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Abstract

We present an efficient heuristic for the Orienteering Problem (OP) using the example
of a tourism application. Our system recommends custom-tailored itineraries based on
the tourists’ preferences and time constraints, guiding them from a starting point to
a destination point and visiting a series of Points of Interest (POIs) in between. This
problem is generally known to be NP-hard and therefore no algorithm to compute an
optimal solution efficiently is likely to be found.

In order to recommend sufficiently interesting itineraries we generalize the Orien-
teering Problem by assigning each POI to a category, thus obtaining the Orienteering
Problem with Maximum Point Categories (OPMPC). Travelers define which categories
they like and how many POIs they would like to visit at most for each of those categories.
They benefit from this approach because they can easily pick those types of POIs that
are important to them, say museums, while quickly sorting uninteresting POIs out.

We first show, that OPMPC exposes a natural diminishing returns property, called
submodularity. This concept has lately found wide application in the area of optimiza-
tion algorithms. Based on the submodularity of our problem we present our heuristic
algorithm, discuss its strengths but also its weaknesses.

The algorithm was implemented and thoroughly evaluated, benchmarks show that
the approach taken is promising and the proposed itineraries are in the most cases close
to optimal.
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Abstract

Wir präsentieren eine effiziente Heuristik für das Orienteering Problem (OP) am Beispiel
einer Reiseroutenplanung für den Toursimusbereich. Unser System schlägt den Touris-
ten anhand ihrer Interessen personalisierte Routen vor, die sie von einem angegebenen
Startpunkt aus hin zu einer Reihe sog. Points Of Interest (POIs) führt und schließlich zu
dem gewünschten Endpunkt bringt. Da diese Problem zur Klasse der NP-harten Prob-
leme gehört ist es unwahrscheinlich, dass ein effizienter Algorithmus zum Berechnen der
optimalen Lösung gefunden werden kann.

Um hochwertige Reiserouten für Touristen vorschlagen zu können, generalisieren wir
das Orienteering Problem indem wir jeden POI einer Kategorie zuordnen und erhalten so
das Orienteering Problem with Maximum Point Categories (OPMPC). Reisende suchen
sich aus den gegebenen Kategorien jene aus die ihnen zusprechen und geben jeweils an
wie viele POIs sie maximal zu dieser Kategorie sehen möchten, z.B. nicht mehr als 1
Restaurant soll in der Route vorhanden sein. Touristen profitieren von diesem Ansatz,
weil sie so ganz einfach POIs aussortieren können die ihnen nicht gefallen.

Wir zeigen, dass OPMPC die Eigenschaft der Submodularität besitzt, eine Eigen-
schaft die in den letzten Jahren häufig bei Optimierungsalgorithmen angewendet wurde.
Basierend auf der Submodularität unseres Problems präsentieren wir unsere Heuristik
und beschreiben ihre Stärken, als auch ihre Schwächen.

Die vorgeschlagene Heuristik wurde implementiert und ausgiebig getestet, Bench-
marks zeigen dass der Ansatz vielversprechend ist und in den meisten Fällen Lösungen
generiert die nahezu optimal sind.
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Abstract

Usando come esempio un’applicazione turistica presentiamo un’euristica efficiente per il
Orienteering Problem (OP). Il nostro sistema raccomanda ad un turista un itinerario
personalizzato basandosi su preferenze e su requisiti temporali. Il sistema guida l’utente
da un punto di partenza ad un punto di destinazione suggerendo di visitare una serie
di attrazioni (Point of Interest o POI) durante il cammino. Questo problema è NP-
Completo e di conseguenza probabilmente non esiste alcun algoritmo esatto ed efficiente.

Al fine di raccomandare buoni itinerari generalizziamo il OP assegnando ogni POI ad
una categoria. Otteniamo cos̀ı il Orienteering Problem with Maximum Point Categories
(OPMPC) dove il viaggiatore esplicita le categorie che preferisce e quanti POI vuole al
massimo visitare per ognuna.

Prima di tutto mostriamo che il OPMPC mostra la proprietà dei ritorni marginali
decrescenti, formalizzata dalla submodularità. Questo concetto ha recentemente trovato
ampie applicazioni negli algoritmi di ottimizazione. Infine presentiamo la nostra euristica
basata sulla submodularità e discutiamo i suoi punti di forza e debolezza.

L’algoritmo è stato implementato e testato accuratamente. I benchmarks mostrano
che l’approccio preso è promettente e gli itinerari proposti sono nella maggior parte dei
casi quasi ottimi.
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Chapter 1

Introduction

The latest boom in the smartphone industry has brought small GPS devices to everyone’s
pocket. Location based services are rapidly growing in popularity and especially for
tourism applications these new devices offer tremendous opportunities.

Usually tourists are new to the region and do not know the attractions, not to mention
the best way to get there. To assist tourists in such situations we focus on efficient
algorithms that recommend itineraries based on their preferences and time constraints.
Given a starting point, for instance the current location, we guide the tourists through
the streets of the city, visiting as many attractions, also called points of interest (POIs),
as possible along the road until they reach their destination point within their time
budget.

This problem is generally known as the Orienteering Problem (OP), a combinatorial
problem having its roots in the Knapsack Problem (KP) and the Traveling Salesman
Problem (TSP), all of them being NP-complete. In its original setting, OP assumes no
scores, thus the problem boils down to visiting as many points as possible within the
time budget. Whereas, if each POI has a score describing its attractiveness, our goal is
to maximize the sum of the scores collected along the road. OP differs from TSP in that
it is not required to visit every POI once and we do not search for the shortest path,
but a tour having a maximum possible score. While the TSP is a minimization problem,
our problem is concerned with maximizing the score. The Orienteering Problem is also
different from KP, where the items being added to the knapsack have a constant weight
and the order in which the items are added does not matter, whereas in OP the order
of visited POIs is important.

In order to recommend sufficiently interesting POIs, the attractions are categorized
and the users express their own preferences in terms of the maximum number of POIs
they want to visit for a particular category, say no more than two museums and one
restaurant. This information helps both, the users because they get a custom-tailored
trip that hopefully meets the expectations and the system because it can reduce the
possibly thousands of POIs to maybe some hundred POIs.

We start by formalizing the problem as a maximization problem in chapter 2, give an
NP-completeness proof and introduce the notation we use throughout this paper. Still
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in that chapter we analyze the problem more deeply and elaborate on the property of
submodularity (section 2.3). Continuing in chapter 3 we describe our heuristic, called
ARKTIS and present its pseudo code. In the next chapter we describe a state of the
art algorithm, called eMIP and adapt it for our problem domain. Both algorithms were
implemented, thoroughly evaluated and compared to each other in our benchmarks
(chapter 5). Finally, we conclude with outlining what still needs to be worked on in the
future.
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Chapter 2

Problem Formalization

2.1 Model and Problem Definition

Consider a set of n POIs, denoted by P and containing pi, 1 ≤ i ≤ n. Let s and d
represent the starting and destination point, respectively. Then the n POIs together
with s and d form the node set of a complete metric weighted undirected graph G =
(P ∪ {s, d},E). Whereas the edges el ∈ E = {(i, j)}, 1 ≤ i, j ≤ n form the connections
between the nodes. Each edge el has an associated weight wi,j that represents the travel
time in seconds from pi to pj . Note that since the graph is undirected we have that
wi,j = wj,i. Similarly, each POI pi has a visiting time vpi , measured in seconds, as well
as a score spi that denotes the benefit of visiting POI pi. Moreover, each pi belongs
to a category, for instance the POI National History Museum belongs to the category
museums. The set of m categories is denoted by K and each POI pi belongs to exactly
one category cat(pi) = kj , 1 ≤ j ≤ m.

The user input consists of a time budget tmax, again measured in seconds and a rating
of the categories. Let sk denote the array of user scores for the categories, indexed by the
ID of the category and holding the interest for that particular category, sk[i] ∈ [0, 1], 1 ≤
i ≤ m, where 1 corresponds to the maximal possible interest. Additionally, the user
provides the system with the maximum number of POIs that may be included in the
final itinerary on a per category basis, let maxk[i] ≥ 0, 1 ≤ i ≤ m. Before stating the
optimization goal we first formally introduce the notion of an itinerary I:

Definition 1 An itinerary I, starts from a starting point s, finishes at a destination
point d1 and includes an ordered sequence of connected POIs I = 〈s, pi1 , pi2 , . . . , piq , d〉
that are visited at most once. We define the cost of itinerary I to be the total duration of
the path from s to d passing through the POIs in I, cost(I) = ws,i1 +vpi1

+
q∑

j=2
(wij−1,ij +

vpij
) + wiq ,d and its score to be the sum of the scores of the individual POIs visited,

score(I) =
q∑

j=1
scat(pij

).

1s and d may be identical.
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As an output the user expects an itinerary I that respects the time budget tmax

and the constraints imposed by the maximum visits maxk. The itinerary should be
sufficiently interesting, measured in terms of its score.

We are ready to state the generalization of the Orienteering Problem and call it the
Orienteering Problem with Maximum Point Categories (OPMPC):

Definition 2 Given a starting point s, a destination point d, n points of interest pi ∈ P,
with visiting times vi, 1 ≤ i ≤ n, traveling times ws,i, wi,d, 1 ≤ i ≤ n, and wi,j , 1 ≤
i, j ≤ n, i 6= j, categories kj ∈ K, 1 ≤ j ≤ m with scores skj

, and the following two
parameters: (a) the maximum total time, tmax a user can spend on the itinerary and, (b),
the maximum number of POIs maxkj

that can be used for each one of the kj categories,
a solution to the OPMPC is an itinerary I = 〈s, pi1 , pi2 , . . . , piq , d〉, 1 ≤ q ≤ n, such that

• the total score of the points, score(I), is maximized;

• no more than maxkj
POIs are used for category kj;

• the time constraint is met, i.e., cost(I) ≤ tmax.

For the remainder of this section we will reason about the complexity of OPMPC.
The original Orienteering Problem roots in the Knapsack Problem and the Traveling
Salesman Problem, all of them being NP-complete. In the following proof we will show
that OPMPC is a generalization of the original Orienteering Problem and thus NP-
complete as well.

Theorem 2.1.1 The Orienteering Problem with Maximum Point Categories (OPMPC)
is NP-complete.

Proof Given an itinerary I, a bound tmax, and a bound S for the score, we can easily
show that cost(I) ≤ tmax, score(I) ≥ S, and that no more than maxkj

POIs are used
for category kj in polynomial time. Thus, OPMPC ∈ NP.

For the remainder of the proof we reduce the original Orienteering Problem to
OPMPC by placing each point of interest into its own category ki, 1 ≤ i ≤ n and
setting maxki

to 1. The score ski
of the category for pi is set to the value of pi in

the original problem. Solving this instance of the OPMPC gives us an answer for a
given Orienteering Problem, as the categories do not constrain the solution in any way.
Consequently, OPMPC is a true generalization of the original orienteering problem.

2.2 Model Simplifications

In order not to over-complicate the problem we made some simplifying assumptions. For
instance, a city’s street network was modeled as an undirected graph where the POIs are
the nodes and streets between them are the edges. But in reality, the street network of a
city is a much more complex system than a simple undirected graph. In our assumptions
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the edge weights are symmetric, so the cost to go from s to d is the same as to go the
from d to s. However, in a real city this is hardly the case, as e.g. one-way streets may
be used along the road.

For many graph related problems there are more efficient algorithms for undirected
graphs than for directed graphs, for instance there is a constant factor approximation for
TSP in undirected graphs but no comparable algorithm in the directed case (see section
3.4 for a more detailed discussion). Hence, we assume at the moment an undirected
graph and leave the directed case for future work.

Moreover we assume that our graph G is metric, which means that G satisfies the
triangle inequality, wi,k ≤ wi,j + wj,k, ∀i, j, k. As a consequence, the edge wi,j from pi

to pj is actually the shortest path between these two nodes. This assumptions lead to a
dramatic improvement in performance, since no shortest path computations have to be
carried out in the algorithm itself. There are several algorithms to compute the all-pairs
shortest path on a set of nodes and in our implementation we used the Floyd–Warshall
algorithm. It has a time-complexity of O(n3) and space-complexity of O(n2), where n
is the number of nodes, in our case POIs, in the graph.

2.3 Submodularity

In this section we first introduce the concept of submodularity, give evidence that this
concept was successfully applied in optimization problems and then show that also
OPMPC exposes the submodularity properties. Then, continuing in chapter 3 we show
that by exploiting these properties we can give an efficient heuristic for OPMPC.

Due to its diminishing returns property, which we will see shortly, Submodular Set
Functions have found wide application in the field of approximation algorithms, for
both minimization and maximization problems. For instance, Krause et al. used the
concept of submodularity in the fields of observation selection [1], Sviridenko studied
the maximization of submodular functions subject to a knapsack constraint in [2] and
submodularity has already been applied to the Orienteering Problem by Chekuri et al.
in [3].

2.3.1 Definition

Consider the problem of placing cameras in a large, contorted building with many rooms.
The task is now to find a placement such that the largest possible area is covered by the
cameras. Intuitively, adding a camera to an empty room increases the coverage highly,
but placing yet another camera in a room with already five cameras will not improve the
surveillance greatly. Thus the problem of placing cameras exhibits a natural diminishing
returns property, adding another camera to an already large set has lower impact than
adding one to a small set2.

This concept is known as submodularity and a set function f is called submodular if
it satisfies the following two equivalent definitions [4]:

2This example was taken from [1] because it explains the concept of submodularity very well
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• For every A ⊆ B ⊆ P and every p ⊆ P \ B, it holds that f(A ∪ {p}) − f(A) ≥
f(B ∪ {p})− f(B)

• For every A,B ⊆ P, it holds that f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

Equivalently, a function f is called modular if both inequalities are changed to equal-
ities. Let ∆(p | A) = f(A ∪ {p}) − f(A) be the marginal increase, then the function
f is modular iff ∆(p | A) = ∆(p | B), ∀p ∈ P. This means basically that the marginal
increase does not depend on the set A nor B but only on the element p. If the inverse
inequalities hold for all A,B the function f is called supermodular.

2.3.2 Application in Orienteering

The score function of the OPMPC to compute the overall score of an itinerary I is also
a submodular set function, the larger a set of POIs becomes the less likely it is that
additional POIs can be introduced in an itinerary. Or put differently, the larger the set
becomes the smaller is the marginal increase in score that can be obtained by adding
yet another POI. Say you have a set of only two POIs and tmax is sufficiently large, then
chances are good that a third POI can be added to an itinerary. However, if you have
a set of 20 POIs adding another POI will possibly violate the time constraints and not
increase the score at all.

In the following proofs ∆s and ∆c denote the marginal increase in terms of score and
cost, respectively.

Lemma 2.3.1 The score function of the OPMPC is submodular.

Proof Let A ⊆ B ⊆ P be two sets of POIs and p ∈ P \ B. The goal is to add
POI p in order to increase the total score by the score of p, sp, and to show that
∆s(p | A) ≥ ∆s(p | B). We distinguish the following three different cases:

1. p can be added to both, A and B

2. p can be added to both, A and B, but some lower-scoring POIs have to be removed

3. p cannot be added to B

In the first case p can be added to both sets and thus the marginal increase is the
same for both, i.e. ∆s(p | A) = ∆s(p | B) = sp.

The second case is more difficult, though, because we have to remove some lower-
scoring POIs in favor of p. Therefore let X ⊆ A and Y ⊆ B be two sets of POIs with
scores sX =

∑
x∈X sx and sY =

∑
y∈Y sy, such that sX ≤ sY ≤ sp. If the set Y exists

we have that ∆s(p | B \ Y ) = sp − sY . The existence of the set Y implies also the
existence of the set X of POIs, because if we can successfully build an itinerary out of
B \Y ∪{p} then we can also build successfully an itinerary out of its subset A\X ∪{p}.
As a consequence ∆s(p | A \X) = sp − sX . Recall that by construction sX ≤ sY , thus
∆s(p | A \X) ≥ ∆s(p | B \ Y ).
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The third case is easier, because if we cannot add p to B then ∆(p | B) = 0 and no
matter if we add p to A or not, the marginal increase is greater than or at least equals
to 0, thus ∆(p | A) ≥ ∆(p | B).

Next, let us study the properties of the second function of interest, the cost function,
which computes the total duration going from s to d taking into account the visiting
times of the POIs in between.

Lemma 2.3.2 The cost function of the OPMPC is neither submodular, nor supermod-
ular.

Proof A simple counterexample shows that the cost function does not exhibit any
modularity at all. Consider the graph in figure 2.1 with the four nodes {1, 2, 3, 4} and
edges with weight w1,2 = 1, w1,3 = 3, w1,4 = 2, w2,3 = 2, w2,4 = 3 and w3,4 = 1.

In the first example let A = {3, 4}, B = {2, 3, 4}. The itinerary starts from s = 4 and
finishes at d = 3. In this setting the cost function satisfies the submodularity condition.

1 2

34

1

32 23

1

Figure 2.1: Graph containing n = 4 nodes

∆c(1 | A) ≥ ∆c(1 | B)
cost(A ∪ {1})− cost(A) ≥ cost(B ∪ {1})− cost(B)

cost({4, 1, 3})− cost({4, 3}) ≥ cost({4, 1, 2, 3})− cost({4, 2, 3})
(2 + 3)− 1 ≥ (2 + 1 + 2)− (3 + 2)

4 ≥ 0

However, in the following setting the cost function has supermodular behavior. Let
A = {2, 4}, B = {2, 3, 4}, s = 4 and d = 2.
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∆c(1 | A) ≤ ∆c(1 | B)
cost(A ∪ {1})− cost(A) ≤ cost(B ∪ {1})− cost(B)

cost({4, 1, 2})− cost({4, 2}) ≤ cost({4, 3, 1, 2})− cost({4, 3, 2})
(2 + 1)− 3 ≤ (1 + 3 + 1)− (1 + 2)

0 ≤ 2

Both examples together show that the cost function is neither submodular, nor su-
permodular.
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Chapter 3

ARKTIS Algorithm

Building on the concept of submodularity that we discussed in the previous chapter we
start this chapter by explaining how we actually exploit this powerful property. In the
course of the following sections we will then introduce our heuristic called AlteRnating
Knapsack and TravelIng Salesman, or ARKTIS in short.

The name ARKTIS already indicates how our approach to an efficient heuristic for
orienteering works. However, the way how the Knapsack and the TSP problem are
combined and how alternating approximations for both algorithms yields a heuristic, is
the interesting part and also the main contribution of this chapter.

3.1 Modularity

As we have seen in section 2.3.2 it is not possible to predict how the cost function
changes as new POIs are added to an itinerary, which makes the function difficult to
approximate. However, in order to design an efficient approximation algorithm we need
a cost function that is easier to deal with. Therefore in this section we introduce a
modular cost function that will be an important building block of ARKTIS.

But before doing so, we first introduce in the following section the notion of a root,
which is necessary to derive our new approximative cost function.

3.1.1 Root Construction

It lies in the nature of our problem that it is very dynamic and changing dramatically de-
pending on the parameterization, e.g. increasing tmax only by some minutes may change
the resulting itinerary completely. This makes the problem so difficult and fascinating
at the same time.

In the hope that it facilitates the approximation we give the problem more structure
by introducing a skeleton that every itinerary builds upon.

Definition 3 Let a root R = 〈s, pi1 , . . . , piq , d〉 be the skeleton of an itinerary I, that
contains only the start and destination points s and d and a fixed number q ≥ 0 of
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additional POIs. Each node of the root R is itself the root of a subtree of depth at most
1 and has as leaves other POIs p ∈ P \ {pi1 , . . . , piq}.

The root R can be easily modeled as a directed semi-Eulerian graph1 Ĝ = (P̂ ∪
{s, d}, Ê), where P̂ are all the POIs that belong to the root R and Ê are the edges that
connect this tree-like structure. Every root node pi is connected to its next neighbor
root node pi+1 by a single outgoing edge with weight wi,i+1, while every leaf node is
linked to its parent root node with both an incoming and outgoing edge. Based on the
graph notation of the root R we can easily define the score and the cost of it:

Definition 4 The score of a root R is defined as the sum of the scores of every single
POI in R, score(R) =

∑
pi∈P̂

scat(pi). Similarly, the cost is defined as the weight of every

single edge in Ĝ in addition to the visiting time of each POI, cost(R) =
∑

wi∈Ê
wi +

∑
pi∈P̂

vi.

The intuition behind this concept is to build several roots according to some selec-
tion strategy for the q POIs and then iteratively expand those skeletons until we get
a sufficiently good itinerary that does not violate any constraints. Figure 3.1 shows a
bare root with no additional POIs as leaves. In contrast, the root in figure 3.2 has 8
leaves. Note that, the edges between the root nodes {s, pi1 , . . . , piq , d} are colored in red,
whereas the remaining edges in both directions are colored black.

s 1 d

Figure 3.1: Bare root, without any leaves

s 1 d

2

3

4 5

6 7

8

9

Figure 3.2: Root with 8 leaf POIs
1 or Eulerian if s = d
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The question which q POIs to choose remains still to be answered. In fact, the
accuracy of ARKTIS depends heavily on the choice made in this step, and later in chapter
5 we will get into more detail.

What all strategies have in common is that the first root is always the direct con-
nection between start and destination 〈s, d〉, i.e. q = 0. Algorithm 1 builds roots for q
up to 1 by first sorting the POIs according to one of the utility functions described in
section 3.5 and then selecting always the one with highest utility. This algorithm can be
extended to work with q > 1 by taking the q POIs with highest utility and form a root
out of them. However, suppose that q = 2 and p1 and p2 are the highest-ranked POIs,
then one has to decide whether for example 〈s, p1, p2, d〉 and 〈s, p2, p1, d〉 are treated as
different roots.

Algorithm 1 Construct-Roots (P, K, s, d)
Require: n POIs, m categories, start and destination point
Ensure: m+ 1 roots with q ≤ 1

1: roots← {〈s, d〉}
2: for (every category ki ∈ K) do
3: let P ⊆ P, s.t. cat(p) = ki,∀p ∈ P
4: sort P according to some utility function in descending order
5: roots← roots ∪ {〈s,P[0], d〉}
6: end for
7: return roots

3.1.2 Modular Cost Function

Recall from section 2.3 that the marginal increase of a modular set function no longer
depends on the set it operates on, but only on the element that is being added, i.e.
∆(p | A) = ∆(p | B), ∀p ∈ P,A ⊆ B ⊆ P.

The roots we previously defined are a simplification of an itinerary and when ARKTIS
picks a new POI it is attached to the closest node in the root. Note that, a POI is never
attached to a leaf node, but always to a root node. Knowing this, we can pre-compute
for all p ∈ P \ {pi1 , . . . , piq} the closest node in a root. As a result, we know in advance
the constant cost of adding a certain POI to the root and therefore this cost function
is modular. The procedure to pre-compute the constant costs is straightforward and
shown in algorithm 2.

Since root r is a semi-Eulerian graph we can always find a tour that visits all edges
once and such a tour is called an Eulerian trail. Clearly the cost of an Eulerian trail is
necessarily at least as big as the TSP tour on graph Ĝ, therefore the cost function is an
overestimate. Unfortunately this modular cost function does not always capture reality
very well, there are pathological cases were the modular cost diverges from the actual
TSP cost quite heavily. In fact, as we are going to show next, the approximation can be
arbitrarily bad.
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Lemma 3.1.1 The approximation of OPMPC’s cost function through the cost function
for a root R can be arbitrarily bad.

Proof Consider the graph G in figure 3.3, which contains besides the start and desti-
nation node 4 POIs, figure 3.4 shows the respective root for graph G. Suppose that the
visting times for all POIs is 0 and the max visits are such that an itinerary containing
all POIs is feasible. Moreover assume that p is the number of leaf nodes in root R, so in
this graph p = 3. The optimal solution to the OPMPC problem is Iopt = 〈s, 1, 2, 3, 4, d〉
and has a cost of cost(Iopt) = 4x+pε, whereas the cost of root R is cost(R) = 2x+ 2px.
Since p can be arbitrarily large and ε can be arbitrarily small the the approximation
cost(Iopt)− cost(R) can be arbitrarily bad.
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Figure 3.3: Graph G with 4 POIs

s 1 d

2

3

4

x x

x

x
x x

x

x

Figure 3.4: Root R, where cost(R)� cost(Iopt)

3.2 ARKTIS Algorithm

We have now all necessary pieces in place in order to explain the actual heuristic for
OPMPC. We start this section by first giving a very high level introduction to the
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Algorithm 2 Constant-Cost (P, root)
Require: The set of POIs and a root
Ensure: An n-ary array indexed by pi ∈ P, 1 ≤ i ≤ n and holding the cost to the

closest node in the root.

1: cost← []
2: for (every pi ∈ P) do
3: min←∞
4: for (every nj ∈ root) do
5: if wpi,nj < min then
6: min← wpi,nj

7: end if
8: end for
9: cost[pi]← min

10: end for
11: return cost

algorithm such that one can easily grasp the intuition behind it and then continue to
explain it in a more detailed fashion.

3.2.1 Intuition

The algorithm starts by creating a set of roots using algorithm 1. Our final itinerary will
eventually build upon one of the roots, but which one is not known in advance, rather
we figure it out during the course of the algorithm by checking which one generates the
itineraries with highest score.

For each root we then continue to compute the constant costs with algorithm 2. By
exploiting the modularity of our constant costs we know exactly to which root node a
particular POI is attached. With this knowledge we can construct an itinerary Icur out
of the root and check whether it beats the current best itinerary Ibest.

Unfortunately, as we have seen our cost approximation is arbitrarily bad and we
cannot know how far the calculated cost is from the real cost of the optimal itinerary
Iopt. This means the itinerary construction may generate a trip whose actual cost is much
lower than tmax, i.e. the time budget is not really exhausted and we could potentially
add more POIs. As a consequence we artificially increase the time budget tmax for the
itinerary construction, here denoted t′max, until the cost of the resulting itinerary Icur

is as close to tmax as possible. To find an appropriate value for t′max we use a binary
search approach to quickly narrow the search range.

Once we completed this process for each root, Ibest contains the best itinerary found
so far and we return it to the user. In the following few sections we will focus on each
aspect of ARKTIS more deeply and finally present it as pseudo-code.
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3.2.2 Itinerary Construction

The itinerary construction is the most important part of the algorithm as it is the piece
of code which decides which POIs are chosen to be part of an itinerary and how the
trip finally looks like. We recall that the Orienteering problem has its roots on the one
hand in the Knapsack Problem, which takes care of the POI selection and the Traveling
Salesman Problem for the routing aspect.

Our approach to the itinerary construction is simple, we first use a knapsack ap-
proximation with time budget t′max to select among all POIs P a subset of POIs S ⊂ P
that has highest possible score, while no constraint is violated. Once the POI selection
phase is over we can go ahead an make an itinerary out of this unordered set S using a
TSP approximation. The goal is to find a trip that is as short as possible, because the
shorter the itinerary is, the more remaining time we have to visit even more POIs, thus
increasing the overall score.

Whenever we create an itinerary Icur using the procedure just explained we compare
it to the current best trip Ibest and if it beats it in terms of score, i.e. score(Icur) >
score(Ibest), we update the current optimum.

3.2.3 Binary Search

Since the unit of measurement of t′max is time we have a natural ordering and can
therefore easily apply a binary search for searching. Besides an ordered sequence of
elements the binary search requires also a range where the value in question can be
searched in. Unfortunately this range is not known in advance due to the lack of an
approximation guarantee of our constant cost function. However, the binary search can
be adapted such that the appropriate range is detected at run-time.

Before entering the actual binary search we initialize the search range to 0 as lower
bound and tmax as upper bound. Then as long as we did not create an itinerary whose
real cost is higher than tmax we double the search range by assigning the upper bound
to the the lower bound and doubling the upper bound. As soon as this loop finished the
range has been defined and the usual binary search can be used.

As usual we cut the search range in half, i.e. t′max = lo+hi
2 , perform an itinerary

construction to obtain an itinerary Icur and check its cost, cost(Icur). The decision
whether to use the lower range [lo, t′max− 1] or the upper range [t′max + 1, hi] in the next
turn of the loop is made by comparing the absolute time budget tmax with the cost of
the resulting itinerary Icur. If the current itinerary is too expensive we obviously pick
the lower range, otherwise we did not exhaust our time thoroughly and therefore use the
upper range.

Since the search range is reduced in exponential steps the difference between the
previous t′max and the current t′max becomes quickly very small. As a consequence the
POI selection may return twice the same set S, because with the few remaining seconds
no more POIs can be visited. If this happens we stop our binary search.
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3.2.4 Categories

When we construct an itinerary we should never forget about the constraints imposed
by the categories. Especially the knapsack approximation has to take those constraints
into account, see section 3.3 for more details. The categories have also an impact on the
binary search, both on the initial search for the appropriate range and for the binary
search itself. Previously, we mentioned that we try to get the cost of the itinerary as
close as possible to tmax, but in some cases we cannot even get close to it because of
the categories. Take for example a user input with tmax equals to 8 hours and only one
category with maximum visits equals to 1, in this case it is not likely that we ever get
even close to the time limit, as there are most probably not many POIs with such a high
visiting time.

In that case the search for the appropriate search range would enter an infinite loop,
as we are trying to look for an itinerary that has a higher cost than tmax, but this is
impossible, since the categories do not allow such an itinerary. Therefore we have to
add another stop condition, which covers this edge case. By doubling the search range
one should observe a change in the POI selection through the knapsack approximation.
However, if the set S remains unchanged in a cycle of the loop, we can assume that there
is no more room for further optimization and can break the loop.

3.3 Knapsack Approximation

The optimization goal of OPMPC that we are trying to achieve is to maximize the score
of an itinerary and the algorithm presented in this section is very important to achieve
this goal, because it selects those POIs that are ultimately part of an itinerary.

The problem we are trying to solve in this section is in its core a Knapsack Problem,
because we are given a set of POIs together with their visiting time and score, that
resemble the items with weights and profits, and a time budget that we cannot exceed.
The objective in the Knapsack Problem is to select a subset of the items such that the
weight does not exceed the given budget and the profit is maximized.

Our requirements are different, tough, as the cost of a POI p is not only given by
its visiting time vp, but also by the time to reach that POI. Even worse, the travel
time to reach p depends also on the position of that POI in the whole itinerary, so the
ordering does matter. This is very different from the original Knapsack Problem, where
the order of the items does not matter at all. But luckily, thanks to the modularity of
our artificial cost function we are able to ignore the ordering completely, as we know
in advance where to insert that particular POI in an itinerary. There is yet another
difference to the original problem setting, namely the presence of POI categories and
the maximum visits that a user provides as part of the input.

3.3.1 Greedy Algorithm

For the standard knapsack problem exists a greedy algorithm with an approximation
guarantee of being no worse than 1/2 of the optimal solution [5]. The algorithm is
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Algorithm 3 ARKTIS (P, K, s, d, tmax, maxk[], sk[])
Require: n POIs, m categories, start and destination point, time budget tmax, con-

straints and scores.
Ensure: I, an itinerary respecting all constraints with hopefully high score.

1: Ibest ← 〈〉
2: roots← construct-roots(P, K, s, d)
3: for (every ri ∈ roots) do
4: cost′ ← constant-cost(P, ri)
5: lo← 0
6: hi← tmax

7: S ← knapsack-approximation(P, K, ri, cost′, hi, maxk, sk)
8: Icur ← tsp-approximation(S)
9: while (S changed ∧ cost(Icur) < tmax) do

10: lo← hi
11: hi← 2hi
12: S ← knapsack-approximation(P, K, ri, cost′, hi, maxk, sk)
13: Icur ← tsp-approximation(S)
14: end while
15: while (S changed) do
16: t′max ← lo+hi

2
17: S ← knapsack-approximation(P, K, ri, cost′, t′max, maxk, sk)
18: Icur ← tsp-approximation(S)
19: if score(Icur) > score(Ibest) ∧ cost(Icur) ≤ tmax then
20: Ibest ← Icur

21: end if
22: if cost(Icur) > tmax then
23: hi← t′max − 1
24: else
25: lo← t′max + 1
26: end if
27: end while
28: end for
29: return Ibest

straightforward and is here just informally summarized: sort the items in non-increasing
order by efficiency, which is the profit divided by the weight. Then take the items with
highest efficiency as long as the budget is not exceeded, once this happens sum up the
score of those items and check whether it is larger than the score of the next remaining
item. If that is the case, return the first items, otherwise return the single next item.

Due to the presence of categories and maximum number of visits per category we
cannot exactly use this greedy approach and have to adapt it slightly. But before looking
at the algorithm itself, we first look at the rather long list of parameters. Besides the
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obvious parameters P and K, which are the POIs and the categories, the approximation
algorithm takes also a root r, as it is the backbone of the itinerary that we are trying to
fill up with POIs, an array of constant costs, the time budget tmax, the max visits and
the scores. In contrast, the output is simply a set S of POIs that have been selected to
be in the respective itinerary. Note that the set S is unordered, i.e. the order in which
the POIs appear does not resemble the actual order of the POIs in the itinerary. The
task of ordering the POIs is left to the TSP approximation in the next section.

Having the in- and output of the procedure defined, we can continue with the actual
explanation of the algorithm itself. Before the algorithm can choose a POI, it has to
make sure that the maximum visits constraint is not violated. To do so, the algorithm
has an array of length m, called visits, which contains for each category ki, 1 ≤ i ≤ m,
the number of POIs that have already been selected. This array is first initialized to
all 0 and in a second step we have to take care of the POIs that are already part
of the itinerary, namely the POIs of the root r, denoted by P̂. For each pi ∈ P̂ we
increment visits[cat(pi)] by 1. We continue by initializing the output set S, pre-filled
with the POIs of the root. Similarly to the standard knapsack approximation algorithm,
where the items are ordered by efficiency, we order the POIs by the constant cost utility
function (utility 3.3 defined in section 3.5). Then we continue by trying to insert every
pi ∈ P into S by checking whether neither the time nor the maximum visits constraints
are violated.

Unlike the standard algorithm, in our problem setting we cannot take the first k items
until the budget is violated, because we also have to take the categories into account.
Therefore we cannot guarantee that this modified algorithm has an approximation guar-
antee of 1/2. In both algorithms the sorting algorithm for the items is the dominant
factor in terms of runtime with an asymptotic complexity of O(n log(n)) and therefore
the overall complexity is O(n log(n)) as well.

3.4 TSP Approximation

The Traveling Salesman Problem is probably the best known NP-hard problem, many
new optimization techniques have first been applied to it because it serves as a good
performance benchmark. Its popularity lies in the fact that the problem is intuitive and
very easy to state: given a set of cities and its pairwise distances, find the shortest tour
that visits each city once and returns to the origin city. The TSP can be modeled as
a graph problem where the vertices are the cities and the paths between them are the
edges of the graph. Each edge has an associated weight which is the length of the path
between the two cities.

The TSP arises in many areas, especially in logistics where for example one tries to
deliver packets as quickly as possible. It is also a sub-problem of many other problems,
as it is, for instance, the case with the Orienteering Problem. If we have two itineraries
I1 and I2 with cost(I1) < cost(I2), both visiting the same set of POIs but in a different
order, we prefer I1, because with the additional remaining time we might be able to visit
yet another POI, thereby increasing the overall score.
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Algorithm 4 Knapsack-Approximation (P, K, r, cost, tmax, maxk[], sk[])
Require: n POIs, m categories, a root, constant costs, time budget, max visits and

scores
Ensure: A set of selected POIs

1: let P̂ be the POIs of root r
2: visits← []
3: for (every ci ∈ K) do
4: visits[ci] = 0
5: end for
6: for (every pi ∈ P̂) do
7: visits[cat(pi)]← visits[cat(pi)] + 1
8: end for
9: S ← P̂

10: sort P by utility in descending order
11: for (every pi ∈ P \ P̂) do
12: if cost(r) + cost[pi] + vpi ≤ tmax ∧ visits[cat(pi)] < maxk[cat(pi)] then
13: S ← S ∪ {pi}
14: add pi to root r
15: visits[cat(pi)]← visits[cat(pi)] + 1
16: end if
17: end for
18: return S

A TSP solution is in the same time a solution to the Hamiltonian Cycle problem as
well, because it is a cycle that includes every graph vertex exactly once. However, in our
problem most of the times the tourists will plan an itinerary that takes them from one
point in the city to another, i.e s 6= d. While the general TSP was studied thoroughly,
the generalization with source and destination point not necessarily being the same,
has not yet been mentioned much in research. As we will see soon, Christofides’ TSP
approximation algorithm that we used in our implementation has a worse approximation
guarantee in the case where s 6= d.

In the general case where we do not know anything about the properties of the graph,
it has been proven that TSP cannot be approximated within a factor of α(n), unless
P = NP [6], which is in fact a very strong nonapproximability result. However, our
graph is embedded in a metric space, since we pre-computed the all-pairs shortest path
at the very beginning and thus the triangle inequality holds. Luckily, for the metric TSP
there is a constant-factor approximation algorithm due to Nicos Christofides.

3.4.1 Christofides’ Approximation Algorithm

In this section we will discuss Christofides’ approximation algorithm for the metric TSP
where s = d [7] and an extension for the s 6= d case. This algorithm achieves a 3/2
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approximation guarantee and is over 35 years after its publication still the best known
performance guarantee for the metric TSP. We just give a very high-level introduction
to the algorithm, as the algorithms that this approximation builds upon are well known
and not very relevant to our research.

The algorithm consists of 4 steps, first find a Minimum Spanning Tree (MST) on the
graph G, using for instance Kruskal’s algorithm. In a second step, take all odd-degree
vertices of the resulting MST and build a Minimum Cost Perfect Matching with the
Blossom algorithm. Combine the MST and the matching result to obtain an Eulerian
graph, since each node has now an even degree. Find a Eulerian tour in that graph using
for example Hierholzer’s algorithm resulting in a walk that uses every edge of it. Note
that this walk may visit nodes several times, thus it is shortcut by taking the vertices
in the order of their first appearance. The shortcutting procedure can only reduce the
cost of the walk, since the triangle inequality holds. The resulting walk is at most 3/2
times as long as the optimal TSP path.

Algorithm 5 Christofides-Approximation (G)
Require: complete graph G
Ensure: TSP tour

1: Find an MST of G and denote it by T
2: Compute a Minimum Cost Perfect Matching, M, on the set of odd-degree vertices

of T
3: Merge M and T, and find an Euler tour, T , on the resulting graph
4: Shortcut T , such that each vertex is visited only once
5: return T

With some easy adjustments it is possible to extend Christofides’ algorithm to the
case where s 6= d [8]. However, the approximation guarantee slightly increases from 3/2
to 5/3.

Step 1 of the original algorithm remains unchanged, while in the seconds step we
do not take the vertices with odd-, but wrong-degree. A vertex is of wrong degree if it
belongs either to {s, d} and has even degree or if it is an intermediate vertex and has odd
degree. With the resulting wrong-degree nodes we compute the Minimum Cost Perfect
Matching and again combine it with the minimum spanning tree. The resulting graph
is no longer Eulerian, because the two nodes s and d are of odd-degree. However, this
is not a problem, since we are now looking for a path instead of a cycle. Finding an
Eulerian path can again be done with Hierholzer’s algorithm, with a slight adjustment.
The fourth and last step remains the same as before and the result is a path that is no
worse than 5/3 times the optimal TSP tour.

Since the most expensive step in both algorithms, namely the Minimum Cost Per-
fect Matching with complexity O(n3), remains unchanged, also the overall asymptotic
complexity of both approximations does not change either and remains O(n3).
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Algorithm 6 Christofides-Approximation (G)
Require: complete graph G
Ensure: TSP tour

1: Find an MST of G and denote it by T
2: Compute a Minimum Cost Perfect Matching, M, on the set of wrong-degree vertices

of T
3: Merge M and T, and find an Euler path, T , on the resulting graph
4: Shortcut T , such that each vertex is visited only once
5: return T

3.4.2 Implementation Details

A usual itinerary of a tourist is half a day or maybe a day long and visits up to 7 or 8
attractions approximately. This assumption is not based at all on any kind of empirical
evidence, but on personal experience.

Solving a TSP instance optimally for up to such small numbers of POIs can be done
reasonably quickly on today’s hardware. Assuming that most of the times the TSP
approximation step in ARKTIS is working on 7 or less POIs we can easily gain more
precision by doing an optimal computation if we stay under a certain threshold and
switch to the TSP approximation otherwise.

There are many algorithms to compute TSP optimally, as for instance by simply enu-
merating all possible permutations of the vertices, which has an asymptotic complexity
of O(n!), i.e. for 7 POIs this corresponds to only 5040 different combinations. In fact, we
use this simple bruteforce algorithm, because for small number of POIs this approach
is still efficient enough. There are, of course, more efficient techniques for solving small
TSP instances optimally, e.g. the family of branch and bound algorithms. Please check
the experimental evaluation in chapter 5 to see that the performance of our heuristic
ARKTIS algorithm does not suffer greatly by using an optimal algorithm for a NP-hard
problem in small problem instances.

Algorithm 7 TSP-Approximation (S)
Require: a set of POIs
Ensure: TSP tour

1: Let E be the edge-weights between each pair of POIs in S
2: graph← G(S, E)
3: if |S| ≤ 7 then
4: return TSP-Optimal(graph)
5: else
6: return TSP-Approximation(graph)
7: end if
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3.5 Utilities

The accuracy of ARKTIS depends mostly on two decisions, on the one hand which POIs
are chosen in the root construction (algorithm 1) and on the other hand how well the
knapsack approximation (algorithm 4) performs. In both algorithms we try to pick those
POIs that are likely to be part of a high-scoring itinerary and in this section we discuss
different such POI selection strategies.

We have already seen that each POI has a score describing its attractiveness, but
this measure seems too static since it does not take into account any user information.
Moreover, the score by itself does not describe how well a POI p fits into an itinerary,
because if p has a very high score but is close to the city’s periphery it might drag
an itinerary far away from the center where most of the interesting POIs are probably
located. Therefore we assign each POI pi ∈ P, 1 ≤ i ≤ n a utility value ui and both
algorithms will then select those POIs with the highest utility.

Remember that part of the user input are the scores that the tourist assigns to each
category, sk[i] ∈ [0, 1], 1 ≤ i ≤ m. Let α ∈ [0, 1] be a parameter describing the influence
of the user scores for the single categories, then we can define our first utility that relies
on both, category scores from the users and background information for each single POI
provided by e.g. the tourism office.

u1(pi) = αsk[cat(pi)] + (1− α)spi (3.1)

This utility, however, still suffers from the same problem described above, namely
that the location of a POI is not taken into account. To circumvent this problem, we
define yet another utility function that builds upon the previously defined utility and
additionally takes into account the time to reach that particular POI, as well as its
visiting time. The following “location-aware” utility favors those POIs that are closer to
the direct connection between the start and the destination point.

u2(pi, s, d) = u1(pi)
ws,pi + vpi + wpi,d

(3.2)

In the knapsack approximation the notion of “location-awareness” is different, though,
because unlike in the previous utility, we precomputed the cost of adding some POI to
a root already in the constant cost computation phase. Therefore the knapsack utility
looks like this:

u3(pi, cost) = u1(pi)
cost[pi]

(3.3)

There are clearly other utility functions which weight the POIs differently and each
of them will work in a certain problem setting better than the others, but generally
speaking the utilities that we have defined so far are sufficiently good as our benchmarks
in chapter 5 suggest.
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3.6 Complexity Analysis

The worst case complexity analysis of ARKTIS is difficult for one reason. Recall that the
cost approximation is arbitrarily bad and therefore we do not know how much larger our
approximated cost is compared to the real cost. As a result we perform a search for the
lower and upper bounds for the binary search. However, there is no theoretical bound
on how often the range has to be doubled before we find the appropriate bounds, due
to the lack of an approximation guarantee. Therefore, we cannot give any worst case
upper bound of the algorithm runtime.

The best case analysis is easier, though, assuming that the appropriate bounds of the
binary search are 0 and tmax, respectively. Then the binary search has the well known
worst case complexity of O (logn), where n is the size of the range an corresponds to
tmax in our case. The most expensive computation inside the binary search is the TSP
approximation with complexity O

(
n3), with n being the number of POIs in the input.

The binary search is executed k + 1 times, as the root construction yields k + 1 roots,
where k is the number of categories. This suggests that the overall best case runtime
complexity is O

(
k log(tmax)n3).

Even though the worst case runtime is not known, experiments described in chapter
5 have shown that the runtime was in all benchmarks acceptable, also for large problem
instances.
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Chapter 4

eMIP Algorithm

In order to have a comparison for our algorithm we have implemented the eMIP Algorithm
presented by Singh et al. in [9], because it is a state of the art algorithm and it has been
used also in practice. This algorithm builds on the Recursive Greedy algorithm presented
by Chekuri et al. in [3].

In this chapter we briefly describe their algorithm and show how we adapted it to
our problem domain.

4.1 Original Problem Setting

The original problem setting in which this algorithm found practical application at first
glance seems different from our itinerary planning. Basically, Singh et al. want to monitor
algae biomass in a lake in order to prevent its pollution. They have a couple of small
robotic boats available that they can use to take measurements all around the lake. The
task is to plan the paths of the boats in such a way that the most information is collected.
With the resulting information, including the temperature at each measuring point, they
can judge the degree of pollution in the lake. A natural constraint on the length of such
a path is the storage battery energy that is consumed during the movement of the boat
as well as during the measurement phase.

Our application is different in some aspects, for example, we are (at least for now)
not interested in planning itineraries for multiple groups of tourists. Instead, one could
extend this idea to plan multiple itineraries not for the same day, but for say a week.
Obviously tourists do not want to visit POIs over and over again when they use the
software multiple times in their holidays.

In their problem setting, taking a measurement imposes a certain cost, which corre-
sponds to the visit time of a POI in our domain and our budget constraint is measured
in time instead of the limited energy available for the boats.

23



4.2 Intuition

The original Recursive Greedy algorithm by Chekuri et al. works as follows: Given a
start and destination point their algorithm splits the path from s to d in two parts, one
from s to m and the other from m do d, and then tries to optimize each part recursively.
This splitting is done by trying each point that has not been visited yet as middle point.
Additionally, both halves get a portion of the overall time budget assigned, but the
optimal split for that budget is not known in advance, therefore they try each budget
split from 0 up to the time budget.

To control the maximum depth of the recursion they pass a counter, called iter, to
the algorithm which is then reduced by 1 in every recursive call. The base case occurs
once iter reaches 0 and in that case simply the path from s to d is returned. To avoid
that a POI is chosen multiple times in different branches of the recursion tree a set
X, called the residual, is passed into the function. The first recursive call within the
algorithm yields a set A of POIs and the residual for the second recursive call is updated
to contain also the POIs in A, i.e. X← X ∪ A.

This algorithm has only a quasi-polynomial runtime and is therefore not very efficient.
This is the reason why Singh et al. introduced a couple of changes to make the algorithm
run faster. Due to the large number of measuring points on a lake trying each point
as a middle point m in each recursive call is infeasible and therefore they do a spatial
decomposition of the lake into cells. Every cell is basically a square of the same size.
Their modified algorithm then chooses among all cells a middle cell and in the base
case they do a greedy selection of points in the start and destination cells. The greedy
selection works similarly to the knapsack approximation that we use in our algorithm.

Since the authors assume that the traveling time within a cell is 0, their heuristic
may yield results that violate the budget constraint by a certain factor. According to
definition 2 a solution I to OPMPC must not violate the budget constraint, i.e. cost(I) ≤
tmax and therefore the eMIP algorithm may not always generate valid OPMPC solutions.

Despite the spatial decomposition the algorithm has still super-polynomial runtime
and therefore in an additional attempt to reduce the asymptotic complexity they apply
certain branch-and-bound techniques to cut the search space.

4.3 Spatial Decomposition

Our approach to the spatial decomposition differs in that we do not split the network of
a city into cells of equal size, rather we perform a clustering of the POIs. We think this
suits our application better, because a city network is usually more heterogeneous as
some areas are more densely populated with POIs than others, whereas the measuring
points on a lake are more uniformly distributed.

The hierarchical clustering method that we use is straightforward, given a number k,
representing the number of desired clusters, the algorithm initially puts every POI into
its own cluster. Then as long as we have not reduced the number of clusters to k, we
compute a metric between all pairs of clusters and join those with the smallest metric.
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The code for the algorithm and the metric are shown in in 8 and 9, respectively.
We use the mean distance between each element of two clusters as a metric to describe

the closeness of two clusters. In mathematical notation this corresponds to a binary
function which is given two clusters:

metric(A,B) = 1
|A| · |B|

∑
x∈A

∑
y∈B

dx,y (4.1)

From a performance point of view it is reasonable to have only a small number k of
clusters, because the algorithm will make fewer recursive calls. However, the algorithm
will improve in accuracy for larger values for k. This is the usual trade-off between
performance and accuracy and in our experiments we have seen that the square root of
the number of POIs, i.e. k =

√
|P| works well.

Algorithm 8 Spatial-Decomposition (P)
Require: a set of POIs

1: k =
√
|P|

2: clusters = list()
3: for (p ∈ P) do
4: append(clusters, {p})
5: end for

6: cluster1← {}
7: cluster2← {}

8: while (length(clusters) > k) do
9: min←∞

10: for (i = 0; i < length(clusters); ++i) do
11: for (j = i+ 1; j < length(clusters); ++j) do
12: metric← metric(clusters[i],clusters[j])
13: if (metric < min) then
14: min← metric
15: cluster1← clusters[i]
16: cluster2← clusters[j]
17: end if
18: end for
19: end for
20: remove(clusters, cluster1)
21: remove(clusters, cluster2)
22: append(clusters, cluster1 ∪ cluster2)
23: end while

24: return clusters
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Algorithm 9 Metric (cluster1, cluster2)
Require: two distinct clusters

1: sum← 0
2: length1← length(cluster1)
3: length2← length(cluster2)

4: for (i = 0; i < length1; ++i) do
5: for (j = 0; j < length2; ++j) do
6: sum← d(cluster1[i], cluster2[j])
7: end for
8: end for

9: return sum
length1+length2

4.4 Budget Splitting

Besides splitting the path between start and destination point in two halves, the algo-
rithm splits the available visit time also in two parts, one for the first recursive call and
the other for the second recursive call. The algorithm tries several splits until it finds one
which yields a good solution. Singh et al. describe two splitting strategies, the one-sided
and two-sided budget splits. We will focus on the one-sided for now. The idea is to
start from 0 and then go in exponential steps to the base 2 towards some budget limit
B, i.e. {0, 20, 21, 22, . . . , B}. This guarantees that the chosen budget is no more than
twice as large as the optimal split. The two-sided splits are simply the one-sided splits
starting from both sides, on the one side incrementally adding to 0 and on the other side
subtracting from B, i.e. {0, 20, 21, 22, . . . , B} ∪ {B − 0, B − 20, B − 21, B − 22, . . . , 0}.

Since we measure our budget limit in seconds this approach feels somewhat unnatural,
because we initially waste much time with very small values like 1 second, 2 seconds etc.,
but than due to the exponential growth the values become soon too large. Therefore
we introduce a scaling factor, denoted BUDGET SCALE FACTOR, which allows us to
scale the seconds to more reasonable time intervals. For example, setting the scale factor
to 300 (5 minutes) yields the following splits: {0, 300, 600, 1200, . . . , B}.

Moreover, to get a flatter growth curve we can change the base of the exponential
steps, where the default base still remains 2. Reducing the number means that more
splits are tried and thus the runtime is negatively affected, but again the accuracy may
improve.

The pseudo code to calculate the one-sided budget splits for a given budget limit is
shown in algorithm 10 and reasonable default values for the just described constants are
shown in table 4.1.
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Name Default Value
BUDGET SCALE FACTOR 300 (i.e. 5 minutes)
BUDGET SPLIT GROWTH RATE 2

Table 4.1: eMIP default values for constants

Algorithm 10 Budget-Splits (budget)
Require: budget in seconds

1: base = BUDGET SPLIT GROWTH RATE
2: rate = BUDGET SCALE FACTOR

3: scaledBudget← d budget
rate e

4: nrSplits← dlogbase scaledBudgete+ 2
5: let splits be an array of length nrSplits

6: splits[0] = 0
7: splits[nrSplits− 1] = budget

8: for (i = 1; i < nrSplits− 1; ++i) do
9: splits[i] = basei−1 · rate

10: end for

11: return splits

4.5 Greedy Subset

Algorithm 11, called Greedy Subset, is the procedure which selects the POIs in the eMIP
algorithm. The name Greedy Subset comes from the fact that the algorithm greedily
selects those POIs that have the highest marginal increase in terms of score, thereby
exploiting the submodularity of the score function. This idea is very similar to the
knapsack approximation that we used in our algorithm (see section 3.3). Therefore, we
just briefly describe the algorithm on a very high level.

Initially the POIs are sorted according to score, which represents the order of highest
marginal increase. Then as long as we have not exhausted our time budget we pick POIs
from the head of the sorted list. POIs are only selected, however, if they do not violate
any constraint, time-wise or due to the max visits per category. The residual X helps to
not visit a POI multiple times in the recursion tree and to add only those POIs whose
max visits allow that. At the end we return the set of POIs that we have selected
greedily.

4.6 eMIP Algorithm

The eMIP algorithm consists of two parts, a non-recursive and a recursive function. The
first one, called eMIP, does the initialization and then in turn calls the recursive-eMIP
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Algorithm 11 Greedy-Subset (P, X, visitT ime)
Require: a set of unvisited POIs, residual containing visited POIs, visit time

1: time← 0
2: i← 1
3: selection← {}

4: sort P according to score in descending order

5: while (i ≤ length(P) ∧ time < visitT ime) do
6: p← P[++i]

7: if (p ∈ X) then
8: continue
9: end if

10: if (time+ vp > visitT ime) then
11: continue
12: end if

13: if (p violates the category constraint) then
14: continue
15: end if

16: selection← selection ∪ {p}
17: time← time+ vp

18: end while

19: return selection

function. Part of the initialization is for instance the spatial decomposition, where the
POIs are grouped together in clusters. Every cluster is represented by a centroid, which
is the POI that has the smallest accumulated distance to all other POIs in that particular
cluster.

The eMIP algorithm has a clear distinction between time spent for traveling and
for visiting POIs. It is the task of the non-recursive part to initially split the overall
time budget tmax into travelT ime and visitT ime. It does so by using the budget split
function described in section 4.4. For each such split the recursive part is called.

Still before calling the recursive part, the algorithm makes sure that the destination
cluster Cd is reachable from the start cluster Cs. It also initializes the residual to an
empty set, because so far no POIs have been selected. If the itinerary returned by the
recursive-eMIP call is better than the currently best itinerary in terms of score, then the
best itinerary is updated. The route of the best itinerary may not be optimal, therefore
before returning the itinerary to the user, it is first smoothed using Christofides’ TSP
approximation described in section 3.4.

Now we focus on the recursive-eMIP part, which first checks whether it is even possible
at all to add a POI by comparing the available visitT ime to the smallestV isitT ime
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of all POIs and returns an empty itinerary if it is not the case. It then proceeds with
computing the greedy subset of the POIs in the start and destination clusters Cs ∪Cd.
The resulting POI selection serves as a reference point of what is achievable given the
current parameters. In case the parameter iter is 0, i.e. the maximum recursion depth
has been reached and the algorithm simply returns the solution of the greedy subset
selection.

Otherwise the algorithm loops through all possible middle clusters and all the budget
splits returned by the function described in section 4.4. For each such configuration the
recursive function is called twice, once from the start cluster to the middle cluster and
then from the middle cluster to the destination cluster. The second recursive call learns
about the results of the first recursive call by updating the residual X, this guarantees
that no POI is selected twice. As a result we obtain two sub-itineraries and if they have
together a higher score than the currently best known itinerary we concatenate them
and update the current best itinerary.

Algorithm 12 eMIP (P, tmax, s, d)
Require: n POIs, budget, start and destination point

1: let smallestV isitT ime be the smallest visit time of all p ∈ P
2: C← spatial-decomposition(P)
3: let Cs and Cd be two new empty clusters around s and d
4: find a centroid for every cluster

5: Ibest = 〈〉
6: splits← budget-splits(tmax)

7: for (iter = 0; iter < length(splits)− 1; ++iter) do
8: travelT ime← splits[iter]
9: visitT ime← tmax − travelT ime

10: if (d(Cs,Cd) > travelT ime) then
11: continue
12: end if

13: I ← recursive-eMIP(Cs, Cd, visitT ime, travelT ime, {}, iter)
14: if (score(I) > score(Ibest)) then
15: Ibest ← I
16: end if
17: end for

18: Ibest ← TSP-approximation(Ibest)
19: return Ibest

29



Algorithm 13 recursive-eMIP (Cs, Cd, visitT ime, travelT ime, X, iter)
Require: start and destination clusters, visit time, travel time, the residual containing

all visited POIs so far, maximum recursion depth
1: if (visitT ime < smallestV isitT ime) then
2: return 〈〉
3: end if

4: nextTravelT ime← 1
2 travelT ime

5: I ← greedy-subset(Cs ∪Cd, X, visitT ime)

6: if (iter = 0) then
7: return I
8: end if

9: for (c ∈ C \ {Cs,Cd}) do
10: if (d(Cs, c) > nextTravelT ime ∨ d(c,Cd) > nextTravelT ime) then
11: continue
12: end if

13: splits← budget-splits(visitTime)
14: for (vt1 ∈ splits) do
15: vt2← visitT ime− vt1

16: I1 ← recursive-eMIP(Cs, c, vt1, nextTravelT ime, X, iter − 1)
17: I2 ← recursive-eMIP(c, Cd, vt2, nextTravelT ime, X ∪ I1, iter − 1)

18: if (score(I1 ⊕ I2) > score(I)) then
19: I ← I1 ⊕ I2
20: end if
21: end for
22: end for

23: return I
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Chapter 5

Experimental Evaluation

In the following sections we are empirically evaluating the two discussed algorithms and
compare them to each other. Specifically, we are interested in two main aspects of the
algorithms, the score of the itineraries generated by the algorithms and their runtime.

Our input consists mainly of three different parameters: the start and destination
point, the time budget tmax and the categories with their respective max visits. In order
to get informative and representative benchmarks we will test the algorithms by varying
only one parameter at a time, while keeping the others fixed.

5.1 Benchmarked Algorithms

In our benchmarks we are testing the two algorithms explained in chapter 3 and 4. For
comparison we will evaluate also a third, optimal algorithm, which will be explained
shortly.

As already mentioned previously the accuracy of ARKTIS depends heavily on the
choice of a utility function for the root construction, there is, however, no single utility
that is always better than the others. Fortunately our algorithm is efficient enough to
run it multiple times with different utility functions. The resulting hybrid algorithm uses
the different utilities, partially explained in section 3.5. Despite the multiple execution,
our algorithm is still competitive in terms of runtime as our benchmarks suggest.

The eMIP implementation described in chapter 4 lacks some features that Singh et
al. mentioned in their paper. The missing features do not change the outcome of the
computation, because we just skipped some performance improvements. For instance,
we did not implement the branch and bounding that they use to improve the runtime,
as it was rather complex to implement and the runtime was not that much of a problem
after all. Remember that the eMIP algorithm does not guarantee to stay within the
provided time budget. Therefore it is sometimes hard to really compare the different
algorithms to each other.

In order to see how well the algorithms approximate the optimal solution for each
problem instance we implemented also a third algorithm, called the optimal algorithm
and it computes, unsurprisingly, the optimal solution. However, due to the NP-hardness
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of the problem the optimal algorithm is not scalable and therefore we are not able
to compute the best solution for any problem instance within a reasonable time. In
fact, in all our benchmarks the maximum allowed runtime of the optimal algorithm
was set to three hours, if that limit was exceeded the algorithm would be aborted and
the benchmarks would proceed with the other algorithms. The optimal algorithm uses
dynamic programming and certain pruning techniques to improve the runtime and thus
we are still able to compute the optimum for small to medium sized problem instances.

5.2 Benchmark Environment

The hardware running the benchmarks is a server machine with 2 Intel Xeon X5550
CPUs, each of them having 4 cores and multi threading enabled, thus resulting in overall
16 virtual cores. The CPU frequency is 2.67GHz. The server has 48GB of main memory
from which 45GB are used for the benchmarking process. Please note that, although the
hardware has multiple cores available, the algorithms are not multi-threaded and thus
cannot fully profit from the existence of multiple cores. The server is running Ubuntu
12.04 server edition and the algorithms were implemented in Java, compiled with javac
version 1.7.0 17. The optimal algorithm to which both algorithms are compared to, was
implemented in C++ and was compiled with gcc version 4.8.1.

The benchmarks are conducted on several input graphs, including artificially created
street networks and real-world cities, like the city of Bolzano (1830 POIs) in northern
Italy. The synthetic networks are especially important because we could manually tweak
every single input parameter, as for instance the size of the network, the number of POIs
and categories, the distribution of the POIs over the map, etc.

Figure 5.1 shows such a synthetic network created for benchmarking only, it consists
of 1521 nodes of which 400 are POIs (the blue colored dots). The POIs are split into
8 different categories with 50 POIs each. The POIs are distributed across the network
using a pareto distribution, which naturally clusters POIs and thus resembles the network
of a city well. The color of the edges indicates the distance between the nodes, where
the color range spans from green (very close) to red (far away). Besides the color, also
the thickness of an edge indicates its length, so in figure 5.1 there are some edges which
are particularly long. The graph diameter is about 90 minutes walking time from one
corner to the opposite one.

5.3 Varying tmax

In the first benchmark we want to evaluate the impact of the time budget tmax on the
runtime and score. We start with tmax = 5400 seconds, i.e. 1.5 hours and slowly but
steadily increase it to 6 hours in steps of half an hour. The other parameters are fixed at
2 categories with 50 POIs and maxk = 8 each, resulting in itineraries of length at most
2 × 8 = 16. The benchmark is repeated with 20 different start and destination points
and the mean for both, runtime and score is taken for each time slot.
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Figure 5.1: Artificial city network with pareto distributed POIs

Figure 5.2 shows how the score increases as we increase tmax. Unfortunately, due
to the high number of 8 max visits per category the optimal solution could only be
computed for tmax up to 2.5 hours. The eMIP algorithm performs generally better than
ARKTIS in terms of the score of the generated solutions. Initially the curves are close
together, but then the eMIP gains a noticeable lead. However, starting from tmax equals
to 4.5 hours both curves flatten out and almost coincide, this is due to the fact that
both algorithms have hit the limit of 16 POIs in total and therefore they cannot improve
further.

Figure 5.3 shows the results of the same benchmark but on a different artificial
network with uniformly distributed POIs. The shape of the curves looks mostly the
same, though the hybrid ARKTIS algorithm beats the eMIP algorithm most of the times.
Also the optimal algorithm can be computed for more problem instances, probably
because in such a network the POIs are not so densely clustered and thus the tourist
has to spent more time walking from POI to POI.

It is also worth to see how well the algorithms exhaust their time budget and figure
5.6 and 5.7 show exactly that for both types of networks. The purple line represents the
time budget tmax and in order to be a valid solution to OPMPC the algorithms have
to stay under that line. The eMIP algorithm, however, constantly uses more time than
allowed, this also explains why it gains such a lead over the hybrid ARKTIS algorithm.
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In figure 5.4 and 5.5 we compare the increase of tmax to the runtime of the algorithms
again on both types of networks. Unsurprisingly the optimal algorithm quickly becomes
very expensive and had to be aborted. The hybrid algorithm in turn has an almost
constant runtime of 100 ms, this means that increasing tmax has almost no impact on
the runtime of the hybrid algorithm. This is due to the fact that the work intensive
parts like sorting the POIs for the knapsack approximation or computing the TSP path
do not depend on tmax. In contrast, the runtime of the eMIP algorithm depends heavily
on the time budget as the depth of the recursion is bound to it. For example in both
figures (5.4 and 5.5) there is a drastic increase in runtime at about tmax equals to 4.5
hours and this is probably caused by the automatic increase of the maximum iteration
depth iter. However, remember that as we already said the eMIP algorithm has not all
performance improvement techniques integrated that Singh et al. described in [9] and
therefore the algorithm could definitely be improved.
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Figure 5.3: tmax to score (uniform)

10

100

1000

10000

100000

1e+06

4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

ru
nt

im
e

(m
s)

tmax (sec)

hybrid ARKTIS
eMIP

optimal

Figure 5.4: tmax to runtime (pareto)

1

10

100

1000

10000

100000

1e+06

4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

ru
nt

im
e

(m
s)

tmax (sec)

hybrid ARKTIS
eMIP

optimal
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Figure 5.7: tmax exhaustion (uniform)

5.4 Varying Number of POIs, n

The next benchmark studies the runtime and score of the algorithms as the number of
POIs, n, is increased. We do so by increasing the number of categories, starting from
1 category up to 8 categories in steps of 1. This corresponds to an increase in n of 50
POIs per step, as each category has 50 POIs. Additionally every category has max visits
set to 2 and tmax is set to 4 hours. To sum up, the first measurement will have k = 1
category with max visits maxk[1] = 2 and n = 50 POIs, whereas the last measurement
has k = 8 categories, with max visits 2 each and n = 400 POIs.

Figure 5.8 compares the number of categories to the runtime of the algorithms.
Similar to the previous benchmark also here ARKTIS is the most efficient one, initially
it has a runtime of ca. 10ms and increases to about 200ms towards to end. Again the
optimal algorithm did not scale and had to be aborted already with n = 100 POIs. The
eMIP algorithm takes already a whole second for the first measurement and increases
steadily until it reaches about 1 minute in the last measurement.

In terms of score both algorithms perform pretty well in the very beginning when
the optimal solution could be still computed (figure 5.9), in fact they even coincide.
Starting from k = 5 categories the ARKTIS algorithm cannot keep pace with eMIP and
loses gradually. The plots, however, do not show that the eMIP algorithm uses in some
measurement again more time than allowed.
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Chapter 6

Related Work

The Orienteering Problem is known under a couple of different names, as for instance
the Selective Traveling Salesman Problem [10], the Generalized Traveling Salesman Prob-
lem or the Bank Robber Problem [11]. The name Orienteering comes originally from a
game with the same name, where the participants have to reach as many checkpoints as
possible in difficult terrain within a given time limit.

A recent survey by Vansteenwegen et al. [12] lists a number of applications for the
Orienteering Problem besides its use for itinerary planning. It was first mentioned in
1984 by Tsiligirides who described a TSP variant where the salesman does not have
enough time to visit all cities and has therefore to carefully choose among them in order
to maximize the number of cities in the final trip. This is similar to our problem setting
in the case where all POIs have the same score and we simply try to visit as many of
them as possible. The OP found also application in all kinds of routing problems where
for example the fuel is a natural constraint on the length of a path.

Since the Orienteering Problem is NP-hard the literature is mainly concerned with
two approaches: on the one hand algorithms to find the optimal solution are of interest,
which apply certain pruning techniques in order to cut the search as well as possible.
Especially algorithms of the branch-and-bound family are very popular. On the other
hand heuristic algorithms are designed that focus on efficiency and try to approximate
the optimal solution as well as possible. The design of an efficient and accurate heuristic
is, however, difficult because of the nature of the problem. Gendreau et al. argue
in [10] that the independence of an element’s profit and its cost makes it difficult to
achieve the optimization goal, because to maximize the score while keeping the path
length as short as possible is often contradictory. Moreover they point out that heuristic
approaches frequently suffer from the same problem. If an element that looks initially
very promising is selected, it can easily happen that it drags the solution far away in the
wrong direction and therefore it becomes difficult to add other elements. If a POI, for
example, is close to the city boundaries but still has a very high score it drags the whole
itinerary away from the city center, even though there are a lot of maybe lower scoring
POIs.

Just recently the concept of submodularity was exploited to design heuristics for the
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Orienteering Problem. Chekuri et al. have published a series of algorithms that provide
theoretic guarantees on the quality of the solution. We have already discussed in great
detail the Recursive Greedy algorithm presented in [3] in chapter 4 and showed how
Singh et al. improved it in [9]. Besides that, Chekuri et al. improved their algorithm
independently and achieved an ε-approximation for the Orienteering Problem in [13].
Their algorithm with an approximation guarantee of (2 + ε) beats the before then best
known approximation guarantee of 3 published in [14]. However, these algorithms are
very theoretic and are unlikely to ever be implemented in the present form.

Both algorithms have in common that they exploit a (2 + ε) approximation for the
minimum-excess problem presented in [15]. Given a weighted graph G together with
start and end nodes s and d, Blum et al. defined the excess of a path to be the difference
between a prize-collecting s − d path and the length of the shortest path from s to d.
The minimum excess problem is in turn, given a quota k find a minimum-excess path
from s to d having a reward of at least k. The reward of a node corresponds to the score
of a POI in our terminology. Blum et al. moreover showed that an approximation to
the minimum-excess problem implies an approximation to the Orienteering problem and
could therefore prove the APX-hardness of the problem. The main idea behind both
algorithms is that a minimum-excess path of length at most tmax with a quota k yields
a solution to the Orienteering problem. However, the quota k corresponds to the total
score of the optimal solution, which is obviously not known in advance. Therefore their
algorithm performs a “guess” on k and if not satisfactory the value is refined, which is
essentially a binary search on k. We instead apply a binary search to find the proper
value for t′max since our cost approximation is not precise enough.

The approach to categorize the elements and let the tourists define the maximum
number of POIs they want to visit per category is novel. It is a natural and easy, yet
efficient additional constraint for the Orienteering Problem applied in the tourism sector,
that helps tourists to filter among the possibly thousands of POIs only the interesting
ones.

38



Chapter 7

Conclusion

Orienteering is a fascinating NP-hard problem, which is, however, not easy to approxi-
mate well. In this paper we have seen that the Orienteering Problem is at its core a TSP
and a Knapsack problem and by merging them together we provided an algorithm that
exploits the concept of submodularity. We tested the algorithm thoroughly on several
different networks, some of them being real-world cities and others being just artificially
created networks. Moreover we implemented a state of the art algorithm, called eMIP,
and compared our algorithm to it. As our benchmarks suggest, our algorithm is efficient
and approximates the optimal solution most of the times very well.

7.1 Future Work

There are a lot of areas where the current algorithm could be further improved and made
more flexible. For instance, one of our simplifying assumptions were that the graph is
undirected, but for real-world networks this is hardly the case as a street network is
a complex system with many peculiarities, e.g. one way roads. Moreover, once we
take different transportation means into account the situation becomes more difficult
as the shortest path between two points depends also on the schedule of the public
transportation means etc.

Clearly POIs have opening hours which we currently do not take into account, but
would be very important once the algorithm is used in a real-world itinerary planning
software. Moreover the score of a POI might be related to the time it is being visited,
because a restaurant at 9 am is less interesting for most people than at noon.

One could think about the roots as being a “template” for an itinerary and the
users could then choose the one template that suits them most. For example, one such
template could have culturally interesting POIs in the morning, a restaurant around
noon and some entertainment related POIs in the afternoon.

Clearly there are numerous improvement ideas, some of them are more interesting
from an algorithmic point of view and others are more important in a real-world usage
of the system. But this shows, that the research in such systems has a very practical
application and can be useful for many people.
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