative aggregates. Window

2

functions require the input relation to be sorted so that tuples belonging to the
same group are arranged contiguously. In the case of CCSD such an ordering
of the tuples of LS exists, namely by sorting the input relation by SD resulting
in the order r1, r2, ..., r9. Finally, CCSD,U , which computes a cumulative
aggregate over two dimensions, cannot be computed using window functions.
This is the case, because no proper ordering over the attributes SD and U can
be found. For the tuples of LS two possible order exist: first, the order over SD,
U results in the sequence r1, r2, ..., r9; second, the order over U , SD results in
the sequence r1, r5, r2, r3, r6, r9, r4, r7, r8. However, none of these orders is
appropriate for computing the aggregates with window functions. For instance,
CCSD,U of tuple x5 would require LS to be ordered by U , SD because the tuples
r1, r2, r3, r5, r6 contribute to the computation of that aggregate and, thus, have
to be arranged in a contiguous sequence. However, tuple x3 would require the
ordering by SD, U , because the tuples that contribute to the computation of
that aggregate are r1, r2, r3. In order to express the aggregation query for
CCSD,U in SQL a complex formulation is required which among others includes
joins. As a consequence the input relation might be loaded into main memory
several times. For large input relations this would result in unbearable execution
times.

1.3 θ-Constrained Multi-Dimensional Aggregation and its
Limitations

The θ–MDA operator presented in [2] evaluates analytical queries by identifying
the input tuples which contribute to the computation of a specific aggregate
based on θ-conditions. In figure 2 an overview of the parts involved in the
evaluation of θ–MDA queries is provided. The parameters of the operator are
an input table r containing all tuples over which the aggregates are computed, a
base table b that stores all result groups for which the aggregates are computed,
a list of aggregates, and θ-conditions associated to these aggregates. The θ-
conditions define which tuples of r contribute to which aggregates.

Base table b

Result table x

Aggregate results

Input table r

Figure 2: θ–MDA Operator Overview

The evaluation of aggregation queries with θ–MDA involves two main steps:

3

1. Construction of the base table (which can be any set of result group tu-
ples).

2. Computation of the aggregates.

The strategy applied by θ–MDA for computing the aggregates is to iterate
through the tuples of r, and, for each of them to update the aggregates in the
result relation x which are affected by that tuple.

The evaluation strategy for θ–MDA presented in [2] performs efficiently com-
pared to SQL versions, however, in specific situations it shows limitations. In-
deed, in cases in which the base table b is a SP of the input table r, the evalua-
tion process of θ–MDA has to load and iterate through all elements of r twice,
one time for computing b (in step 1) and one time for computing x (in step
2). Because in typical θ–MDA scenarios the input relation is very large, loading
and iterating through the tuples of r twice can be very expensive. Further, the
runtime of the computation strategies for θ–MDA presented in [2] are sensitive
with respect to the type of constraint operators used in the θ-conditions. Indeed,
θ–MDA queries with constraint operators such as ≤, ≥, or 6= feature execution
times being many times longer than for queries with only equality constraint
operators.

1.4 Contribution

In this thesis we focus on the limitation of the evaluation strategy for θ–MDA
presented in [2] that loads and traverses the input table r twice, in the case
in which the base table b is a projection of the input table r, contributing as
follows:

• We develop an evaluation approach for θ–MDA, to which we refer to as
θ–MDA with late initialization. This new approach requires to load and
traverse the input relation r only once for cases in which the base table is
a SP of the input table. The approach supports the aggregate functions
sum, count, min, max, and avg and θ-conditions using constraint operators
=, ≤, ≥, <, >, and 6=.

• We define an algorithm for the developed approach with a time complex-
ity being lower than the time complexity of the θ–MDA evaluation algo-
rithms presented [2]. The time complexity of our algorithm is O(|r|) inde-
pendently from the type of constraint operators used in the θ-conditions
compared to the time complexity of the algorithms proposed in [2] which
ranges from O(|r|) in the best case to O(|r| · |b|) in the worst case, de-
pending on the constraint operators used1.

• We evaluate the developed approach of θ–MDA with late initialization
by implementing our algorithm as well as the algorithms presented in [2]
as Java programs on top of an Oracle database and then testing them
based on the TPC-H benchmark framework2. From the experiments our
approach results to be more efficient in all tested settings and with a
runtime not being sensitive to the type of constraint operators used.

1Note that |r| and |b| represent the number of tuples of the input relation and base relation
respectively.

2TPC-H benchmark framework: http://www.tpc.org/tpch/

4

1.5 Organization of the Thesis

The remaining of the thesis is structured as follows. In Section 2 we present
work related to the thesis topic. In Section 3 we provide more details about the
θ–MDA operator and the strategy it uses for evaluating complex aggregation
queries. Section 4 presents the evaluation approach we developed for θ–MDA,
namely θ–MDA with late initialization, which requires only one scan of the
input relation for the cases in which the base table is a projection of the input
table. Section 5 illustrates the algorithm we propose for our θ–MDA evaluation
strategy and in Section 6 we present the results of the experiments we run for
evaluating the performance of the algorithm. Finally, in Section 7 concluding
remarks and proposals for future work are presented.

5

2 Related Work

In literature there exists a vast variety of work about multi-dimensional data
aggregation techniques for providing more control in the formulation of queries
and a better performance. In [7] the CUBE operator is presented which is part
of the SQL standard. This operator allows to express aggregation queries with
equality constraints over several attributes in a concise way. For aggregation
queries in which not the whole data cube is required, grouping sets [10] can
be used. In the SQL standard an operator for grouping sets is provided which
allows to compute aggregates over specified group attribute combinations and
resulting in performance improvements with respect to CUBE in cases in which
not the whole data cube is required. In [18] the UNPIVOT operator is intro-
duced, which provides facilities to transform the data of a relation by switching
columns to rows. All the mentioned operators provide more flexibility in ex-
pressing aggregation queries and improve their evaluation efficiency because a
lower number of queries is required for the computation of the aggregates and
because specialized algorithms can be adopted by the query execution engine.
However, these operators provide a limited support for the expression of complex
aggregation queries, so, for example, cumulative aggregates are not supported.

A broader support for complex multi-dimensional aggregation queries is pro-
vided by SQL since the introduction of window functions in SQL:2003 [12]. In-
deed, the computation of cumulative aggregates is supported by the definition
of a moving window over a sorted input relation. However, also window func-
tions show limits in the computation of complex aggregates. For instance, the
computation of cumulative aggregates over multiple dimensions is not possible.
This is the case, because the computation strategy applied by window functions
resides on a sorted input relation in which tuples belonging to the same group
are arranged contiguously. However, for input relations grouped over more than
one dimension there may exist no ordering so that the tuples of all groups are
arranged contiguously.

Much effort has also been put into research focusing on the optimization of
the evaluation efficiency of aggregation queries based on pre-computation of ag-
gregates and incremental updates of pre-computed aggregates. In [9] a strategy
for pre-computing data cubes based on materialized views is presented. This
approach targets situations in which the materialization of all views, i.e. cells of
the data cubes, is too expensive and provides a strategy for selecting a subset of
views to be materialized based on which the other cells can be computed. The
strategy resides on the use of a lattice that represents the dependencies among
different views based on which an adequate set of the views to be materialized is
computed. In order to avoid the re-computation of views as soon as the source
relations change in [16] an approach is presented which allows to incrementally
update pre-computed aggregates by considering only the changes of the source
relations. The two main steps for the incremental view update are the propagate
step, in which for each materialized view the aggregates over only the changes
in the source relation are computed, referred to as delta cuboids, and a refresh
step, in which the views are updated based on the computed delta cuboids. An
improvement of this approach is presented in [14] which reduces the computa-
tional effort of the strategy by minimizing the number of delta cuboids to be
computed. Another aggregate maintenance approach is presented in [22, 23]
which targets temporal aggregation. They reason, that maintaining a materi-

6

alized view for temporal aggregates might be too expensive, because with the
insertion of one new tuple with a long time interval in the source relation, a
big portion of the materialized view might have to be updated. They propose
an approach for the maintenance of temporal aggregates in a tree data struc-
ture, more precisely an SB-tree. This data structure features characteristics of
B-trees, ensuring good lookup performance, and of segment-trees, providing ef-
ficient updates even for tuples with long time intervals. Further, the approach
they propose supports also cumulative temporal aggregates. In [25, 24] the mul-
tiversion SB-tree data structure is proposed, an extension of the SB-tree which
supports range-temporal aggregation queries, i.e. temporal aggregation queries
with a predicate over the key (group attribute value) range. Although, the per-
formance optimization of aggregation queries based on (partially) pre-computed
aggregates can provide good results there exist settings in which more flexibility
is required.

Further research in the area of multi-dimensional aggregation queries has
been done around the multi-dimensional join (MDJ) operator introduced in
[1]. This operator and its generalized version, generalized multi-dimensional
join (GMDJ) [3], provide a tool for an easy formulation of complex aggregation
queries over multi-dimensional data and an efficient evaluation of such queries.
The evaluation approach adopted by MDJ separates the computation of the
result groups and of the aggregates making them more independent and, thus,
providing more flexibility in their definition. Further, the evaluation approach
enables an efficient computation of ad-hoc queries which might lack of adequate
indexes or pre-computed views, by reducing the number of required scans of the
source relations. The computation of the aggregates is done based on general
θ-conditions which are used to identify the tuples of the source relation which
affect the aggregates. In [2] the θ-constrained multi-dimensional aggregation (θ–
MDA) operator, based on GMDJ, is presented together with a formally defined
cost model, an exhaustive definition of transformation rules for θ–MDA to SQL,
and performance experiments showing the better performance of θ–MDA with
respect to its formulation in SQL. Further, in [2] recent advances of the support
for multi-dimensional aggregation queries in commercial database management
systems is considered. In [4] the use of the GMDJ for the efficient computation
of sub-queries in complex OLAP settings is presented. An algorithm that trans-
forms general sub-query expressions into expressions which use GMDJ instead
of joins, outer joins, or set difference is provided. In [5] and [17] strategies for
an efficient evaluation of aggregation queries based on GMDJ in a distributed
computational environment are presented. In the former, the GMDJ is used for
the computation of aggregation queries over data spread among different data
warehouses. A central coordinator component is responsible for forwarding a
GMDJ query to the different data warehouses and for merging the results com-
puted by those data warehouses once they are returned. In the latter, efficient
computation of analytical aggregation queries over RDF [15] data is presented.
The approach uses GMDJ in connection with Map Reduce3 to compute aggre-
gation queries over RDF data. The work presented in this thesis is also based on
the MDJ operator, more precisely on θ–MDA, and proposes an algorithm for θ–
MDA which improves the evaluation performance of complex multi-dimensional
aggregation queries.

3Map Reduce is a strategy for distributed computing over large amounts of data [20]

7

3 θ-Constrained Multi-Dimensional Aggregation

θ-constrained multi-dimensional aggregation is an operator for the evaluation
of aggregation queries over multi-dimensional data [2]. As presented before,
the operator computes aggregates for the result groups of a base table using
an input table storing the detailed data and θ-conditions for the association of
tuples of the input table to the result groups.

θ–MDA gets as input four parameters which are the base table, the input
table, a list of aggregates which have to be computed and θ-conditions used
for computed the aggregates. Before continuing with a formal definition of the
operator we introduce some notions which will be used in the rest of the thesis.
We will use algebraic operators, such π, σ, or ∪. We will use single curly brackets
{...} for sets and double curly brackets {{...}} for bags. Further, B and R are
used to denote database schemas (B1, ..., Bt) and (R1, ..., Rp) respectively and
x.B is used to refer to (x.B1, ..., x.Bt). E → C denotes the renaming of E to
C, attr(E) denotes the set of attributes used in E and fi denotes an aggregate
function. Based on these notions the θ–MDA operator is defined as follows.

Definition 1 (θ–MDA Operator [2]). Let b(B) and r(R) be tables, θi,
1 ≤ i ≤ m, be conditions with attr(θi) ⊆ attr(B) ∪ attr(R), let Θ = (θ1, ...θm),
let li = (fi1(Ai1)→ Ci1 , ..., fiki (Aiki)→ Ciki), 1 ≤ i ≤ m, be a list of aggregate
functions over attributes Ai1 , Ai2 , ..., Aiki in attr(R), and let L = (l1, ..., lm).
The θ–MDA operator is defined as

x = Gθ(b, r, L,Θ)

where X = (B, C11
, ..., C1k , ..., Cm1

, ..., Cmkm) is the schema of the result
table and each tuple b ∈ b produces a result tuple x ∈ x with

• x.B = b.B.

• x.Cij = fij ({r.Aij |r ∈ R ∧ θi(b, r)}), for each Cij ∈ X.

In Definition 1 the base table is denoted by b, the input table by r and the
result table by x. The aggregates of the result table are x.Cij .

Example 1. In this example we present the formal definition of Query 1 based
on the θ–MDA operator introduced in Definition 1. The operator for the query
is

Gθ(b, LaboratoryServices→ LS, (l1, l2, l3, l4), (θ1, θ2, θ3, θ4))

and the parameters of the operator are defined as follows:

b : πSD,ULaboratoryServices
l1 : (count(SD)→ CSD,U)
θ1 : r.SD = b.SD ∧ r = b.U
l2 : (count(SD)→ NCSD)
θ2 : r.SD 6= b.SD
l3 : (count(SD)→ CCSD)
θ3 : r.SD ≤ b.SD
l4 : (count(SD)→ CCSD,U)
θ4 : r.SD ≤ b.SD ∧ r ≤ b.U

8

The evaluation steps of Query 1 based on θ–MDA are presented in Table
1. At the beginning all aggregates of x are 0. At each step of the computation
one tuple of the input relation is processed and all aggregates in x affected by
that tuple are updated. In our example we start with processing tuple r1 and
all affected aggregates are incremented by 1. Then the tuple r1 is discarded and
the next tuple of the input relation is loaded, namely r2. After having processed
all tuples of the input relation in this way, the result table is computed.

LS
SD U ...

r1 12 1 ...
r2 12 2 ...
r3 12 2 ...
r4 12 3 ...
r5 13 1 ...
r6 13 2 ...
r7 13 3 ...
r8 13 3 ...
r9 14 2 ...

x
SD U CSD,U NCSD CCSD CCSD,U

x1 12 1 0 0 0 0
x2 12 2 0 0 0 0
x3 12 3 0 0 0 0
x4 13 1 0 0 0 0
x5 13 2 0 0 0 0
x6 13 3 0 0 0 0
x7 14 2 0 0 0 0

LS
SD U ...

r1 12 1 ...
r2 12 2 ...
r3 12 2 ...
r4 12 3 ...
r5 13 1 ...
r6 13 2 ...
r7 13 3 ...
r8 13 3 ...
r9 14 2 ...

x
SD U CSD,U NCSD CCSD CCSD,U

x1 12 1 1 0 1 1
x2 12 2 0 0 1 0
x3 12 3 0 0 1 0
x4 13 1 0 1 0 0
x5 13 2 0 1 0 0
x6 13 3 0 1 0 0
x7 14 2 0 1 0 0

LS
SD U ...

r1 12 1 ...
r2 12 2 ...
r3 12 2 ...
r4 12 3 ...
r5 13 1 ...
r6 13 2 ...
r7 13 3 ...
r8 13 3 ...
r9 14 2 ...

x
SD U CSD,U NCSD CCSD CCSD,U

x1 12 1 1 0 2 1
x2 12 2 1 0 2 1
x3 12 3 0 0 2 0
x4 13 1 0 2 0 0
x5 13 2 0 2 0 0
x6 13 3 0 2 0 0
x7 14 2 0 2 0 0

9

LS
SD U ...

r1 12 1 ...
r2 12 2 ...
r3 12 2 ...
r4 12 3 ...
r5 13 1 ...
r6 13 2 ...
r7 13 3 ...
r8 13 3 ...
r9 14 2 ...

x
SD U CSD,U NCSD CCSD CCSD,U

x1 12 1 1 5 4 1
x2 12 2 2 5 4 3
x3 12 3 1 5 4 4
x4 13 1 1 5 8 2
x5 13 2 1 5 8 5
x6 13 3 2 5 8 8
x7 14 2 1 8 9 6

Table 1: Query 1 Computation Steps.

In [2] two algorithms for the computation of θ–MDA queries based on the
approach presented above are proposed.

The first algorithm, BasicTCMDA (see page 11), consists of four steps and
applies a brute force approach for computing the result relation x. In step 1 of
the algorithm, algebraic aggregates are replaced by distributive sub-aggregates.
For example, the aggregate avg is replace by the aggregates sum and count.
This step is required in order to have a correct computation of the aggregates.
Next, in step 2 the result relation with all aggregates set to their initial values is
constructed. For the aggregates count and sum the initial value is 0 and for the
aggregates min and max it is NULL. Then, in step 3 for each tuple of the input
table r and each tuple of x all θ-conditions are checked, and for matching ones
the aggregate is updated. Finally, in step 4 the sub-aggregates transformed in
step 1 are transformed back into algebraic ones.

The second algorithm, IndexedTCMDA (see page 12), is similar to the algo-
rithm BasicTCMDA, but instead of iterating through all tuples of x for each input
tuple of r and θ-condition, it uses an index to find only those tuples which are af-
fected by the processed tuple of r. Step 1 and step 4 of IndexedTCMDA, in which
the aggregates transformation occurs, are exactly the same as in BasicTCMDA. In
step 2 the only difference to step 2 of BasicTCMDA is that an index for the result
table x is created. And in step 3 for each processed tuple of the input table
r and each θ-condition, all tuples of x are retrieved for which the θ-condition
holds. For retrieving these tuples the index is used. In this way the algorithm
performes less iterations. For instance, if only one tuple of x is affected than
the algorithm iterates over only this tuple instead of all tuples of x. Based on
the use of the index the IndexedTCMDA algorithm is faster than BasicTCMDA for
restrictive θ-conditions, i.e. if the θ-conditions match only few tuples of x for
the processed tuples of r. For instance, queries with only equality constraint
operators are very restrictive, instead, queries with constraint operators such as
≤, ≥, or 6= are less restrictive.

10

Algorithm 1: BasicTCMDA(b, r, (l1, ..., lm), (θ1, ..., θm))

// Step 1: Replace algebraic aggregates by distributive

sub-aggregates

Let l′i = li, 1 ≤ i ≤ m;
foreach algebraic aggregate fij ∈ {l′1, ..., l′m} do

Replace fij with its distributive sub-aggregates f1
ij
, ..., f

pij
ij

end

// Step 2: Construct result table x

// Note: υj’s are the initial aggregate values (0 for count
and sum, NULL for min and max

Let N = (υ11 , ..., υm1 , ..., υmkm);
Let x = b×N ;

// Step 3: Compute the aggregates

foreach tuple r ∈ r do
foreach row x ∈ x do

foreach θi ∈ {θ1, ..., θm} do
if θi(x, r) is true then

Update the aggregates fi1 , ..., fiki in x;

end

end

end

end

// Step 4: Apply the super-functions

if l1, ..., lm contains algebraic aggregates then
foreach row x ∈ x do

foreach algebraic aggregate fij ∈ {l1, ..., lm} do
Let gij be the super-function of fij ;

In x, replace f1
ij
, ..., f

pij
ij

by a single column fij and set

x.fij = gi(x.f
1
ij
, ..., x.f

pij
ij

);

end

end

end

return x;

11

Algorithm 2: IndexedTCMDA(b, r, (l1, ..., lm), (θ1, ..., θm))

// Step 1: Replace algebraic aggregates by distributive

sub-aggregates

(Same as step 1 in BasicTCMDA).

// Step 2: Construct result table and indexes

// Note: υj’s are the initial aggregate values (0 for count
and sum, NULL for min and max

Let N = (υ11
, ..., υm1

, ..., υmkm);
Let x = b×N ;
Build index for x;

// Step 3: Compute the aggregates

foreach tuple r ∈ r do
foreach θi ∈ {θ1, ..., θm} do

Fetch the rows xi = {x ∈ x|θi(x, r)} using the index;
foreach x ∈ xi do

Update the aggregates fi1 , ..., fiki in x;

end

end

end

// Step 4: Apply the super functions

Same as in BasicTCMDA.

return x;

12

4 Late Initialization for θ–MDA

In the previous sections we learned about the θ–MDA operator and that it
performs better than SQL implementations for complex aggregation queries
over multi-dimensional data. Among others, one parameter of the operator is
the base relation which contains all the groups for which the aggregate values
have to be computed. In the current version of the evaluation algorithms for
θ–MDA the base table has to be constructed completely before the computation
of the result table begins. For cases in which the base table is a projection of
the input relation r this results in two scans of r, one scan for computing b
and one scan for computing x. In this section we propose an approach for θ–
MDA that requires only one scan of the input relation r in cases in which the
base table is a projection of r. This approach is based on the current θ–MDA
strategy presented in the previous section and we refer to it as θ–MDA with late
initialization.

The rest of this section is structured as follows. In Section 4.1 we define
the concept of late initialization for θ–MDA. Section 4.2 presents different cases
which have to be considered by the late initialization approach. In Section 4.3
our evaluation strategy for θ–MDA with late initialization is presented. Finally,
in Section 4.4 an optimization of that strategy is introduced.

4.1 Definition

For the computation of θ–MDA queries based on the evaluation strategies pre-
sented in [2], in cases in which the base table is a projection of the input table
r, two scans of r are required, one for computing b and one for computing x.
In this section we introduce the main idea of an approach that, for cases in
which the base table is a projection of the input relation, allows to compute
the result of θ–MDA by scanning r only once. This goal can be achieved, by
computing the elements of the base table on demand while the aggregates of
the result relation are computed. We refer to this computation on-the-fly of the
base table elements as late initialization.

In Figure 3 the idea of late initialization for θ–MDA is presented graphically
by comparing the main evaluation workflow of the θ–MDA approach defined in
Section 3 (see Figure 3(a)) with the computational workflow of θ–MDA with
late initialization (see Figure 3(b)). In the first case, the base table b has to
be computed before continuing with the computation of the result relation x,
requiring two scans of the input relation r. In the second case, instead, the tuples
of b are computed on demand while computing the aggregates of x, requiring
only one scan of r. In the following a formal definition of late initialization for
θ–MDA is provided.

Definition 2 (θ–MDA with Late Initialization). Let r(R) be a table, θi,
1 ≤ i ≤ m, be conditions with attr(θi) ⊆ attr(R), let Θ = (θ1, ...θm), let
li = (fi1(Ai1) → Ci1 , ..., fiki (Aiki) → Ciki), 1 ≤ i ≤ m, be a list of aggregate
functions over attributes Ai1 , Ai2 , ..., Aiki in attr(R), and let L = (l1, ..., lm).
Let b(B) = πB1,...,Bt(σ(r)) be a SP of r with B1, ..., Bt in attr(R). Late ini-
tialization for θ–MDA is defined as the strategy that computes the tuples of
b on demand while the tuples of r are processed for the computation of the
aggregates of x, i.e. that requires only one scan of r in order to compute x, by
proceeding as follows:

13

1. Start with an empty result relation x← ∅.

2. Let r′ ⊂ r be the set of argument tuples that have already been processed
and r ∈ r \ r’ the current tuple. Then the result table x is updated as
follows:

(a) If !∃x ∈ x(x.B = r.B) then
x← r.B× (C ′

11
, ..., C ′

mkm
)

with x.C ′
ij
← fij ({{r′.Aij | r′ ∈ r′ ∧ θi(x, r′)}});

x← x ∪ {x};

(b) ∀x ∈ x,∀θi ∈ {θ1, ..., θm} update aggregates fi1 , ..., fiki if θi(x, r) is
true.

r
1. Scan r to compute b
2. Scan r to compute x

x

(a) θ–MDA Evaluation Workflow

r
1. Scan r to compute b

on-the-fly and x
x

(b) θ–MDA with Late Initialization Evaluation Workflow

Figure 3: Query Evaluation Workflow

From Definition 2 it is possible to recognize that the computational process
of θ–MDA with late initialization starts with an empty result table x. Then, it
starts to iterate through all the tuples r of r and extends x if the result group
to which r belongs is not already given in x. Further, the aggregates of a newly
added tuple of x, as well as, of the already existing tuples of x are computed
or updated respectively. Based on this approach of late initialization the result
groups of b are created as needed while the aggregates in x are computed,
requiring only one scan of r.

Example 2. In this example we illustrate the single computational steps of
the late initialization strategy of Definition 2. Table 2 presents the steps for
computing the aggregate CSD,U of Query 1 based on that strategy. We can see
that the computation starts with an empty result relation x and at each step
one tuple of r is processed. The first tuple of r to be processed is r1. Due to the
fact, that at the point of processing r1 the table x does not contain any result
group with SD = 2010-11-12 and U = 1, a new tuple, x1, is added to x. The
aggregate of x1 is initialized to 0 because r1 is the first tuple to be processed
and, therefore, there are no previously processed tuples of r which could affect

14

x1. Next, all aggregates of tuples of x which are affected by r1 are incremented
by 1. In our case only CSD,U of x1 has to be incremented. Next, we proceed
with processing tuple r2. Also in this case there exists no entry in x which
represents the result group to which r2 belongs, therefore, a new tuple, x2, is
added to x. Due to the fact, that no previously processed tuples of r affect
the aggregate of x2, CSD,U is set to 0. Then, all the aggregates affected by r2

are incremented by 1, which in our case is only CSD,U of x2. We continue with
processing tuple r3. In this case there already exists a tuple in x representing
the result group to which r3 belongs, thus, no new tuple has to be added to
x. Therefore, we proceed by updating all aggregates of tuples affected by r3,
which is only x2. We increment CSD,U by 1. For the remaining tuples of r we
proceed in the same way as for r1 to r3. After having processed all tuples of r,
the result relation x for aggregate CSD,U is entirely computed.

x
SD U CSD,U

r1(2010-11-12, U1, 1, 24) x1 2010-11-12 1 1

r2(2010-11-12, H7, 2, 47) x1 2010-11-12 1 1
x2 2010-11-12 2 1

r3(2010-11-12, U3, 2, 33) x1 2010-11-12 1 1
x2 2010-11-12 2 2

... ...
r9(2010-11-14, U1, 2, 52) x1 2010-11-12 1 1

x2 2010-11-12 2 2
x3 2010-11-12 3 1
x4 2010-11-13 1 1
x5 2010-11-13 2 1
x6 2010-11-13 3 2
x7 2010-11-14 2 1

Table 2: Example of θ–MDA with Late Initialization

In the above example, newly added tuples of x are not affected by previously
processed tuples of r. We choose this example in order to focus on the main
idea of the late initialization approach for θ–MDA. However, the aggregates of
newly added tuples of x can be affected by one or more tuples of r processed in
previous steps. In such cases, the computation of the aggregates of that newly
added tuples can be challenging. Indeed, for the computation of that aggregates
one or more of the previously processed tuples of r would be required. However,
those tuples are not available anymore, because after being processed they are
discarded. Due to the fact, that the aggregates of the already existing tuples
of x store the information about previously processed tuples of r, the required
information can be extracted from the aggregates of x. Theorem 1 states this
fact formally.

15

Theorem 1 (Aggregate Computation for new Tuples of x). Let r(R) be
a table, b(B) = πB1,...,Bt(σ(r)) a SP of r, and r a tuple of r. If we compute
x using the θ–MDA strategy of Definition 2 and r is the currently processed
tuple of r, and if there exists no tuple x in x with x.B = r.B, then a new tuple
x = x.B× (C ′

ij
, ..., C ′

mkm
) has to be added to x. The aggregates

x.C ′
ij

= F (x, fij , θi)

of the new tuple x can be computed from the aggregates of the already existing
tuples of x.

The theorem states that the aggregates, x.C ′
ij

, of newly added tuples of x

can be computed by a function F (x, fij , θi). This function extracts the required
information about previously processed tuples r′ ⊂ r, which affect the aggregate
x.C ′

ij
, from the aggregates of the already existing tuples of x, thus, not requiring

to access the tuples in r′ directly. However, the strategy needed for extracting
the needed information from the aggregates in x depends from the type of
constraint operators used in θi, thus, requiring different functions F (x, fij , θi).

4.2 Case Analysis

In this section we study the different cases arising when computing the aggre-
gates of newly added tuples of x, with the help of F (x, fij , θi), due to the use
of different constraint operators in the θ-conditions. Before continuing with
the analysis we introduce the notion of θ-result-groups in Definition 3, which is
going to be used in the rest of this thesis.

Definition 3 (θ-Result-Group). Let r(R) be a table, θi, 1 ≤ i ≤ m, be
conditions with attr(θi) ⊆ attr(R), let Θ = (θ1, ...θm), let li = (fi1(Ai1) →
Ci1 , ..., fiki (Aiki) → Ciki), 1 ≤ i ≤ m, be a list of aggregate functions over at-
tributesAi1 , Ai2 , ..., Aiki in attr(R), let L = (l1, ..., lm). Let b(B) = πB1,...,Bt(σ(r))

be a SP of r with B1, ..., Bt in attr(R), and let x = Gθ(b, r, L,Θ). Then

gθi = πattr(θi)(x)

is the set of all the result groups in x for the condition θi, i.e. the set of θ-result-
groups for θi.

From Definition 3 we can deduce the that one θ-result-group gθi ∈ gθi may
occur in more than one tuple of x, if attr(θi) ⊂ attr(x).

4.2.1 θ-Conditions with the Constraint Operator =

In this section we present the application of late initialization to θ–MDA for θ-
conditions with only equality constraint operators. We will do this based on an
example and show that for θ-conditions with only equality constraint operators
late initialization can be applied without encountering difficulties. i.e. a simple
strategy for computing F (x, fij , θi) exists.

Indeed, in a scenario with conditions using only equality constraints, each
tuple of the input relation affects exactly one θ-result-group. Due to the fact,
that more than one tuple in x can store the same θ-result-group, the situation
can arise in which for a newly inserted tuple of x, there already exist entries

16

in x storing the θ-result-group for a specific condition θi. In such cases, the
aggregates of that tuples of x have to be considered for the computation of the
aggregates of the new tuple of x. Because for conditions with only equality
constraint operators there exists only one θ-result-group per condition, only one
tuple of x storing the θ-result-group has to be considered, because it stores all
the information about the already processed tuples of r belonging to the same
θ-result-group. In the following we present this situation by an example.

Example 3. In this example we illustrate the steps that have to be done in
order to compute x with late initialization for a query with θ-conditions using
only the constraint operator =. The definition of the input parameters of the
θ–MDA operator for this example are the following:

r : LS
b : πSD,U (LS)
l1 : (count(SD)→ CSD,U)
θ1 : r.SD = b.SD
l2 : (count(SD)→ CSD,U)
θ2 : r.SD = b.SD ∧ r.U = b.U

The input relation used in this example is the relation LS of our running example
(Table 1(a) on page 2). The aggregates CSD and CSD,U of a specific tuple of
x count the number of tuples of r belonging to the θ-result-groups represented
by that tuple.

In Table 3 we illustrate the single steps required to compute x with late
initialization. It is possible to recognize, that we start with an empty result
relation x. Subsequently, at each step in this example, one tuple of the in-
put relation is processed and the result relation updated accordingly. In the
following paragraphs the steps for computing x are described in more detail.

The first tuple to be processed in Table 3 is r1. At that point, there exists
no tuple in x which has the values 2010-11-12 and 1 for the attributes SD and
U respectively. Thus, a new tuple x1 is inserted into x and the aggregates CSD
and CSD,U of this tuple are computed. Because r1 is the first tuple of r to be
processed, no other tuple of r has to be considered for the computation of the
aggregates of x1. Thus, both aggregates CSD and CSD,U are set to 0. Next, all
tuples of x affected by r1 are updated, resulting in the aggregates of x1 to be
CSD = 1 and CSD,U = 1.

The second tuple to be processed is r2 and also for this tuple a new entry, x2,
has to be added to x. The computation of the aggregates for x2, however, differs
from the previous case. In fact, for the computation of CSD, for which only the
attribute SD has to be considered, there already exists tuple in x storing the
θ-result-group for θ1 to which the tuple r2 belongs, namely x1. Thus, x1 has
to be taken into account for the computation of CSD of x2. Therefore, CSD is
initialized to 1, and CSD,U to 0. Then, all aggregates of x affected by r2 are
updated, which are both aggregates of x2 and the aggregate CSD of x1.

Continuing this process until each tuple of the input relation has been pro-
cessed, produces a result relation x with correctly computed aggregates. This
shows, that the computation of the aggregates of newly added tuples of x can
be easily accomplished for θ-conditions which contain only equality constraint

17

operators. The presented approach works also if any of the aggregate functions
sum, min, max, and avg4 is used.

x
SD U CSD CSD,U

r1(2010-11-12, U1, 1, 24) x1 2010-11-12 1 1 1

r2(2010-11-12, H7, 2, 47) x1 2010-11-12 1 2 1
x2 2010-11-12 2 2 1

r3(2010-11-12, U3, 2, 33) x1 2010-11-12 1 3 1
x2 2010-11-12 2 3 2

... ...
r9(2010-11-14, U1, 2, 52) x1 2010-11-12 1 4 1

x2 2010-11-12 2 4 2
x3 2010-11-12 3 4 1
x4 2010-11-13 1 4 1
x5 2010-11-13 2 4 1
x6 2010-11-13 3 4 2
x7 2010-11-14 2 1 1

Table 3: Example of Late Initialization for Equality

4.2.2 θ-Conditions with the Constraint Operators ≤, ≥, <, >

In this section we continue with the presentation of how to apply the late ini-
tialization strategy for θ–MDA to queries with conditions using the constraint
operators ≤, ≥, <, and >. We will do this by an example of θ–MDA in which
only the constraint operator ≤ is used. We will see that the computation of
the aggregates of newly added tuples is not as straightforward as for θ–MDA
queries with conditions using only equality. θ–MDA queries with θ’s using ≥,
<, and > feature the same characteristics as for ≤ and, thus, are not presented
in more detail here.

In the previous section we learned, that for θ-conditions with only equality
constraints, each tuple of r affects exactly one θ-result-group of x. In the case of
conditions with one of the constraint operators ≤, ≥, <, and > this is different.
Indeed, in such cases each tuple of r can affect more than one θ-result-group
of x. This means, that the information about already processed tuples of r is
spread among several tuples of x and, thus, has to be extracted from them.
However, as we will see later in this section, the problem in doing this is that
the aggregates of the different θ-result-groups which have to be considered for
computing the aggregates of a new tuple of x might store redundant information
about already processed tuples of r. This information must be removed for a
correct computation of the new aggregates. In the following we continue with
the presentation of the example.

4In the case of avg, the aggregates has to be split into count and sum in order to be
computed correctly as mentioned in Section 3.

18

Example 4. In this example we illustrate the computation of x with late
initialization for a query using only the constraint operator ≤. The definition
of the θ–MDA operator parameters is the following:

r : LS
b : πSD,ULS
l1 : (count(SD)→ CCSD)
θ1 : r.SD ≤ b.SD
l2 : (count(SD)→ CCSD,U)
θ2 : r.SD ≤ b.SD ∧ r.U ≤ b.U

Also in this example the used input relation is LS of our running example. The
aggregates CCSD and CCSD,U represent cumulative counts, i.e. they count all
the tuples of r with values for the attributes SD and U being smaller-equal
than the values of SD or SD and U of the considered tuple of x respectively.

In Table 4 we illustrate the situation in which x reflects the result relation
after a correct processing of the tuples r1 to r5 of the input table, and r6 is the
next tuple of r to be processed. Due to the fact, that x does not contain any
tuple with SD = 2010-11-13 and U = 2, a new tuple, x5, has to be added to x.
The next step to do is to compute the aggregates of x5. Considering CCSD,U ,
first we have to retrieve the aggregates CCSD,U of θ-result-groups which store
information about previously processed tuples of r which affect the aggregate of
the new tuple x5. This information is store in the tuples x1, x2, and x4, because
they count tuples of r with values for SD and U being smaller than 2010-11-13
and 2 respectively. Due to the fact, that the aggregate values of x1, x2, and
x4 are already cumulative, they cannot be used directly for the computation
of the aggregate CCSD,U of x5. Indeed, if we would compute CCSD,U for x5

by adding up the values of the aggregate CCSD,U of x1, x2, and x4, namely 1,
3, and 2, and updating the result by incrementing it by 1, we would result in
CCSD,U = 7 for x5 which is not correct5. This is the case, because for instance
the tuples of r with SD = 2010-11-12 and U = 1 are counted by the aggregate
CCSD,U of all three tuples, x1, x2, and x4. This shows, that the values of x1,
x2, and x3 have to be decomposed in some way in order to produce the correct
result for CCSD,U which is 5. Finding a general approach for extracting the
required information of previously processed tuples of r from the aggregates
in x, however, is not trivial, and depending on the number of constraints and
attributes used in a condition the complexity of the computation increases.

5Compare with the result relation in table 1(b) on page 2.

19

x
SD U CCSD CCSD,U

After processing x1 2010-11-12 1 4 1
r1 to r5 x2 2010-11-12 2 4 3

x3 2010-11-12 3 4 4
x4 2010-11-13 1 5 2

... ...
r6(2010-11-13, H7, 2, 16) x1 2010-11-12 1 4 1

x2 2010-11-12 2 4 3
x3 2010-11-12 3 4 4
x4 2010-11-13 1 5 2
x5 2010-11-13 2 ? ?

Table 4: Example of Late Initialization for Less-Equal

θ–MDA queries with constraint operators ≥, <, or > feature the same char-
acteristics as queries with the constraint operator ≤, regarding the approach
required for the computation of the result relation x. Therefore, we will not
provide separate examples for those constraint operators.

4.2.3 θ-Conditions with the Constraint Operator 6=

In this section we present the application of late initialization to θ–MDA queries
with conditions using only the constraint operator 6=. We will do this by an
example and show that also in this case the computation of aggregates of newly
added tuples of x is not as easy as for θ–MDA with only equality constraints.

In the previous section we learned, that for θ-conditions with constraint
operators ≤, ≥, <, and >, each tuple of r can affect more than one θ-result-
group. For θ–MDA queries with conditions using only inequality constraints, it
is similar. In fact, for each tuple of r all θ-result-groups besides one are affected.
Therefore, also in this case, the information about previously processed tuples
is spread among several θ-result-groups in x, and has to be extracted in order to
be used for the computation of the aggregates of new tuples of x. An example
of θ–MDA with late initialization and inequality constraints follows.

Example 5. In this example we illustrate the strategy for computing x with
late initialization for a query using only the constraint operator 6=. The defini-
tion of the θ–MDA operator parameters is the following:

r : LS
b : πSD,ULS
l1 : (count(SD)→ NCSD)
θ1 : r.SD 6= b.SD
l2 : (count(SD)→ NCSD,U)
θ2 : r.SD 6= b.SD ∧ r.U 6= b.U

It is possible to recognize that also in this example the input relation used is the
LS of our running example. The aggregates NCSD and NCSD,U of a specific
tuple x of x count all tuples of the input relation with values different than the
values of SD or SD and U of x respectively.

20

Table 5 illustrates the step of processing tuple r6 after having previously
processed tuples r1 to r5. Table x does not contain any tuple with SD = 2010-
11-13 and U = 2 and, therefore, a new entry has to be added for r6. A new
tuple, x5, is added to x and its aggregates have to be compute. Due to the fact,
that the previously processed tuples of r do not affect the aggregate NDSD,U ,
the value of that aggregate is the total number of previously processed tuples of
r. Therefore, this information has to be extracted from the aggregates of x1 to
x4. However, due to the fact, that the aggregates of x1 to x4 contain the number
of tuples processed with values different that the θ-result-groups represented by
the tuple, the aggregates of x1 to x4 have to be decomposed in some way, so
that we can compute the total number of processed tuples. Another possibility
for computing NCSD,U of x5 could be to use a counter for each θ-condition
with only inequality constraint operators, which tracks the number of tuples
processed until each point. However, as soon as a θ-condition contains not only
inequality constraint operators the approach based on counters might not work
anymore. Therefore, also in the case of inequality θ-conditions, the computation
of aggregates for newly added tuples of x is not trivial.

x
SD U NCSD NCSD,U

After processing x1 2010-11-12 1 1 4
r1 to r5 x2 2010-11-12 2 1 3

x3 2010-11-12 3 1 4
x4 2010-11-13 1 4 4

... ...
r6(2010-11-13, H7, 2, 16) x1 2010-11-12 1 2 5

x2 2010-11-12 2 2 4
x3 2010-11-12 3 2 5
x4 2010-11-13 1 4 5
x5 2010-11-13 2 ? ?

Table 5: Example of Late Initialization for Not-Equal

4.3 Reducing θ to Equality Constraints

In this section we present a comprehensive approach for the computation of
θ–MDA queries based on the idea of late initialization. The main idea of the
designed solution is to compute an intermediate result relation xeq by reduc-
ing all θ constraint operators of a θ–MDA query to the constraint operator =
and, then, to compute the final result relation x for the initial constraint oper-
ators based on the relation xeq. In this way, xeq can be easily computed using
late initialization as demonstrated in Section 4.2.1 without requiring different
and complex computational strategies for calculating the aggregates of newly
inserted tuples of x, i.e. without the need of different functions F (x, fij , θi).
Regarding the computation of x based on xeq details will be provided in the
following. In Definition 4 we formally define the idea of θ–MDA with Late Ini-
tialization which is based on the computation of the intermediate result relation
xeq.

21

Definition 4 (Late Initialization by Reduction to Equality). Let r(R) be
a table, θi, 1 ≤ i ≤ m, be conditions with attr(θi) ⊆ attr(R), let Θ = (θ1, ...θm),
let li = (fi1(Ai1)→ Ci1 , ..., fiki (Aiki)→ Ciki), 1 ≤ i ≤ m, be a list of aggregate
functions over attributes Ai1 , Ai2 , ..., Aiki in attr(R), and let L = (l1, ..., lm).
Let b(B) = πB1,...,Bt(σ(r)) be a SP of r with B1, ..., Bt in attr(R). Let θeqi be
θi with all constraint operators replaced by =, and Θeq = (θeq1 , ...θ

eq
m) be a tuple

of the θ-conditions with constraint operators reduced to equality. Then θ–MDA
with late initialization is computed as follows:

1. Compute the intermediate result relation

xeq = Gθ(b, r, L,Θeq)

for the θ-conditions reduced to equality which can be computed by θ–MDA
using the late initialization evaluation strategy.

2. Compute the result relation x(X) where X = (B, D11 , ..., Dm1 , ..., Dmkm
)

is the schema of the result table and for each b ∈ b there is a tuple in x
with

x.B = b.B
xeqij = πattr(θi)∪attr(Cij){xeq|xeq ∈ xeq ∧ θi(x, xeq)}
cij = {{xeqij .Cij |x

eq
ij
∈ xeqij }}

x.Dij =

{
sum(cij) if fij is sum or count
fij (cij) if fij is min or max

The evaluation strategy for θ–MDA with late initialization of Definition 4
consists of two main steps. In the first step, the intermediate result relation xeq

for the θ-conditions with constraint operators reduced to equality is computed,
based on the late initialization strategy presented in Definition 2 on page 14.
This is possible because, as we learned previously, that strategy can be easily
implemented for θ-conditions containing only equality constraint operators. In
the second step, the result relation x is computed based on xeq. This can be
done, because xeq contains all the information about the tuples of r and this
information can be easily extracted from xeq. More details about the extraction
follow.

In Figure 4 the approach of θ–MDA with Late Initialization based on the
computation of the intermediate result relation xeq is presented by an example.
In the example we use the input relation LS of our running example and the
aggregates CSD,U , NCSD, and CCSD,U of Query 1. It is possible to recognize
that at the beginning of the computational workflow in Figure 4 (1) we find the
input parameters for θ–MDA. Then, based on these parameters in (2) the inter-
mediate result relation xeq is computed using the θ-conditions with constraint
operators reduced to =. For instance, θ1 remains unchanged, θ2 is reduced to
r.SD = b.SD and θ3 to r.SD = b.SD ∧ r.U = b.U . Finally, in (3) the result
relation x is computed based on xeq. More details about this are provided in
the following.

22

(1)

r : LS
SD U ...

r1 2010-11-12 1 ...
r2 2010-11-12 2 ...
r3 2010-11-12 2 ...
r4 2010-11-12 3 ...

...

b : πSD,U (LS)
l1 : (count(SD))→ CSD,U
θ1 : r.SD = b.SD ∧ r.U = b.U
l2 : (count(SD))→ NCSD
θ2 : r.SD 6= b.SD
l3 : (count(SD))→ CCSD,U
θ3 : r.SD ≤ b.SD ∧ r.U ≤ b.U

(2)

xeq

SD U CeqSD,U NCeqSD CCeqSD,U
xeq1 2010-11-12 1 1 4 1
xeq2 2010-11-12 2 2 4 2
xeq3 2010-11-12 3 1 4 1
xeq4 2010-11-13 1 1 4 1
xeq5 2010-11-13 2 1 4 1
xeq6 2010-11-13 3 2 4 2
xeq7 2010-11-14 2 1 1 1

(3)

x
SD U CSD,U NCSD CCSD,U

x1 2010-11-12 1 1 5 1
x2 2010-11-12 2 2 5 3
x3 2010-11-12 3 1 5 4
x4 2010-11-13 1 1 5 2
x5 2010-11-13 2 1 5 5
x6 2010-11-13 3 2 5 8
x7 2010-11-14 2 1 8 6

Figure 4: θ–MDA with Late Initialization - General Solution (Example)

In the following we illustrate how the aggregate CSD,U of x can be computed
based on xeq. In Figure 5 the result relation x with only the aggregate CSD,U
is depicted together with further illustration about how some of the aggregate
values are computed. For instance, the aggregate of tuple x2 is computed by
summing the aggregate values CeqSD,U of all tuples of xeq with SD = 2010-11-12
and U = 2. In this specific case the only tuple of xeq which contributes to the
computation of the aggregate CSD,U of the tuple x2 is xeq2 . Due to the fact, that
in θ1 only equality constraint operators are used, each tuple of x is affected by
exactly one tuple of xeq. In fact, the aggregate values of the tuples in xeq are
already the correct aggregate values of x.

23

x
SD U CSD,U

x1 2010-11-12 1 1
x2 2010-11-12 2 2
x3 2010-11-12 3 1
x4 2010-11-13 1 1
x5 2010-11-13 2 1
x6 2010-11-13 3 2
x7 2010-11-14 2 1

Contributing Tuples of xeq

SD U CeqSD,U
xeq2 2010-11-12 2 2

SUM 2

Contributing Tuples of xeq

SD U CeqSD,U
xeq7 2010-11-14 2 1

SUM 1

Figure 5: Transformation of xeq to x for Aggregate CSD,U

In Figure 6 the result relation x for only the aggregate NCSD is depicted and
also some additional information is provided about how some of the aggregate
values of x are computed. For example, the aggregate of tuple x2 is computed
by summing the aggregate values NCeqSD of all tuples of xeq with SD 6= 2010-
11-12, which are the tuples xeq4 to xeq7 . However, in this case, the tuples xeq4
to xeq6 represent the same θ-result group, and, therefore, they are counted only
one time. In Figure 6 we used xeq4,5,6 to identify the tuple that represents the
θ-result group of the tuples xeq4 to xeq6 . Due to the fact, that in θ2 only inequality
constraint operators are used, each tuple is affected by all tuples of xeq besides
the one with the specified value for SD.

x
SD U NCSD

x1 2010-11-12 1 5
x2 2010-11-12 2 5
x3 2010-11-12 3 5
x4 2010-11-13 1 5
x5 2010-11-13 2 5
x6 2010-11-13 3 5
x7 2010-11-14 2 8

Contributing Tuples of xeq

SD NCeqSD
xeq4,5,6 2010-11-13 4
xeq7 2010-11-14 1

SUM 5

Contributing Tuples of xeq

SD NCeqSD
xeq1,2,3 2010-11-12 4
xeq4,5,6 2010-11-13 4

SUM 8

Figure 6: Transformation of xeq to x for Aggregate NCSD

24

Finally, in Figure 7 the result relation x for only the aggregate CCSD,U is
presented together with details about how some of the aggregate values CCSD,U
are computed. For example, the aggregate of tuple x7 is computed by summing
the aggregate values CCeqSD,U of all tuples of xeq with SD ≤ 2010-11-12 and

U ≤ 2, which are the tuples xeq1 , xeq2 , xeq4 , xeq5 , and xeq7 . The aggregates of the
other tuples of x are computed in the same way as for tuple xeq7 .

x
SD U CCSD,U

x1 2010-11-12 1 1
x2 2010-11-12 2 3
x3 2010-11-12 3 4
x4 2010-11-13 1 2
x5 2010-11-13 2 5
x6 2010-11-13 3 8
x7 2010-11-14 2 6

Contributing Tuples of xeq

SD U CCeqSD,U
xeq1 2010-11-12 1 1
xeq2 2010-11-12 2 2

SUM 3

Contributing Tuples of xeq

SD U CCeqSD,U
xeq1 2010-11-12 1 1
xeq2 2010-11-12 2 2
xeq4 2010-11-13 1 1
xeq5 2010-11-13 2 1
xeq7 2010-11-14 2 1

SUM 6

Figure 7: Transformation of xeq to x for Aggregate CCSD,U

The approach of θ–MDA with late initialization presented in this section
works in the same way also if other types of aggregate functions are used. The
only difference is, that instead of summing the aggregate values of the matching
tuples of xeq, for instance, the minimum or the maximum value has to be
computed. Further, the θ–MDA approach with late initialization works also for
θ-conditions containing combinations of different types of constraint operators,
for example, ≤ and 6= could be used together in the same θ-condition. Therefore,
independently from the constraint operators and the aggregate functions used,
the approach presented in this section allows to compute the result relation x
for θ–MDA queries using late initialization. This means, that only one scan of
the input relation in necessary for θ–MDA.

4.4 Optimization with Multiple Group Tables

In this section we describe an optimized version of the general solution for eval-
uating θ–MDA queries with late initialization presented in the previous section.
The idea for this modification is to minimize the number of updates of the in-
termediate result relation for each processed tuple of r and each θ-condition.
Indeed, in the θ–MDA evaluation approach with late initialization presented
previously it could be that more than one tuple of xeq has to be updated for a
tuple r of r and a specific θi. For instance, in the example depicted in Figure 4

25

(on page 23) the tuples xeq1 to xeq3 have to be updated when the θ-condition θ2

is processed for input tuple r4. This multiple updates can be avoided by using a
separate intermediate result relation xeqi for each condition θi, which allows to
keep the number of updates performed on the intermediate result relation equal
to 1 for each tuple of r and θ-condition. In the following definition we formalize
this concept of the optimized version of θ–MDA with Late Initialization.

Definition 5 (Late Initialization with Separate Tables xeq). Let r(R) be
a table, θi, 1 ≤ i ≤ m, be conditions with attr(θi) ⊆ attr(R), let Θ = (θ1, ...θm),
let li = (fi1(Ai1)→ Ci1 , ..., fiki (Aiki)→ Ciki), 1 ≤ i ≤ m, be a list of aggregate
functions over attributes Ai1 , Ai2 , ..., Aiki in attr(R), and let L = (l1, ..., lm).
Let b(B) = πB1,...,Bt(σ(r)) be a SP of r with B1, ..., Bt in attr(R). Let θeqi
be θi with all constraint operators replaced by =, and Θeq = (θeq1 , ...θ

eq
m) be

a tuple of the θ-conditions with constraint operators reduced to equality, let
bi = πattr(θi)(b) be the base table for the attributes of θi. Then θ–MDA with
late initialization is computed as follows:

1. Compute the intermediate result relations

(xeq1 , ...,x
eq
m) = Gθopt(bi, r, li, θ

eq
i)

for the θ-conditions reduced to equality which can be computed by θ–MDA
with late initialization.

2. Compute the result relation x(X) where X = (B, D11
, ..., Dm1

, ..., Dmkm
)

is the schema of the result table and for each b ∈ b there is a tuple in x
with

x.B = b.B
cij = {{xeqi .Cij |x

eq
i ∈ xeqi ∧ θi(x, x

eq
i)}}

x.Dij =

{
sum(cij) if fij is sum or count
fij (cij) if fij is min or max

In Definition 5 the approach for computing the result relation x differs only
from the one of the general solution because several intermediate result relations
are computed. The computation starts with calculating the intermediate result
relations xeqi and then based on the different xeqi ’s the final result relation is
computed.

In Figure 8 the late initialization strategy of Definition 5 is presented by an
example. The input relation used in the example is LS of our running example
and the aggregates CSD,U , NCSD, and CCSD,U of Query 1. It has to be noted,
that due to space reasons for the values of the attribute SD we wrote only the
day instead of the full date, for example, 12 stays for 2010-11-12. It is possible
to recognize that at the beginning of the computational workflow in Figure 8
(1) we find the input parameters for θ–MDA. Then, based on these parameters
in (2) the intermediate result relations xeqi are computed using the θ-conditions
with constraint operators reduced to =. For instance, θ1 remains unchanged, θ2

is reduced to r.SD = b.SD and θ3 to r.SD = b.SD∧r.U = b.U . Finally, in (3)
the result relation x is constructed based on the intermediate result relations
xeqi .

26

(1)

r : LS
SD U ...

r1 12 1 ...
r2 12 2 ...
r3 12 2 ...
r4 12 3 ...

...

b : πSD,U (LS)
l1 : (count(SD))→ CSD,U
θ1 : r.SD = b.SD ∧ r.U = b.U
l2 : (count(SD))→ NCSD
θ2 : r.SD 6= b.SD
l3 : (count(SD))→ CCSD,U
θ3 : r.SD ≤ b.SD ∧ r.U ≤ b.U

(2)

xeq1
SD U CeqSD,U

xeq11
12 1 1

xeq12
12 2 2

xeq13
12 3 1

xeq14
13 1 1

xeq15
13 2 1

xeq16
13 3 2

xeq17
14 2 1

xeq2
SD NCeqSD,U

xeq21
12 4

xeq22
13 4

xeq23
14 1

xeq3
SD U CCeqSD,U

xeq31
12 1 1

xeq32
12 2 2

xeq33
12 3 1

xeq34
13 1 1

xeq35
13 2 1

xeq36
13 3 2

xeq37
14 2 1

(3)

x
SD U CSD,U NCSD CCSD,U

x1 12 1 1 5 1
x2 12 2 2 5 3
x3 12 3 1 5 4
x4 13 1 1 5 2
x5 13 2 1 5 5
x6 13 3 2 5 8
x7 14 2 1 8 6

Figure 8: θ–MDA with Late Initialization - Optimized Solution (Example)

27

5 Evaluation of θ–MDA

In this section we define an algorithm for the computation of θ–MDA queries
based on the approach of θ–MDA with late initialization presented in the pre-
vious section, i.e. based on optimized solution presented in Section 4.4. The
algorithm is a modification of the BasicTCMDA and IndexedTCMDA algorithms
presented in Section 3.

The remaining of this section is structured as follows. In Section 5.1 we pro-
vide details about the developed algorithm. In Section 5.2 we analyse the com-
plexity of the that algorithm and compare it with the complexity of BasicTCMDA
and IndexedTCMDA. Finally, in Section 5.3 the implementation of the algorithms
is presented.

5.1 Algorithm

In this section we present an algorithm for computing θ–MDA queries with late
initialization based on the approach described in Section 4.4. The algorithm
is named IndexedTCMDA-LI6 and is defined on the next page. Step 1 and step
5 of the algorithm are equal as in the BasicTCMDA algorithm defined on page
11. These steps transform algebraic aggregates into distributive ones before the
computation of the result relation begins, and transform them back, once the
result relation is computed. This is necessary for a correct computation of the
aggregates. Step 2 to 4, instead, differ from those of the other two algorithms
and implement the late initialization strategy described in Section 4.4. These
steps are explained in more detail in the following.

Step 2 of the IndexedTCMDA-LI algorithm prepares the data structures nec-
essary for storing the result groups and their aggregates. According to Definition
5 different data structures are required for the computation of the result rela-
tion, namely m intermediate result relations xeqi and the final result relation x.
Also in IndexedTCMDA-LI the same data structures are used for the computa-
tion of θ–MDA with late initialization. Further, for each of these data structures
an index is created in order to improve the retrieval time of single tuples dur-
ing the process of aggregate computation in step 3. Finally, in step 2 also the
equality θ-conditions, θeqi , are created which are used in order to compute the
intermediate result relations xeqi in step 3 of the algorithm.

6Note that LI in the algorithm name stays for late initialization.

28

Algorithm 3: IndexedTCMDA-LI(πA1,...,As(σ(r)), r, (l1, ..., lm), (θ1, ..., θm))

// Step 1: Replace algebraic aggregates

(Same as step 1 in BasicTCMDA)

// Step 2: Initialize data structures and parameters

// Initialize empty (intermediate) result relation(s)

Let B = (A1, ..., As), x = B× (C11
, ..., Cmkm)

Initialize an index for x over the attributes attr(B);
foreach θi ∈ {θ1, ..., θm} do

Let Aθ
i = (Aθi1 , ...A

θ
ioi

) where {Aθi1 , ..., A
θ
ioi
} = attr(θi) ⊆ {A1, ..., As};

Let xeqi = Aθ
i × (Ci1 , ..., Ciki);

Initialize an index for xeqi over the attributes attr(Aθ
i);

end
// Initialize the equality θ-conditions
for i = 1 to m do

θeqi = θi with all constraint operators converted to equality;
end

// Step 3: Compute the aggregates

// Note: υj’s are the initial aggregate values (0 for count
and sum, NULL for min and max).

foreach tuple r ∈ R do
if !∃x ∈ x(x.B = r.B) then

x = x ∪ {r.B× (υ11
, ..., υmkm)};

end
foreach θeqi ∈ {θ

eq
1 , ..., θ

eq
m} do

Fetch tuple xeqi (xeqi ∈ xeqi ∧ θ
eq
i (xeqi , r) = true) using index;

if xeqi = NULL then
xeqi = (r.Ai, υi1 , ..., υiki);
xeqi = xeqi ∪ {x

eq
i };

end
Update aggregates of xeqi based on r;

end

end

// Step 4: Build the result table x

foreach x ∈ x do
foreach θi ∈ {θ1, ..., θm} do

xeqmatch = {xeqi ∈ xeqi |θi(x, x
eq
i)};

Compute aggregates of x based on xeqmatch;
end

end

// Step 5: Apply the super-functions

(Same as in step 4 in BasicTCMDA)

return x;

29

In step 3 of algorithm IndexedTCMDA-LI the aggregates of the intermediate
result relations xeqi are computed. For each tuple r ∈ r the data structures x,
xeq1 , ..., xeqm are extended by a new tuple, if the result group to which r belongs
is not present in these data structures. The aggregates of the newly added
tuples are initialized to their initial values υj , which is 0 for the aggregates
count and sum and NULL for the aggregates min and max. Further, in this
step, for each tuple r ∈ r and for each condition θeqi the aggregates in the data
structures xeq1 , ..., xeqm are updated. It has to be noted, that for each r and each
θeqi exactly one tuple of xeqi is updated. At the end of step 3, the computation
of the entries of the intermediate result relations xeqi is completed. In Table
6 we illustrate step 3 of the IndexedTCMDA-LI algorithm for the computation
of the aggregates CSD,U , NCSD, and CCSD,U of Query 1. It is possible to
recognize, that we start with three empty data structures xeq1 to xeq3 , one for
each θ-condition of the example. Due to space reasons, for the attribute SD
we use an abbreviated version of the value by writing only the day instead of
the whole date, for example, 12 instead of 2010-11-12. At each step, in Table 6,
a tuple of r is processed and the data structures are extended and/or updated
accordingly. It is possible to recognize, that at the end of the computation the
data structures xeqi contain the same entries as the ones of Figure 8 step (2) (on
page 27).

xeq1
SD U CeqSD,U

xeq2
SD NCeqSD

xeq3
SD U CCeqSD,U

r1 SD U CeqSD,U
12 1 1

SD NCeqSD
12 1

SD U CCeqSD,U
12 1 1

r2 SD U CeqSD,U
12 1 1
12 2 1

SD NCeqSD
12 2

SD U CCeqSD,U
12 1 1
12 2 1

...

r9 SD U CeqSD,U
12 1 1
12 2 2
12 3 1
13 1 1
13 2 1
13 3 2
14 2 1

SD NCeqSD
12 4
13 4
14 1

SD U CCeqSD,U
12 1 1
12 2 2
12 3 1
13 1 1
13 2 1
13 3 2
14 2 1

Table 6: Step 3 of Algorithm IndexedTCMDA-LI

Next, in step 4 of the algorithm IndexedTCMDA-LI the result relation x is
computed based on xeq1 , ... xeqm . This is done, by retrieving all aggregates of the
intermediate result relations xeqi for any tuple of x and each θ-condition and
summing them for count and sum aggregates or by calculating the minimum or

30

maximum value for the aggregates min and max respectively. At the end of this
step, the result relation x is completely computed and ready for the last step in
which distributive sub-aggregates are transformed back to algebraic aggregates.

5.2 Complexity Analysis

In this section we analyse and compare the time complexity of the algorithms
BasicTCMDA, IndexedTCMDA, and IndexedTCMDA-LI. The setting for which we
analyse the complexity is the one with b = πB1,...,Bt(σ(r)) and {B1, ..., Bt} ⊆
attr(r). Before proceeding with more details about time complexity for the
θ–MDA algorithms, we introduce the following notions:

|r| The size of the input table.
|b| The size of the base table.
c Some constant number greater equal 1.
|Θ| The number of θ-conditions.
Cθ The cost for checking a θ-condition.
Cgrpcheck The cost for checking whether a result group exists.
Cgrpadd The cost for adding a new result group.
Cidx The cost for consulting an index.
Cagg The cost for updating an aggregate.

Based on these notions, in the following we present the time complexity of
the three θ–MDA algorithms taking into account the influence of the constraint
operators used in a query. It has to be noticed, that the size of the input relation
|r| in typical θ–MDA scenarios is much larger than the size of the base table
|b|. In fact, the former can be several thousands, ten thousands, or even more
times larger then the latter. Moreover, the number of θ-conditions in a query,
|Θ|, is usually quite small with values less than ten. The constant c reflects the
number of tuples which have to be updated on average for each tuple of r and
θ-condition and is used in connection with equality and inequality constraint
operators. We expect c to have small values on average. The value depends
from the θ-conditions of a query and from the data of the input relation. For
instance, in a scenario with only one θ-condition with only equality constraint
operators c is 1, whereas, in a scenario with two θ-conditions, both with only
equality constraint operators, the first over two attributes and the second over
one of these attributes, it might be that for the second θ-condition more than
one tuple of the result relation has to be updated for a processed tuple of r, thus,
resulting in c > 1. Such a situation is illustrated in the example of Table 3 on
page 18. The remaining notions presented in the list above represent constants
and reflect the cost of, for instance, checking a θ-condition or updating an
aggregate. Based on the introduced notion, we can state that the parameter
|r| is the one influencing the performance of the evaluation of θ–MDA queries
most.

5.2.1 Complexity for Constraint Operator =

In Table 7 the time complexity or the θ–MDA algorithms, for queries with only
equality constraint operators, is presented.

The time complexity formula of BasicTCMDA consists of two main parts, one
part expressing the complexity of computing b and one part expressing the

31

complexity of computing x. From the formula it is possible to recognize that
the cost of computing b consists of the cost of checking whether a result group
already exists in b, which is done for each tuple of r, and the cost of adding a
result group to b, which occurs |b| times. For the computation of x, instead, for
each tuple of r and each θ-condition all tuples of the result relation are traversed
and the θ-condition checked. The cost of this computation is expressed by the
part of the formula |r| · |Θ| · |b| ·Cθ. Further, the computation of x implies the
update of the aggregates, which is performed only for those tuples of the result
relation for which θ-conditions match. In the case of θ-conditions with only
equality constraint operators on average about c tuples match, thus, resulting
in the complexity formula |r|·|Θ|·c·Cagg. The overall complexity of BasicTCMDA
in O notation is O(|r| · |b|).

The complexity formula of IndexedTCMDA also consists of two parts, one con-
cerning the computation of the base table b and one concerning the computation
of the result relation x. The part of the formula concerned with the computation
of b is the same as for BasicTCMDA. The formula expressing the cost of com-
puting x, instead, is different from that of BasicTCMDA. Indeed, IndexedTCMDA
uses an index for the retrieval of the tuples of the result relation which have
to be updated for each processed tuple of r and each θ-condition instead of
traversing all tuples of x. The complexity formula for this fragment of compu-
tation is |r| · |Θ| ·Cidx. Regarding the update of the aggregates, IndexedTCMDA
has the same complexity as BasicTCMDA, namely |r| · |Θ| · c · Cagg. The overall
cost of computing θ–MDA queries with only equality constraint operators for
IndexedTCMDA is lower than for BasicTCMDA, namely O(|r|).

Algorithm Complexity Formula O Notation

BasicTCMDA

(Compute b)
|r| · Cgrpcheck+

O(|r| · |b|)|b| · Cgrpadd+

(Compute x)
|r| · |Θ| · |b| · Cθ+
|r| · |Θ| · c · Cagg

IndexedTCMDA

(Compute b)
|r| · Cgrpcheck+

O(|r|)|b| · Cgrpadd+

(Compute x)
|r| · |Θ| · Cidx+
|r| · |Θ| · c · Cagg

IndexedTCMDA-LI

(Compute xeqi)
|r| · |Θ| · Cidx+

O(|r|)
|r| · |Θ| · 1 · Cagg
|b| · Cgrpadd

(Compute x)
|b| · |Θ| · Cidx+
|b| · |Θ| · 1 · Cagg

Table 7: Time Complexity for only Constraint Operators =

Finally, in Table 7 the time complexity of IndexedTCMDA-LI is presented.
Also in this case the formula consists of two parts, one part reflecting the cost
of computing the intermediate result relations xeqi and one part reflecting the

32

cost of computing the result relation x from the relations xeqi . The computation
of the intermediate result relations xeqi in IndexedTCMDA-LI is the costly part
of the computation and comprises the iteration through all tuples of the input
relation r, and for each of them the addition of a result group if it is missing
in the result relation and the update of the aggregates. In order to retrieve
the aggregates which have to be updated IndexedTCMDA-LI uses an index. The
cost of this computational effort can be expressed by |r| · |Θ| · Cidx + |r| · |Θ| ·
1 · Cidx + |b| · Cgrpadd . From the formula it is possible to recognize, that for
each tuple of r and each θ-condition, exactly 1 aggregate is updated and not c.
This is the case, because IndexedTCMDA-LI uses a separate intermediate result
relations (see Section 4.4 for more details about this). The computation of x
based on the result relations xeqi has a lower impact on the complexity of the
algorithm and can be expressed by formula |b| · |Θ| · Cidx + |b| · |Θ| · 1 · Cagg.
The overall complexity of IndexedTCMDA-LI for θ-conditions with only equality
constraint operators in O notation is O(|r|), being lower than the complexity of
BasicTCMDA and equal to the complexity of IndexedTCMDA.

5.2.2 Complexity for Constraint Operator ≤, ≥, <, >

In Table 8 the time complexity of the θ–MDA algorithms for queries with con-
straint operators ≤, ≥, <, and > is presented.

The complexity formula of BasicTCMDA for θ–MDA queries with constraint
operators ≤, ≥, <, and > differs from the formula for queries with only equality
constraint operators in the part expressing the cost of computing x. Indeed,
when the constraint operators ≤, ≥, <, and > are used, for the computation of x

on average |b|
2 aggregates have to be updated for any tuple of r and θ-condition.

The resulting time complexity formula for this part of the computation is |r| ·
|Θ| · |b| ·Cθ+ |r| · |Θ| · |b|2 ·Cagg. Although, more aggregate updates are performed
for θ–MDA queries with constraint operators ≤, ≥, <, and < with respect to
queries with only equality constraints, the overall complexity of BasicTCMDA in
O notation is the same as for queries with only equality constraint operators,
namely O(|r| · |b|).

Also for IndexedTCMDA the part of the formula related to the complexity
of computing x differs for θ–MDA queries with constraints ≤, ≥, <, and >
compared to the formula for queries with only =. Same as in BasicTCMDA

the average number of aggregate updates per r ∈ r and θ-condition is |b|
2 .

However, in the case of IndexedTCMDA the complexity in O notation is higher
if the constraint operators ≤, ≥, <, and >, namely O(|r| · |b|), as compared to
the complexity for only equality constraint operators which is O(|r|).

Similarly as for BasicTCMDA and IndexedTCMDA also for IndexedTCMDA-LI

the complexity formula of θ–MDA queries with constraint operators ≤, ≥, <,
and > is different from the complexity formula if only = is used. Indeed, during
the computation of x based on the result relations xeqi for each result group and

θ-condition on average |b|
2 aggregate updates are necessary. The complexity

formula which reflects this phenomenon is |b| · |Θ| · Cidx + |b| · |Θ| · |b|2 · Cagg.
However, the impact of this part of the formula is not very big with respect to
the overall complexity of the algorithm, which is O(|r|) in O notation.

33

Algorithm Complexity Formula O Notation

BasicTCMDA

(Compute b)
|r| · Cgrpcheck+

O(|r| · |b|)|b| · Cgrpadd+

(Compute x)
|r| · |Θ| · |b| · Cθ+
|r| · |Θ| · |b|2 · Cagg

IndexedTCMDA

(Compute b)
|r| · Cgrpcheck+

O(|r| · |b|)|b| · Cgrpadd+

(Compute x)
|r| · |Θ| · Cidx+

|r| · |Θ| · |b|2 · Cagg

IndexedTCMDA-LI

(Compute xeqi)
|r| · |Θ| · Cidx+

O(|r|)
|r| · |Θ| · 1 · Cagg
|b| · Cgrpadd

(Compute x)
|b| · |Θ| · Cidx+

|b| · |Θ| · |b|2 · Cagg

Table 8: Time Complexity for Constraint Operators ≤, ≥, <, >

5.2.3 Complexity for Constraint Operator 6=

In Table 8 the time complexity of the θ–MDA algorithms for queries with only
inequality constraint operators is presented.

The complexity formula of BasicTCMDA differes from its complexity formulas
presented in the previous sections in the part reflecting the cost of computing x.
Indeed, for θ–MDA queries with only inequality constraint operators, for each
tuple of r and θ-condition on average |b| − c aggregates have to be updated.
The formula reflecting this part of the computation is |r| · |Θ| · |b| ·Cθ + |r| · |Θ| ·
(|b| − c) · Cagg. The overall time complexity expressed in O notation, however,
is not affected by this change in the formula an is O(|r| · |b|).

Similarly as for BasicTCMDA, also the complexity formula of IndexedTCMDA

changes with respect to its formulas presented in the previous sections. The
number of aggregate updates performed by IndexedTCMDA during the compu-
tation of x is the same as for BasicTCMDA. The overall time complexity of the
algorithm for IndexedTCMDA for θ–MDA queries with only inequality constraint
operators is the same as if the constraint operators ≤, ≥, <, and < are used,
namely O(|r| · |b|).

Finally, the time complexity formula of IndexedTCMDA-LI also changes with
respect to the formulas for θ–MDA queries with constraint operators =, ≤, ≥,
<, and >. Indeed, during the computation of x based on the result relations xeqi
for each result group and θ-condition on average |b| − 1 aggregate updates are
necessary, resulting in the complexity formula |b|·|Θ|·Cidx+|b|·|Θ|·(|b|−1)·Cagg.
The overall time complexity in O notation remains O(|r|)

34

Algorithm Complexity Formula O Notation

BasicTCMDA

(Compute b)
|r| · Cgrpcheck+

O(|r| · |b|)|b| · Cgrpadd+

(Compute x)
|r| · |Θ| · |b| · Cθ+
|r| · |Θ| · (|b| − c) · Cagg

IndexedTCMDA

(Compute b)
|r| · Cgrpcheck+

O(|r| · b)
|b| · Cgrpadd+

(Compute x)
|r| · |Θ| · Cidx+
|r| · |Θ| · (|b| − c) · Cagg

IndexedTCMDA-LI

(Compute xeqi)
|r| · |Θ| · Cidx+

O(|r|)
|r| · |Θ| · 1 · Cagg
|b| · Cgrpadd

(Compute x)
|b| · |Θ| · Cidx+
|b| · |Θ| · (|b| − 1) · Cagg

Table 9: Time Complexity for only Constraint Operators 6=

5.3 Implementation

In this Section we present some details about the implementation of the θ–
MDA algorithms. We developed three programs, one for each algorithm, using
the Java7 programming language and the Oracle8 database. The programs are
designed as command line tools.

Figure 9 provides an overview of the program workflow of the BasicTCMDA

algorithm implementation. The parameters r, b, L, and Θ of the program
are those of θ–MDA with late initialization as defined in Definition 4 on page
22. The program expects parameter r to be encoded as an SQL query, b as a
comma-separated list of attribute names of r, L as a comma-separated list of
aggregates over attributes of r and Θ as a comma-separated list of constraints.
In the following we show how Query 1 (see its formal definition on page 9) can
be encoded into the parameters of the program:

r : SELECT SD, U FROM LS

b : SD, U

L : count(*), count(*), count(*), count(*)

Θ : r.SD = b.SD & r = b.U,

rD <> b.SD,

rD ≤ b.SD,

rD ≤ b.SD & r ≤ b.U

Once the command line tool is started with parameters r, b, L, and Θ, it
first loads the input relation r from the database management system into main
memory and computes the base table b (step 1 in Figure 9) and then (in step

7http://www.java.com
8http://www.oracle.com/us/products/database/index.html

35

2) it loads the input table r again in order to compute the result table x using
the strategy of the BasicTCMDA algorithm described on page 11.

The output of the program is provided on the command line using a comma-
separated value format. For Query 1 the output looks like as follows:

SD,U,count(*),count(*),count(*),count(*)

12,1,1,5,4,1

12,2,2,5,4,3

12,3,1,5,4,4

13,1,1,5,8,2

13,2,1,5,8,5

13,3,2,5,8,8

14,2,1,8,9,6

BasicTCMDA Program

(Parameters)
r, b,
L, Θ

Load
input table

+
Compute
base table

(1) Compute b

Load
input table

+
Compute

result table

(2) Compute x

(Output)
x

Figure 9: BasicTCMDA Program Workflow

The main program workflow of the IndexedTCMDA algorithm implementation
is depicted in Figure 10. The input parameters, step 1, and the output of the
program are the same as for the implementation of BasicTCMDA presented above.
Differences can be found in step 2 which implements the computation strategy
of the IndexedTCMDA algorithm presented on page 12. The main difference in
the strategy of this algorithm, compared to the BasicTCMDA algorithm, is that it
uses an index in order to retrieve the tuples of the result relation to be modified
(see Section 3 for more details).

36

IndexedTCMDA Program

(Parameters)
r, b,
L, Θ

Load
input table

+
Compute
base table

(1) Compute b

Load
input table

+
Compute

result table
(using index)

(2) Compute x

(Output)
x

Figure 10: IndexedTCMDA Program Workflow

In our implementation of IndexedTCMDA we create a separate index for each
θi ∈ Θ. Depending on the constraint operators used in θi different index strate-
gies are used:

• For θi’s containing only = and 6= constraint operators a hash index struc-
ture is used.

• For θi’s containing not only the constraint operators = and 6=, but also
one or more of the constraint operators ≤, ≥, <, and > a hierarchical
index structure is used.

In the case of θi’s containing only = and 6= constraint operators, in which a
hash index is used, the key kj of the index for result tuple xj ∈ X is generated
using the attribute values of the result tuple xj of all attributes involved in the θi
constraint. The value pj of the index associated to a key kj is a pointer to result
tuple xj . Figure 11 depicts the index structure for θ1 : r.SD = b.SD & r.U =
b.U of Example 1. The keys of the index consist of the values for the attributes
SD and U , whereas, the values p1 to p7 represent the pointers to the result
relation tuples x1 to x7 respectively.

37

Key Value

(12,1) p1

(12,2) p2

(12,3) p3

(13,1) p4

(13,2) p5

(13,3) p6

(14,2) p7

Figure 11: Hash Index Structure for θ1 of in Example 1

In the case of θi’s containing not only = and 6= but also at least one of
the constraint operators ≤, ≥, <, >, in which a hierarchical index is used, the
construction of that index structure consists of several steps:

1. The constraints within one θi are sorted according to the selectivity9 of
their operator, i.e. = is the most selective operator, followed by ≤, ≥, <,
>, and, finally, 6= is the less selective one.

2. One hash index is created for the = constraints, one hash index for the
6= constraints, and one tree index for each other constraint having an
operator different than = and 6=.

3. The created indexes are organized hierarchically, starting with the hash
index for = constraints as the root of the hierarchy, pointing to the index
structures for ≤,≥, <,> constraints and these pointing to the hash index
for 6= constraints.

Figure 12 shows the hierarchical index for θ3 : r.SD ≤ b.SD & r ≤ b.U of
Example 1. It is possible to recognize that for the first constraint r.SD ≤ b.SD
the index on level 1 of the index hierarchy is created. For each element of
this level 1 index a separate index is created storing the values of the second
constraint r.U ≤ b.U .

9With selectivity we mean the number of matches using a specific constraint operator, e.g.
in general with = the number of matching tuples is smaller than with ≤.

38

Index level 1 Index level 2

Key Value

12

13

14

Key Value

1 p1

2 p2

3 p3

Key Value

1 p4

2 p5

3 p6

Key Value

2 p7

Figure 12: Hierarchical Index Structure for θ4 of Example 1

Finally, Figure 13 depicts the program workflow of the IndexedTCMDA-LI

algorithm. In this case in step 1 loads the input table and scans it in order
to compute the intermediate result relations xeqi . In step 2 the program com-
putes the result relation x based on the intermediate result relation so that
in this step there is no need to load and scan the input table again. Also in
IndexedTCMDA-LI an index is used in order to retrieve the tuples of xeqi and x to
be modified. The index strategy used is the same as the one for IndexedTCMDA
presented before.

IndexedTCMDA-LI Program

(Parameters)
r, b,
L, Θ

Load
input table

+
Compute

intermediate
result tables

(1) Compute xeqi

Compute result
table using the
intermediate
result tables

(2) Compute x

(Output)
x

Figure 13: IndexedTCMDA-LI Program Workflow

39

6 Experiments

In this section we present the experiments that we run in order to evaluate
the performance of the IndexedTCMDA-LI algorithm and to compare it with
the performance of BasicTCMDA and IndexedTCMDA. For this purpose we tested
these three algorithms in different settings on a large amount of data, based on
their implementation presented in Section 5.3.

In the rest of this section we present details about the experiments and their
results. Section 6.1 provides information about the set-up of the experiments,
and, in Section 6.2 the results of the experiments are presented.

6.1 Setup and Data

The machine used for running the experiments has two AMD Opteron proces-
sors, one with 1.8GHz and the other with 2.6GHz, and 16GB of main memory.
The operating system installed on the machine is Ubuntu 10.04 and the database
is Oracle 11g. For the tests we executed the programs starting the Java Virtual
Machine with 3GB of main memory assigned to it.

Due to the fact, that the performance of the θ–MDA algorithms is affected by
different variables, we tested it by scaling one variable at a time while keeping
the others fixed. The factors influencing the performance of the algorithms
which are considered in our experiments are:

• |r|: The number of tuples in the input relation r.

• |b|: The number of tuples in the base relation b.

• |θ|: The number of conditions within one single θ-condition.

• |Θ|: The number of θ-conditions in the query.

• ⊕: The constraint operators used in the θ constraints (e.g. =, ≤).

It has to be noted, that in the parameters considered in the experiments an
additional parameter to those used in the time complexity formulas in Section
5.2 is used. Indeed, the parameter |θ| used here, is not considered in this form
in the complexity analysis. This is the case, because in that analysis we consid-
ered the time for checking a θ-constraint as constant, independently from the
number of constraints used in the condition. However, in this section we present
experiments in which we scale the number of constraints used in θ-conditions in
order to measure its effect on the performance of the algorithms.

For the execution of the tests we used the Orders table of the TPC-H
benchmark framework10 which has different attributes such as o orderdate,
o comment, o orderstatus, and o orderpriority. Using the command line tool
dbgen of the TPC-H framework we generated an Orders table with 10M tuples.
Based on this table we created different materialized views varying in the num-
ber of tuples and in the number of distinct values for specific attributes (in order
to have base tables with different size), and defined different queries so that the
influence of the factors |r|, |b|, |θ|, |Θ| and ⊕ could be tested separately.

10TPC-H benchmark framework: http://www.tpc.org/tpch/

40

6.2 Results

In this section we present the results of the experiments in order to evaluate
the performance of the IndexedTCMDA-LI algorithm and compare it with the
performance of BasicTCMDA and IndexedTCMDA.

6.2.1 Scaling |r|

The experiments with scaling |r| are designed in order to test the effect of the
size of the input relation r on the performance of the θ–MDA algorithms. For
achieving this goal we created five materialized views Orders 2M, Orders 4M,
..., Orders 10M of the table Orders where 2M, 4M, ..., 10M indicate that the
view contains 2, 4, ..., 10 million of tuples respectively. Each of these material-
ized views has 250 distinct values for the attribute o orderdate. The query used
in these experiments is the following:

Query r: r : Orders XM
b : πo orderdate(r)
l1 : count(∗)
θ1 : r orderdate⊕ b.o orderdate

The query was executed using the different materialized views, i.e. by replacing
Orders XM with Oders 2M , Orders 4M , ..., and Orders 10M , and different
constraint operators ⊕, namely =, ≤, and 6=. Figure 14 and 15 show the results
of these experiments. On the x-axis of the graphs the size of the input relation
r is reported, the y-axis reflects the time in seconds needed by the algorithm for
the computation of the result relation. From the results presented in Figure 14
and 15 we gain different insights.

One insight is, that for queries with conditions containing only = constraint
operators the algorithm IndexTCMDA-LI is faster than both the other algorithms.
The slowest of the three algorithms is BasicTCMDA (see Figure 14(a)). For in-
stance, BasicTCMDA is about 10 times slower than IndexedTCMDA and about 16
times slower than IndexedTCMDA-LI for the experiment with 10 million tuples
for r. This results can be explained due to the fact, that the BasicTCMDA algo-
rithm for each tuple in r and each θ-conditions traverses all tuples of the result
relation in order to find the tuples to be updated, which in this concrete example
means about |r|·|Θ|·|b| = 10M · 1 · 250 = 2500M iterations. The IndexedTCMDA
algorithm, instead, uses the index to find the tuples of the result relation that
have to be modified, and then traverses only these found tuples. For our test
setting with ⊕ being = for each tuple of r and each θ-condition only one tuple
of the result relation is traversed, i.e. about |r| ·1 ·1 = 10M iterations have to be
performed. In the case of IndexedTCMDA-LI, independently from the constraint
operators used, the algorithm needs always about |r| · |Θ| · 1 iterations for the
construction of the xeqi ’s resulting in about 10M iterations. The difference in
the runtime between IndexedTCMDA and IndexedTCMDA-LI can be explained by
the fact, that additionally to the iterations performed by the two algorithm for
computing the result relation and the intermediate result relations respectively,
the former does |r| iterations for computing the base table b and, the latter
|b| · |Θ| · 1 for computing x from the xeqi ’s. This means that for the experiments
with 10 million tuples IndexedTCMDA requires 10M+10M=20M iterations in to-
tal, whereas IndexedTCMDA-LI only 10M+(250·1·1)≈10M iterations.

41

Another insight is, that in the case of queries containing constraint operators
different than =, such as ≤ and 6=, IndexedTCMDA-LI outperformes the runtime
of both, BasicTCMDA and IndexedTCMDA (see Figure 14(b) and 14(c)). The
better performance of IndexedTCMDA-LI compared to BasicTCMDA is due to
the fact, that the latter makes about |r| · |Θ| · |b| iterations compared to the
|r| · |Θ| · 1 of IndexedTCMDA-LI. Compared to IndexedTCMDA, the algorithm
IndexedTCMDA-LI is faster because of the following reasons. IndexedTCMDA

performs about |r| · |Θ| ·M iterations for the computation of the result relation,
where M is the average number of matching tuples of the result relation for
the processed tuples of the r. In the case of the constraint operator ≤, in our
experiments M is approximately |b|/2 and for the constraint operator 6= it is
|b| − c11. Compared to M = 1 for algorithm IndexedTCMDA-LI, the algorithm
IndexedTCMDA results in much more iterations.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10

R
u
n
ti
m

e
 [
s
e
c
]

|r| [mil]

BasicTCMDA
IndexedTCMDA

IndexedTCMDA-LI

(a) ⊕ is =, |b|=250, |Θ|=1, |θ|=1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10

R
u
n
ti
m

e
 [
s
e
c
]

|r| [mil]

BasicTCMDA
IndexedTCMDA

IndexedTCMDA-LI

(b) ⊕ is ≤, |b|=250, |Θ|=1, |θ|=1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10

R
u
n
ti
m

e
 [
s
e
c
]

|r| [mil]

BasicTCMDA
IndexedTCMDA

IndexedTCMDA-LI

(c) ⊕ is 6=, |b|=250, |Θ|=1, |θ|=1

Figure 14: Experiment Results with Scaling |r|

Figure 15 depicts the comparison of the runtime of the algorithms for the
experiments with scaling |r|, focusing on the effect of the different constraint op-
erators used. It is possible to recognize, that the runtime of the BasicTCMDA and
IndexdTCMDA-LI algorithms is not significantly affected by the type of constraint
operator used in the query (see Figure 15(a) and 15(b)). Instead, the execution
time of the IndexedTCMDA algorithm highly depends from the type of constraint
operators used (see Figure 15(c)). These phenomenon can be explained as fol-
lows. In the case of BasicTCMDA and IndexedTCMDA-LI the number of iterations
done by the algorithms is always the same independently from which constraint

11See Section 5.2 for more details about these formulas.

42

operator is used. More precisely, the former algorithm performs always about
|r| · |Θ| · |b| iterations, whereas, the latter algorithm always about |r| · |Θ| · 1.
In the case of IndexedTCMDA, instead, the number of iterations performed is
about |r| · |Θ| ·M , where M is defined as in the previous paragraph. Due to the
fact, that M depends from the type of used constraint operators, the runtime
of IndexedTCMDA also depends from the used constraint operators. In our ex-
periments M is 1 for the constraint operator =, approximately |b|/2 for ≤, and
|b| − 1 for 6=.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10

R
u
n
ti
m

e
 [
s
e
c
]

|r| [mil]

⊕ is =
⊕ is ≤
⊕ is ≠

(a) BasicTCMDA, |b|=250, |Θ|=1, |θ|=1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10

R
u
n
ti
m

e
 [
s
e
c
]

|r| [mil]

⊕ is =
⊕ is ≤
⊕ is ≠

(b) IndexedTCMDA, |b|=250, |Θ|=1, |θ|=1

 0

 50

 100

 150

 200

 250

 2 4 6 8 10

R
u
n
ti
m

e
 [
s
e
c
]

|r| [mil]

⊕ is =
⊕ is ≤
⊕ is ≠

(c) IndexedTCMDA-LI, |b|=250, |Θ|=1, |θ|=1

Figure 15: Comparison of Constraint Operators with Scaling |r|

The experiments with scaling |r| showed that IndexTCMDA-LI outperforms
BasicTCMDA and IndexedTCMDA in all settings of the tests.

6.2.2 Scaling |b|

The experiments with scaling |b| presented in this section, are designed in order
to test the effect of the size of the base table on the performance of the θ–MDA
algorithms. Also for this experiments we created five materialized views, namely
Orders 100, Orders 200, ..., Orders 500 of the table Orders where 100, 200, ...,
500 identify the number of distinct values for the attribute o orderdate in the
respective view. Each of these materialized views has 5 million tuples. The
query used in these experiments is the following:

43

Query b: r : Orders X
b : πo orderdate(r)
l1 : count(∗)
θ1 : r orderdate⊕ b.o orderdate

The query was executed using the different materialized views, i.e. by replacing
Orders X with Orders 100, Orders 200, ..., Orders 500, and different constraint
operators ⊕, namely =, ≤, and 6=. Figure 16 and 17 show the results of these
experiments. On the x-axis of the graphs the size of the base table b is reported,
and the y-axis depicts the runtime of the algorithms in seconds.

From Figure 16 it is possible to recognize that in the experiment results
with scaling |b| the IndexedTCMDA-LI algorithm has a lower runtime than
BasicTCMDA and IndexedTCMDA-LI in all tested settings. This phenomenon
could be identified also in the experiment with scaling |r| in Section 6.2.1 and
the explanation for it is the same.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 200 300 400 500

R
u
n
ti
m

e
 [
s
e
c
]

|b|

BasicTCMDA
IndexedTCMDA

IndexedTCMDA-LI

(a) ⊕ is =, |r|=5M, |Θ|=1, |θ|=1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 200 300 400 500

R
u
n
ti
m

e
 [
s
e
c
]

|b|

BasicTCMDA
IndexedTCMDA

IndexedTCMDA-LI

(b) ⊕ is ≤, |r|=5M, |Θ|=1, |θ|=1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 200 300 400 500

R
u
n
ti
m

e
 [
s
e
c
]

|b|

BasicTCMDA
IndexedTCMDA

IndexedTCMDA-LI

(c) ⊕ is 6=, |r|=5M, |Θ|=1, |θ|=1

Figure 16: Experiment Results with Scaling |b|

Also the comparison of the runtime of the θ–MDA algorithms in combi-
nation with different constraint operators depicted in Figure 17 features the
same behaviour as for scaling |r|. More precisely, the runtime of BasicTCMDA

and IndexedTCMDA-LI is not affected significantly by using different constraint
operators in our experiments, whereas, the runtime of IndexedTCMDA varies de-
pending on the constraint operator used. The explanation for this phenomenon
is the same as for scaling |r| (see previous section).

44

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 200 300 400 500

R
u
n
ti
m

e
 [
s
e
c
]

|b|

⊕ is =
⊕ is ≤
⊕ is ≠

(a) BasicTCMDA, |r|=5M, |Θ|=1, |θ|=1

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 200 300 400 500

R
u
n
ti
m

e
 [
s
e
c
]

|b|

⊕ is =
⊕ is ≤
⊕ is ≠

(b) IndexedTCMDA, |r|=5M, |Θ|=1, |θ|=1

 50

 100

 150

 100 200 300 400 500

R
u
n
ti
m

e
 [
s
e
c
]

|b|

⊕ is =
⊕ is ≤
⊕ is ≠

(c) IndexedTCMDA, |r|=5M, |Θ|=1, |θ|=1

Figure 17: Comparison of Constraint Operators with Scaling |b|

Finally, it can be noticed that, whereas the runtime of the IndexedTCMDA-LI
algorithm increases with increasing |r| (see Figure 15(c) on page 43), in the case
of scaling |b|, in our tests, the runtime remains constant for all tested settings
of |b| (see Figure 17(c)). This should be the case, because the size of the b is
not large enough with respect to the size of r, in order to affect the runtime of
the algorithm.

6.2.3 Scaling |θ|

The experiments with scaling |θ| presented in this section, are designed in or-
der to test how θ-conditions of different size (i.e. having a different number of
constraints) affect the performance of the θ–MDA algorithms. For this experi-
ments we used five materialized views Order 1, Order 2, ... Order 5 of the table
Orders where 1, 2, ..., 5 identify the number of o orderdate attributes materi-
alized in the view. The different o orderdate attributes have been materialized
by joining the Orders table with itself two or more times. In each of the ma-
terialized views the number of distinct tuples over the o orderdate attributes
(independently whether the view has one or more o orderdate attributes) is
300. For example, Orders 2 consists of two date attributes o orderdate1 and
o orderdate2 and the number of tuples (o orderdate1, o orderdate2) in the view
with distinct values is 300 resulting is a base table of size 300. Further, the
number of tuples it the views is 5 million. The query used in these experiments
is the following:

45

Query θ: r : Orders X
b : πo orderdate1,...,o orderdate|θ|(r)
l1 : count(∗)
θ1 : r orderdate1 ⊕ b.o orderdate1 ∧ ..

.. ∧ r orderdate|θ| ⊕ b.o orderdate|θ|

The query was executed using the different materialized views, i.e. by replacing
Orders X with Orders 1, Orders 2, ..., Orders 5, different constraint operators
⊕, namely =, ≤, and 6=, and the values 1, 2, ..., 5 for |θ|. Figure 18 and 19
depict the results of these experiments. On the x-axis of the graphs the number
of constraints of the θ-condition is reported and the y-axis depicts the runtime
of the algorithms in seconds.

Also in these experiments the IndexedTCMDA-LI algorithm performs better
than both the algorithm BasicTCMDA and IndexedTCMDA (see Figure 18). Again,
the explanation for this results is the same as the one for the experiments with
scaling |r| (see Section 6.2.1).

 0

 2000

 4000

 6000

 8000

 10000

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

BasicTCMDA
IndexedTCMDA

IndexedTCMDA-LI

(a) ⊕ is =, |r|=5M, |b|=300, |Θ|=1

 0

 2000

 4000

 6000

 8000

 10000

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

BasicTCMDA
IndexedTCMDA

IndexedTCMDA-LI

(b) ⊕ is ≤, |r|=5M, |b|=300, |Θ|=1

 0

 2000

 4000

 6000

 8000

 10000

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

BasicTCMDA
IndexedTCMDA

IndexedTCMDA-LI

(c) ⊕ is 6=, |r|=5M, |b|=300, |Θ|=1

Figure 18: Experiment Results with Scaling |θ|

In these experiments with scaling |θ| BasicTCMDA reaches execution times
that are higher than the execution times in the experiments for scaling |r| and
scaling |b|. For instance, the BasicTCMDA algorithm in the experiments with
scaling |r| with 10 million tuples in r (and |b|=250 and ⊕ is 6=) has a runtime
of about 51 minutes and with scaling |b| with 500 tuples in b (and |r|=5M
and ⊕ is 6=) the runtime is of about 49 minutes. In these experiments with
scaling |θ|, instead, the runtime of BasicTCMDA for |θ|=2 is about 63 minutes
being already more than 25 percent larger than the maximum runtime of the

46

previously mentioned settings; for |θ|=5 the runtime reaches 148 minutes. This
is the case, because for BasicTCMDA the check of the θ-condition is implemented
by an iteration through all constraints of the conditions. This means that the
number of iterations performed by the algorithm increases with an increasing
number of constraints |θ|. In fact, the implementation of BasicTCMDA performs
about |r| · |Θ| · |θ| · |b| iterations.

For the IndexedTCMDA and IndexedTCMDA-LI algorithms, instead, the im-
pact of |θ| is not that big as for BasicTCMDA. Indeed, the line representing the
runtime of the BasicTCMDA algorithm is much steeper than the line for the
IndexedTCMDA and IndexedTCMDA-LI algorithms (Figure 18). For instance the
runtime for BasicTCMDA algorithm for |θ|=5 and constraint operator 6= is 5.1
times larger than for |θ|=1. For the IndexedTCMDA and the IndexedTCMDA-LI

algorithms, instead, the runtime for the same settings is 2 and 1.2 times larger,
respectively. This is due to the help of the index used by IndexedTCMDA and
IndexedTCMDA-LI for the retrieval of the tuples that have to be modified which
restricts the number of iterations necessary for checking θ-constraints.

 0

 2000

 4000

 6000

 8000

 10000

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

⊕ is =
⊕ is ≤
⊕ is ≠

(a) BasicTCMDA, |r|=5M, |b|=300, |Θ|=1

 0

 1000

 2000

 3000

 4000

 5000

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

⊕ is =
⊕ is ≤
⊕ is ≠

(b) IndexedTCMDA, |r|=5M, |b|=300, |Θ|=1

 0

 50

 100

 150

 200

 250

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

⊕ is =
⊕ is ≤
⊕ is ≠

(c) IndexedTCMDA-LI, |r|=5M, |b|=300, |Θ|=1

Figure 19: Comparison of Constraint Operators with Scaling |θ|

The comparison of the runtime of the algorithm for the different constraint
operators among each other is depicted in Figure 19 and features the same
behaviour as for the experiments with scaling |r| and scaling |b|, namely, the
runtime of the BasicTCMDA and IndexedTCMDA-LI algorithms is not affected
significantly by using different constraint operators, whereas, the runtime of
IndexedTCMDA varies depending on the constraint operator used. The reason
for this phenomenon is the same as for scaling |r| and |b|.

47

6.2.4 Scaling |Θ|

In this section we present the experiments with scaling |Θ|. They are designed
in order to test how the number of θ-conditions used in a query affects the
performance of the θ–MDA algorithms. For these experiments we used one ma-
terialized view with 5 million tuples and 250 distinct values for the o orderdate
attribute. The query used in these experiments is the following:

Query Θ: r : Orders
b : πo orderdate(r)
l1 : count(∗)
θ1 : r orderdate⊕ b.o orderdate
...
l|Θ| : count(∗)
θ|Θ| : r orderdate⊕ b.o orderdate

The query was executed using the abovementioned view, the constraint oper-
ators =, ≤, and 6=, and one to five θ-conditions. Figure 20 and 21 provide an
overview of the results of theses experiments. On the x-axis of the graphs the
number of used θ-conditions is reported and the y-axis depicts the runtime of
the algorithms in seconds.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

BasicTθMDA
IndexedTθMDA

IndexedTθMDA-LI

(a) ⊕ is =, |r|=5M, |b|=250, |θ|=1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

BasicTθMDA
IndexedTθMDA

IndexedTθMDA-LI

(b) ⊕ is ≤, |r|=5M, |b|=250, |θ|=1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

BasicTθMDA
IndexedTθMDA

IndexedTθMDA-LI

(c) ⊕ is 6=, |r|=5M, |b|=250, |θ|=1

Figure 20: Experiment Results with Scaling |Θ|

Again the IndexedTCMDA-LI algorithm performes better than BasicTCMDA

and IndexedTCMDA (see Figure 20). A deeper analysis of the runtime behaviour
of the three algorithms shows, that the number of θ-conditions has a big impact

48

on the execution time of the BasicTCMDA and the IndexedTCMDA algorithms,
whereas, the IndexedTCMDA-LI algorithm scales better for an increasing |Θ|.
More precisely, the execution time of BasicTCMDA for |Θ|=5 is about 4.6 times
larger than for |Θ|=1, of IndexedTCMDA it is about 5.1 times larger, and of
IndexedTCMDA-LI only about 1.8 times larger. This can be explained by the fact,
that IndexedTCMDA-LI for each tuple of r and each θ-condition iterates through
and updates only one tuple of xeq. Instead, BasicTCMDA and IndexedTCMDA, for
each tuple of r and each θ-condition, iterate through and update several tuples
of x.

Figure 21 depicts the comparison of the runtime for the different constraint
operators among each other. It is possible to recognize that the behaviour is
similar as for the other experiments, namely, the runtime of the BasicTCMDA

and IndexedTCMDA-LI algorithm is not affected significantly by using different
constraint operators, whereas, the runtime of IndexedTCMDA varies depending
on the constraint operator used. The explanation of this phenomenon is the
same as for the other experiments.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

⊕ is =
⊕ is ≤
⊕ is ≠

(a) BasicTCMDA, |r|=5M, |b|=250, |θ|=1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

⊕ is =
⊕ is ≤
⊕ is ≠

(b) IndexedTCMDA, |r|=5M, |b|=250, |θ|=1

 0

 50

 100

 150

 200

 250

 1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

⊕ is =
⊕ is ≤
⊕ is ≠

(c) IndexedTCMDA-LI, |r|=5M, |b|=250, |θ|=1

Figure 21: Comparison of Conatraint Operators with Scaling |Θ|

With the experiments for scaling |Θ| we conclude the experiments section
and continue with some concluding remarks and proposals for future work in
Section 7.

49

7 Conclusions and Future Work

Today complex multi-dimensional aggregation queries find application in many
areas such as business intelligence or in scientific disciplines. The θ–MDA op-
erator presented in [2] provides a tool for the flexible formulation and efficient
evaluation of complex aggregation queries over multi-dimensional data. The
evaluation strategy applied by the operator structures the computational pro-
cess into one part concerned with constructing the base table, and one part
concerned with computing the aggregates. In cases in which the base table is
a projection of the input table, that approach results in loading the input re-
lation in both parts of the computational process. In typical θ–MDA settings
the input relation is very large, thus, loading it twice impacts the evaluation
performance.

In this thesis we propose an evaluation approach for θ–MDA which needs
to load the input relation only once for cases in which the base table is a pro-
jection of the input table. The main idea of the approach is to compute the
result groups of the base table on demand, during the computation of the ag-
gregates. We refer to this computation on-the-fly of the result groups as late
initialization of the base table. In the thesis we provide an algorithm for the
evaluation of θ–MDA with late initialization, namely IndexedTCMDA-LI, and
present performance experiments to evaluate it. In the experiments we compare
the performance of IndexedTCMDA-LI with the performance of the algorithms
BasicTCMDA and IndexedTCMDA for θ–MDA proposed by [2] which do not use the
late initialization strategy. The results show that IndexedTCMDA-LI performs
better than the other two algorithms in all tested settings which has two main
reasons. One reason is the single load of the input relation in IndexedTCMDA-LI

which yields a performance improvement of up to about 65 percent (on average
about 54 percent). Another reason is the reduction of all constraint operators to
equality in IndexedTCMDA-LI that has a huge impact of the performance of the
algorithm for aggregation queries using constraint operators different than =.
Indeed, for such queries in our experiments IndexedTCMDA-LI reaches execution
times being up to forty times shorter as for IndexedTCMDA and BasicTCMDA.

Future work could focus on different performance issues of the late initial-
ization strategy presented in this thesis. The approach we developed performs
particularly well in our experiments, in which we used base table with up to
500 result groups. However, for cases with large base tables, for instance, stor-
ing several hundred thousand result groups, the performance of θ–MDA with
late initialization could decline significantly due to the process of computing the
result relation x based on the intermediate result relations xeqi . Thus, future
research could investigate limitations of our approach with respect to a growing
number of result groups and search for strategies to handle these limitations.
Another future research could be to implement the θ–MDA algorithm with late
initialization directly into a database management system such as PostgreSQL12

and than to compare its efficiency with the performance of SQL formulations of
the same queries.

12http://www.postgresql.org/

50

References

[1] Michael Akinde, Damianos Chatziantoniou, Theodore Johnson, and Samuel
Kim. The MD-join: An operator for complex OLAP. In Proceedings of
the 17th International Conference on Data Engineering, pages 524–533,
Washington, DC, USA, 2001. IEEE Computer Society.

[2] Michael Akinde, Michael H. Böhlen, Damianos Chatziantoniou, and Jo-
hann Gamper. θ-constrained multi-dimensional aggregation. Information
Systems, 36:341–358, April 2011. ISSN 0306-4379.

[3] Michael O. Akinde and Michael H. Böhlen. Generalized MD-joins: Evalua-
tion and reduction to SQL. In Proceedings of the VLDB 2001 International
Workshop on Databases in Telecommunications II, DBTel ’01, pages 52–67,
London, UK, 2001. Springer-Verlag. ISBN 3-540-42623-X.

[4] Michael O. Akinde and Michael H. Böhlen. Efficient computation of
subqueries in complex OLAP. In Proceedings of the 19th International
Conference on Data Engineering, pages 163–, Los Alamitos, CA, USA,
2003. IEEE Computer Society.

[5] Michael O. Akinde, Michael H. Böhlen, Theodore Johnson, Laks V. S. Lak-
shmanan, and Divesh Srivastava. Efficient OLAP query processing in dis-
tributed data warehouses. Information Systems, 28:111–135, March 2003.
ISSN 0306-4379.

[6] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (On-Line
Analytical Processing) to User-Analysis: An IT Mandate, 1993.

[7] Jim Gray, Adam Bosworth, Andrew Layman, Don Reichart, and Hamid
Pirahesh. Data cube: A relational aggregation operator generalizing group-
by, cross-tab, and sub-totals. In Proceedings of the Twelfth International
Conference on Data Engineering, pages 152–159, Washington, DC, USA,
1996. IEEE Computer Society. ISBN 0-8186-7240-4.

[8] Jiawei Han, Yixin Chen, Guozhu Dong, Jian Pei, Benjamin W. Wah, Jiany-
ong Wang, and Y. Dora Cai. Stream cube: An architecture for multi-
dimensional analysis of data streams. Distributed Parallel Databases, 18:
173–197, September 2005. ISSN 0926-8782.

[9] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Imple-
menting data cubes efficiently. In Proceedings of the 1996 ACM SIGMOD
international conference on Management of data, pages 205–216, New York,
NY, USA, 1996. ACM. ISBN 0-89791-794-4.

[10] SQL Standards Commitee-American National Standards Institute.
ISO/IEC 9075:1999 information technology–database languages–SQL,
1999.

[11] SQL Standards Commitee-American National Standards Institute. Infor-
mation technology–database languages–sql–AMENDMENT 1: On-line an-
alytical processing (SQL/OLAP), 2001.

51

[12] SQL Standards Commitee-American National Standards Institute.
ISO/IEC 9075:2003 information technology–database languages–SQL,
2003.

[13] Kenneth E. Iverson. A programming language. John Wiley & Sons, Inc.,
New York, NY, USA, 1962. ISBN 0-471430-14-5.

[14] Ki Yong Lee and Myoung Ho Kim. Efficient incremental maintenance of
data cubes. In Proceedings of the 32nd international conference on Very
large data bases, VLDB ’06, pages 823–833. VLDB Endowment, 2006.

[15] Eric Miller and Frank Manola. RDF primer. W3C recommendation, W3C,
February 2004. http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[16] Barinderpal Singh Mumick, Dallan Quass, and Barinderpal Singh Mu-
mick. Maintenance of data cubes and summary tables in a warehouse.
In Proceedings of the 1997 ACM SIGMOD international conference on
Management of data, pages 100–111, New York, NY, USA, 1997. ACM.
ISBN 0-89791-911-4.

[17] Radhika Sridhar, Padmashree Ravindra, and Kemafor Anyanwu. RAPID:
Enabling scalable ad-hoc analytics on the semantic web. In Proceedings
of the 8th International Semantic Web Conference, Proceedings of ISWC
2009, pages 715–730, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-
3-642-04929-3.

[18] Goetz Graefe Usama, Usama Fayyad, and Surajit Chaudhuri. On the ef-
ficient gathering of sufficient statistics for classification from large SQL
databases. In Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining, pages 204–208. AAAI Press, 1998.

[19] Wikipedia. Business intelligence — Wikipedia, the free encyclopedia, 2011.
URL http://en.wikipedia.org/wiki/Business intelligence. [Online;
accessed 16-February-2011].

[20] Wikipedia. Map reduce — Wikipedia, the free encyclopedia, 2011.
URL http://en.wikipedia.org/wiki/MapReduce. [Online; accessed 23-
February-2011].

[21] Wikipedia. Online analytical processing —
Wikipedia, the free encyclopedia, 2011. URL
http://en.wikipedia.org/wiki/Online analytical processing.
[Online; accessed 16-February-2001].

[22] Jun Yang and Jennifer Widom. Incremental computation and maintenance
of temporal aggregates. In Proceedings of the 17th International Conference
on Data Engineering, pages 51–60, Washington, DC, USA, 2001. IEEE
Computer Society. ISBN 0-7695-1001-9.

[23] Jun Yang and Jennifer Widom. Incremental computation and maintenance
of temporal aggregates. The VLDB Journal, 12:262–283, October 2003.
ISSN 1066-8888.

52

[24] Donghui Zhang, Alexander Markowetz, Vassilis J. Tsotras, Dimitrios
Gunopulos, and Bernhard Seeger. On computing temporal aggregates with
range predicates. ACM Trans. Database Syst., 33:12:1–12:39, June 2008.
ISSN 0362-5915.

[25] Donhui Zhang, Alexander Markowetz, Vassilis Tsotras, Dimitrios Gunop-
ulos, and Bernhard Seeger. Efficient computation of temporal aggre-
gates with range predicates. In Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
PODS ’01, pages 237–245, New York, NY, USA, 2001. ACM. ISBN 1-58113-
361-8.

53

