

Thesis:

Interactive Computat ion of
Isochrones

Bache lo r in Computer Sc ience and Engineer ing

Student : Benjamin Gruber
Student No. : 9139
Thesis Supervisor: Prof. Johann Gamper

 1

Table of Content

Table of Content___ 1

Abstract ___ 2

1. Introduction __ 3

1.1 Aim__ 4

1.2 Structure of the Thesis ___ 4

2. The ISOGA Project __ 5

2.1 Functions of ISOGA___ 5

2.2 Technical Overview ___ 7

2.2.1 Algorithm to Compute Isochrones __ 8

3. A Slider Mechanism to Browse Isochrones __ 9

3.1 Computing Multiple Isochrones at once ___ 9

3.2 Slider Mechanism__ 12

3.3 Running Example__ 17

4. Future Possibilities and Changes ___ 20

5. Conclusion __ 22

References __ 23

Appendix – How to Compile the Project ___ 24

Referenced and Used Software __ 26

 2

Abstract

An isochrone is according to the Babylon online dictionary “a line drawn on a map connecting
points at which something occurs at the same time”. The Free University of Bozen-Bolzano
hosts a project about isochrones, called ISOGA (Isochrones for Geo-Spatial Analysis), to
calculate the reachability of points on a map within a specific time frame. However, in its
current version ISOGA lacks advanced interactivity. If the user of the program just wants to
compute one explicit isochrone, he or she can simply input the required parameters and press
“Compute”. But as soon as a more advanced interaction with the user is needed, it gets arduous:
If somebody needs, for example, to compute many similar isochrones at once, there is no other
way than to insert the variables for the first computation, press compute, insert the variables for
the second computation, press compute and so on.

The present thesis aims to square up this problem by making isochrone queries more
flexible and interactive. More specifically, this means that by inserting a slider mechanism the
user will be allowed to alter values of the isochrone computation in an easier and more intuitive
way: instead of reinserting or retyping numbers, it will now be possible to alter the size of an
isochrone and its arrival respectively starting time by simply moving a slider. The new slider
will be integrated into the existing program so that the user can use its preferred way of
interaction, either the new or the old method. Furthermore, the problem of the single
computation of an isochrone is also tried to be handled by inserting a mechanism, which allows
the computation of multiple isochrones at once. It will be feasible to compute many isochrones
at the beginning and refer to the received results, thus avoiding further calculations in some
cases. The new method will use the already existing algorithms in an iterative way, which
allows including the added functions with a minimal interference with the existing code.

 3

1. Introduction

At first someone may ask what exactly an isochrone is, and as there are smarter people than me
I will take their definition. An isochrone or, more precisely, an isochrone map is

“A line drawn on a map connecting points at which something occurs at the same time”
~Babylon online dictionary

We basically have one point in a field and can conclude through the use of isochrones

which other points on the same field are exactly reachable in a fixed amount of time. Initially
this sounds not very useful, since we usually want to know all the places where we can go in a
fixed time and not only the places that we can reach in exactly the given time. But since we can
conclude through the isochrone map which places are reachable precisely in the given interval
and below, isochrones are – although highly CPU-intensive - extremely useful in the field of
reachability analysis and route planning (in a simple way reachable points by one kind of
transportation like feet, bike or car with a fixed amount of speed, or in a more complex way by
using more transportation modes). Besides that, they are also used, for example, in the field of
hydrology to measure the time water takes to reach a specific target like a lake or a reservoir
when constant rain falls.

If we would have a constant speed to reach every point on an imaginary map, we would
not need any computer scientists’ help, since we could simply draw a circle around the point of
origin and we would have exactly drawn all points that are reachable in a fixed amount of time.
In a real world application like, for example, public conveyance, the speed could change heavily
between more points if a point is reachable by foot, by bus or by train and some points may not
even be reachable at all, such as the middle of a sea, so that the computation of isochrones
becomes more and more complicated.

With all this given different information it is the algorithms’ work to compute the
fastest way by including all means of transportation. For example, the algorithm has to know
how fast some points can be reached with all other possible means of transportation, if it could
be reached by different means faster, how this would change if we increase the time, etc.

If we have only small maps with only few different options, the used algorithm seems
not as important as it is, since a simple brute force technique (trying out all different paths from
a given starting point) can give back the result in a short amount of time through the enormous
power of today’s computers, and even more their server counter parts. If we instead consider
huge maps like, for example, the public transport network of a metropolitan area and increase
the time, an efficient algorithm is critical for a fast and successful execution of this task. One
algorithm to compute isochrones is currently1 running at the Free University of Bozen-Bolzano,
which has been developed in the ISOGA (Isochrones for Geo-Spatial Analysis) project [1]. The
ISOGA project is able to compute the reachable points in a fixed amount of time by using bus
or feet as transportation ways on a map of Bolzano, South Tyrol, Italy and San Francisco. This
can be done by using three different algorithms and entering multiple parameters.

Of course this is not the only paper which handled isochrones or more specifically the
ISOGA project. Gamper et al. present an efficient and scalable isochrone-computing algorithm,

1 May/June 2014

 4

called MINEX [2], which keeps the memory requirement low by loading only relevant portions
of the network into the RAM. Gamper et al. also formally define isochrones for multimodal
networks with different transportation modes [3]. For their computations, which were also
studied by Bauer et al. [4], they used the same MINEX algorithm which was described before.
Marciuska and Gamper elaborate how it is possible to determine the place of objects inside an
isochrone [5]. Furthermore Innerebner et al. deal with how to design a web extension of a
spatio-temporal data base management system like in the project which is mentioned in this
paper [6].

As an alternative to the ISOGA-isochrone-project, SimpleFleet2 can be shortly
mentioned, which focuses on spatio-temporal tracking. Efentakis et al. describe its isochrone
computation algorithm with useful data to present its impact on live-traffic assessment [7].

1.1 Aim

The overall aim of this thesis is to make the computation of isochrones more interactive and
user-friendly. This will be done by showing how the university’s isochrone project is designed
and how we extended it with a slider mechanism to allow a user to compute a range of
isochrones without specifying the input parameters for each individual isochrones. We analyse
and discuss also how the computation of isochrones can be improved in the future by adding
new elements or “remaking” the project as a lighter version with a minimal set of absolutely
needed function, and possibly using new programming techniques that were not available when
the project originally started. Generally the main focus will be on my own expansions of the
isochrone project and how they were realized.

1.2 Structure of the Thesis

The thesis is structured into five chapters as follows:

 Chapter 1 introduces the reader to the concept of isochrones and gives a projection of
what the thesis will consist of and what the thesis aims for.

 Chapter 2 describes the existing ISOGA isochrone project, which forms the basis for
the described expansions of this paper and also its technical background.

 Chapter 3 – the main part of this work – describes the newly made enhancements. It
will consist of a description of the new additions (adding a slider mechanism,
computing multiple isochrones at once), how this was done from a technical point of
view and a running example.

 Chapter 4 gives an overview about how the isochrone project can be further expanded
and improved.

 Chapter 5 gives final conclusions about what was achieved in this thesis.
 The appendix shows a short listing of which programs were used during this work and

what the figures’ sources are.

2 SimpleFleet project web page: http://www.simplefleet.eu/

 5

2. The ISOGA Project

The existing project that I extended during the work of my thesis was ISOGA, a system for
geospatial analysis using isochrones.

There were mainly two reasons that let me choose this project for my BSc thesis:
Firstly, it is Open Source, which according to the Open Source Initiative’s Open Source
Definition3 [sic!] means that it can be freely distributed as long as it retains its original Open
Source license and is given with the application’s source code. Secondly, it was made by
someone within the Free University of Bozen-Bolzano, so that I could easily reach competent
persons for help.

The target of the original isochrone project was to provide end-users a way to compute
which parts they can reach from a given point on a map (since the Google Maps API is used to
compute isochrones the available maps can be expanded by using other maps as long the
necessary information like bus routes and stations are given) by only using public transportation
systems (buses in this case) and walking. This is, for example, extremely useful for people who
know that they are at some point at a given time and want to know if they can reach another
point in a given interval, without effectively trying it by hard. This was done as a web project,
so that the involved person could get the information at any given time as long as he/she has
internet access, without the need of installing any proprietary program. Writing it as a web
application allows the developer also to easily update needed information, such as changes in
the time table on-the-fly without even being noticed by the user. Even more, it ensures that
every end-user has always the latest version of the application, which is critical for such
purposes, as the user does not want to get the time of a bus connection, which does no longer
exist.

2.1 Functions of ISOGA

Although there is more functionality in the original project, such as executing SQL-commands
based on the returned isochrone, here I will limit the description of the existing project to the
basic elements.

3 Open Source Definition available at http://opensource.org/docs/osd

 6

Figure 2.1: Isochrone application (before changes were made) running on a local host

In the easiest way possible, the user simply drags the black point, from which the
isochrone calculation will start, to its desired starting point and clicks the “Compute”-button.
Then, the program starts to calculate the isochrone, zooms the map section so that the whole
isochrone graph can be seen and draws it finally.

In reality in nearly all cases the user will not be satisfied by only referring to the given
standard values and wants to input own parameters. While some parameters like “Algorithm”
(chosen algorithm to calculate the isochrone; either MineX, MrneX or MDijkstra), “Query
Category” (parameters for queries based on the drawn isochrone), “T-Mode”, “Enclosure”
(how the isochrone will be displayed; either with surface filled or a buffer), and
“ExpirationMode”, are mostly used by users interested in the technical aspect of isochrones,
some other are interesting for every possible user These are:

 Dataset: the user is able to choose between a map of Bozen-Bolzano [BZ] South-Tyrol
[ST], Italy [IT] or San Francisco [SF].

 Dmax: the user can choose the length of the maximal time interval of the isochrone.
 Date/Time: the user can choose the day and the hour for which he/she wants to

calculate the isochrone; this can be especially useful for planning holiday trips, since
then there are typically different schedules for the public transportation system than on
regular working days.

 Speed: the user can alter its walking speed used for the calculation.

 7

 Direction: the user can choose the direction, i.e., whether he/she wants, to arrive at the
given query point or to start from the query point.

Besides these functions provided in the base version of the application, in this theses

new functionalities were added. More specifically, I added the parameters Time interval,
interval for the size of the isochrone, maximal time and isochrone size, which are described
in detail more detail in chapter three.

2.2 Technical Overview

As mentioned before, the isochrone program was written as web application, so that it is easily
accessible from everywhere, provided an internet connection and web browser. This also means
that – like most complex web applications – it consists of a 3-tier-architecture:

 An interactive HTML page, which enables the user to input the parameters through
JavaScript (JS) and its extension Ext JS.

 A Java application running on the web server, which calculates the isochrone and the
appropriate graphical representation on the map.

 A PostgreSQL database, which stores the data that is necessary to compute
isochrones.

All three parts of the application can also be locally run on the own computer, so that

any code changes do not directly influence the “official” web representation. Locally in this
case is not the same as offline, since it still needs a connection to the internet to grab the
necessary maps of Google Maps.

Basically we have the following workflow every time the application is used: When the
end-user accesses the web application, the interface to put in all needed parameters and a
standard section of the map is shown. If the user now moves the cursor-point (corresponds to
the arrival or starting point of the isochrone request) and presses the Compute-button, the
application (i.e., the Java application in the background) connects to the PostgreSQL database,
tries to get the required data and computes the isochrone either once or multiple times. The
progress of the whole calculation is shown as a status notification. When calculation is finished,
the program sends an acknowledgement and draws the isochrone on the map. If more than one
isochrone were computed, it will automatically show the first one.
If the user has computed at least one time in its current session an isochrone, he or she can
afterwards also easily compute a new isochrone by simply dragging one of the two sliders,
where one corresponds to the starting/arrival time and the other to the isochrone size (the time in
minutes a transport can maximally take). The program will then automatically calculate the
wished isochrone and show it.

Like in the previous chapter, I will only shortly describe different technical aspects and
not go too much into detail as I used only a small portion of them in my own extension.

As a pure HTML web page would be too static, the application uses in its web interface
heavily the JavaScript-extension Ext JS. JavaScript alone is used in nearly all modern
homepages to make interaction with the user possible. Ext JS furthermore is an own JavaScript

 8

library which by inserting it into the project allows for even more customization and easy GUI
building. This can be seen for example in the menu of the program, where the different elements
correspond to different Ext JS forms like text labels, text and date fields, sliders or combo
boxes.

For transporting asynchronous messages (e.g., subscribe the isochrone service and wait
for the request) between the web server and the client, the application additionally uses the
Bayeux protocol implemented into the cometD library. This allows for low latency requests.

When the request is then delivered the program asks for the necessary geospatial data
from the corresponding GeoServer. This open source server then processes the data it gets from
the corresponding PostgreSQL database server. The PostgreSQL database itself includes the
PostGIS extension, so that geographic objects could be stored.

Although not directly linked with the execution of the program, it should also be
mentioned that Apache Maven – a build tool – is used for automating the compile and build
process for developers of the project. To compile a project (like the described one here in this
thesis document) in Linux, many different libraries are required. Often it is difficult and very
time-consuming to install all the libraries from which a project is dependent manually. The
Maven (abbreviated also mvn) build tool describes these dependencies and allows for the
automatic installation (and if necessary download) of them.

2.2.1 Algorithm to Compute Isochrones

There are three different algorithms to compute isochrones, which are included in the ISOGA
application. They are called the MineX algorithm, the MrneX algorithm and the MDijkstra
algorithm.

 The MDijkstra variant uses – as its name assumes – the Dijkstra algorithm (a
BestFirstSearch variation), where immediate results are stored in RAM.

 The MineX variant is an “upgrade” of the MDijkstra algorithm. The main difference to
MDijkstra is that it is a disk-based algorithm, which requires only a small amount of
RAM.

 The MrneX is a further “evolution” of the previous algorithms. Instead of reading
individual junctions, each database access retrieves a range-query. By doing so, the
number of database accesses could be significantly reduced.

 9

3. A Slider Mechanism to Browse Isochrones

After the brief summary of what the original ISOGA project consists of and a short analysis of
some of its technical backgrounds, I will now focus on the expansions that I implemented
during my thesis project. In particular, I will describe all the implemented features and how they
were implemented. This will be done together with some effective code snippets to further make
them understandable.

Figure 3.1: The isochrone application with the newly added expansions running on a local host

3.1 Computing Multiple Isochrones at once

The first extension concerns the computation of multiple isochrones at once. We did not
develop a new algorithm from scratch, but re-used one of the existing isochrone algorithms to
compute several isochrones in an iterative manner.

With the possibility of running multiple isochrone calculations one after another without
additional user interaction, it is also possible to store the results of the computed isochrones.

 10

With this information it is then in a later step doable to not recompute it, but directly gain access
to the result and getting in this way the isochrones faster.

In practice this is done by letting the user initially insert some additional starting
parameters. The main values used for this computation are:

 Time: the starting/arrival time of the first isochrone to be computed.
 Dmax: the isochrone size in minutes to be computed.
 Time interval: the interval between the different starting/arrival time of the isochrones.

After the user has inserted the required data (or does not change the initial standard

values) and pressed the “Compute”-button, the method first checks how many isochrones need
to be computed. This is done by transforming the starting/arrival time into a numerical value
and then testing how many times it is possible to add the “time interval”-value before reaching
the numerical value for midnight-time. The amount of needed isochrone calculations is then
stored in an own variable. Midnight was chosen as a maximum to avoid any double calculations
or any changes in the date.

The next step in the process is to compute the multiple isochrones. The parameters for
the first computed isochrone are the values initially given by the user; the next isochrones differ
from the first one by the starting/arriving time, which logically will increment in each step by
the user-defined value.

During the whole process, a small status bar will appear at the top of the screen, which
informs the user about the already processed isochrones. After everything has been properly
calculated, the user receives a “Finished!”-message in the same status bar and the first isochrone
of all the computed ones will be drawn on the map.

If the user later on wants to check out the same isochrone with one of the
(pre)calculated parameters, he or she can simply do this by moving the “Times”-slider.

Technically, this feature is implemented via the following code sample:

1: // subscribes an isochrone request
2: $.cometd.subscribe('/service/isochrones', function(message) {
3: var start = Date.now();
4: var result = jQuery.parseJSON(message.data);

5: LOG_PARSING_TIME += Date.now() - start;

6: if (result) {
7: if (result.status == "processing" && firstInvocation) {
8: var prctg = result.processed;
9: progressBar.updateProgress(prctg, prctg * 100 + "%

processed");
10: } else if (result.status == "inserting" && firstInvocation)

{
11: progressBar.updateText("Inserting Isochrone Nr. " +

(currentATidx+1) + " of " + arrivalTimes.length);
12: } else if (result.status == "coveraging" &&

firstInvocation) {

 11

13: progressBar.updateText("Coveraging Isochrone Nr. " +
(currentATidx+1) + " of " + arrivalTimes.length);

14: } else if (result.status == "finished" && firstInvocation)
{

15: results.push(result);
16: if (currentATidx+1 == arrivalTimes.length) {
17: progressBar.updateProgress(1, "Finished");
18: currentATidx = 0;
19: destroyDynamicLayers();
20: createResultLayers(extractFormParameters(),

results[currentATidx]);
21: firstInvocation = false;

22: }
23: else {

24: currentATidx = currentATidx + 1;
25: firstInvocation = true;
26: $.cometd.publish('/service/isochrones',

extractFormParameters());
27: }
28: }
29: }
30: LOG_PARSING_TIME += Date.now() - start;
31: });

32: // publishes the query
33: $.cometd.publish('/service/isochrones', queryParams);

Basically, we first define the service we want to subscribe to. Here this is done by
$.cometd.subscribe ('/service/isochrones', function(message){..}
and a following description of the function to be executed. /service/isochrones is given
as the unique identifier of this specific function, so that we can afterwards publish it. The
service itself is defined on another code page, exactly the IsochroneService.java file.

For this short code snippet I made simple changes to an already existing service for
computing single isochrones, so that I could reuse code.

At any state after the isochrone service is started, it has an assigned result parameter.
Depending on this “result”-variable it is possible to execute different tasks like showing the user
at which step the execution actually is.

As it is not easily possible to stop a CometD service, in case of the isochrone service, it
is needed to assign a variable, which marks that a specific iteration has already finished. This
variable then holds the information if something was already processed. It was realized via the
simple binary parameter firstInvocation.

If the current invocation is effectively in its first run, it is always shown that it is in this
exact step and also in an own status bar, which is displayed at the top of the screen:

 12

progressBar.updateText ("Coveraging Isochrone Nr. " +
(currentATidx+1) + " of " + arrivalTimes.length);

The arrivalTimes.length is hereby the number of isochrones to be computed
and was stored when the slider with all different times was generated.

After the computation of a single isochrone has finished, the result.status of the
service returns finished, and the single result is pushed into the results array. Afterwards
there are two different ways to proceed, depending on whether it is the last isochrone to be
computed or that additional isochrones have still to be computed.

 In the first case (last isochrone in a multiple isochrone computation), the status bar
shows that the process has finished (progressBar.updateProgress(1,
"Finished");) and that the first isochrone will be drawn on the screen by the
following command: createResultLayers(extractFormParameters(),
results[currentATidx]).

 In the second case (additional isochrones have to be computed), the current index
increases by one (currentATidx = currentATidx + 1;) and the
computation for the next isochrone is requested by calling
$.cometd.publish('/service/isochrones',
extractFormParameters()). This step is repeated as long as there are still
additional isochrones to be computed.

After the isochrone service has been defined the service has to be published and

consequently be requested for the first time by the above mentioned $.cometd.publish -
command.

3.2 Slider Mechanism

The second extension to make the ISOGA application more user-friendly was to implement a
simple slider mechanism. These sliders allow the user to change input parameters easily by only
moving a slider to the left or to the right. Otherwise he or she would have to retype the
parameters and “click” the “Compute”-button. While this sounds not like much, it still
decrements the amount of clicks and movements needed in the long term.

In the program itself it was implemented by adding two new Ext JS slider elements and
additional parameters that can be given by the user. Effectively used for the sliders were at one
hand all the results given by the previous computation of multiple isochrones and at the other
hand the “Iso. size interval”-text box-value. This parameter determines how much the
isochrone size will change if the user alters the slider by one unit.

The two sliders are defined as following:

 The “Times:”- slider determines the starting/arrival time of the isochrone to be
computed. Hence, it takes practically the same role as the “Time:”-text field, only in a
more comfortable way for the user.

 13

 The “Isochrone size:”-slider determines the size of the isochrone to be computed. As
before, it takes the role of an already existing parameter, in this case the “Dmax:”-text
box.

Both sliders will automatically show their current values if the user clicks on one of it
(and probably moves it). Technically, this was done by a simple code variant of the standard
slider tip.

1: var tip2 = new Ext.slider.Tip({
2: getText: function(thumb) {
3: var dmax = queryPanel.find('name', ID_DMAX)[0].getValue();
4: var isoSizeInterval = queryPanel.find('name',

ID_ISO_SIZE_INTERVAL)[0].getValue();
5: return String.format('{0} minutes', dmax +

(thumb.value)*isoSizeInterval);
6: }
7: });

This code is then linked by

1: plugins : tip2,

in the Ext JS – slider item definition.

Figure 3.2: „Times“ slider with corresponding Tip

Figure 3.3: „Isochrone Size“ slider with corresponding Tip

 14

The sliders take as input all the times computed in the last step described in chapter 3.1.
Additionally, it also considers the values from both sliders themselves. If the user changes one
of the sliders, the execution of the program can follow in two different ways:

 Case 1: the first slider is in any possible legal position and the second one remains at
the starting position. This means that the user wants exactly one of the isochrones that
were already computed. In this case, the program gains the result of the computation
from the temporarily stored array and goes directly to the step of drawing the desired
isochrone.

 Case 2: the first slider is in any possible legal position and the second one is not at its
starting position. In this case, the user wants a slightly altered isochrone computation in
comparison to the ones previously computed. The application will then directly
compute that single isochrone and show it to the user.

Technically, the slider (as an Ext JS element) was implemented as follows:

1: queryPanel.items.items[0].add({
2: fieldLabel : 'Isochrone size',
3: xtype : 'slider',
4: name : ID_ISOCHRONE_SIZE,
5: id : ID_ISOCHRONE_SIZE,
6: width : 130,
7: increment : 1,
8: minValue : 0,
9: maxValue : 5
10: plugins : tip2,
11: listeners : {
12: dragend : {
13: fn:function() {
14: var queryParams = extractFormParameters();
15: var localDmax = queryPanel.find('name',

ID_DMAX)[0].getValue();
16: var isoSizeInterval = queryPanel.find('name',

ID_ISO_SIZE_INTERVAL)[0].getValue();
17: queryParams.dmax = localDmax + queryPanel.find('name',

ID_ISOCHRONE_SIZE)[0].getValue() * isoSizeInterval;
18: currentATidx = queryPanel.find('name',

ID_ARRIVAL_TIMES)[0].getValue();
19: computeIsochrone(queryParams);

20: }
21: }
22: }
23: });

24: queryPanel.items.items[0].doLayout();

 15

“queryPanel.items.items[0].add adds a new item to the Ext JS built menu

(or panel) on the right of the screen. This item is defined by the content written in the following
curved brackets, whereas each element has the following role:

The fieldLabel defines the text (label) written to the left of the menu item.
Although it is not relevant from a technical side, it is useful for the user since it allows logically
assigning a parameter to some specific functions.

The xtype defines the type of the Ext JS item that is needed. Some of the types
needed in the program were:

 "combo" for a list of elements (as with the algorithm or Dataset field);
 "numberfield"/"datefield" and "timefield" respectively to show a text field with a

limited amount of possible content (in this case only numbers, dates or times);
 "checkbox";
 "slider" (as used here).

The name and the id define a unique identifier of the specific item. This is essentially

useful when exactly this item is needed later on. Afterwards it is possible to gain access to it by
a simple name reference (e.g., queryPanel.find ('name', ID_ISOCHRONE_SIZE).

The value width defines the width [sic!] of the element in pixels. Sometimes this
information is not needed as specific elements like a check box have no width.

The values minValue and maxValue define the minimal and the maximal internal
value of the element’s value. Besides that the value increment shows the amount of
alteration of this value for one movement to the left or to the right. In our specific example, we
can see that the slider has allowed (internal) values from zero to five and that one change
increases or decreases the value by 1. The value shown to the user in the tip can be totally
independent from it, and can be freely assigned in the code.

The plugins parameter allows for a further customization of the given element. In
this case by a custom tip (appears when the slider is clicked) which was already described
before.

While the previous code fragments describe the layout/design of the item, the real
functional part is written inside the listeners part. In this section, it is possible to assign
different listener4 to the item and give them different meanings. After the “listener” is aware that
the specific event happened (in this case the dragend5), the specified function will be
executed.

Firstly, most needed parameters for a isochrone computation are directly read out of the
form by the extractFormParameters() – function. Some others instead have to be read
explicitly and shortly computed like the dmax6-parameter, which is combined by the base dmax
value and the isochrone base size multiplied by the internal isochrone size interval value.

After all information for the computation was gained, the calculation is started by the
computeIsochrone(queryParams) function.

4 An event listener catches when an event happens and starts then specified commands
5 The dragend listener is activated when the movement (the “drag”) of the slider ends
6 The dmax defines the isochrone size in minutes (already mentioned in chapter 3.2.1).

 16

After the item is defined, the layout of the page has to be refreshed. This is done by the
doLayout()-command.

While this code example shows effectively the code of the “Isochrone size”-slider, it
does not differ that much from the “Times:”-slider. The main difference to the “Times:”-slider
is the function inside the listener-element:

1: listeners : {
2: dragend : {
3: fn:function() {
4: currentATidx = queryPanel.find('name',

ID_ARRIVAL_TIMES)[0].getValue();
5: destroyDynamicLayers();
6: if (queryPanel.find('name',

ID_ISOCHRONE_SIZE)[0].getValue() == 0)
7: createResultLayers (extractFormParameters(),

results[currentATidx]);
8: else {
9: var queryParams = extractFormParameters();
10: var localDmax = queryPanel.find('name',

ID_DMAX)[0].getValue();
11: queryParams.dmax = (queryPanel.find ('name',

ID_ISOCHRONE_SIZE)[0].getValue()+1)*localDmax;
12: currentATidx = queryPanel.find('name',

ID_ARRIVAL_TIMES)[0].getValue();
13: computeIsochrone(queryParams);
14: }
15: }

The big difference to the previous example is that this slider function includes a check if
the isochrone was already computed before or not. This can be the case if exactly the wanted
one was calculated during the computation of multiple isochrones. If this is indeed the case, the
client has directly access to this isochrone and can immediately start to render it.

Technically, this is done by first checking if the other slider’s internal value is zero,
which is equivalent to its starting value. This is realized by accessing a simple if-condition:

if (queryPanel.find('name',
ID_ISOCHRONE_SIZE)[0].getValue() == 0)

If [sic!] the result is positive, the application will instantly call the
methodcreateResultLayers (extractFormParameters(),
results[currentATidx]) with the previously computed result and parameters, which
will draw the isochrone layer without intermediate steps.

If this is not the case, all needed parameters are read, and the isochrone has to be
computed before it is automatically drawn. This is precisely the same as within the first slider.

 17

3.3 Running Example

To better illustrate the flow of events in the application, the following short chapter shows a
running example.

Figure 3.4: the application currently computing isochrones

First of all, we need some starting parameters. While we could simply leave all values at
their starting position, we change some of them to show differences. Although every point on
the right “side bar” of the program is modifiable, it is only needed to adjust some of the most
important of them for a basic test run. These are (marked by (1) in the figure):

 Dmax: Set to 5 (minutes)
 Time: Set to 21:00
 Time interval: Set to 55 (minutes)
 Iso. (isochrone) size interval: Set to 5 (minutes)

 18

Besides that, it is worth mentioning that before the first computation the two sliders
have no specified function because they have at that moment no data to work with.

After we put in the specified values, there are two ways to compute multiple isochrones.
Either we drag the “star” on the map to our point of interest from which we want the isochrone
to start or leave it where it is and simply press on the “Compute”-button (marked by (2) in the
figure).

In both cases we will notice that a status bar will appear at the top of our browser
window, showing some information of the current status of the operation (marked by (3) in the
figure). First of all, it will show at which point of the current isochrone computation, but also at
which isochrone number from how many at all it is. In our case when the first time was set to be
21:00 and the time interval between the different isochrone starting times was set to be 55
minutes it will compute 4 isochrones, namely 21:00, 21:55, 22:50 and 23:45. To avoid endless
computation, it will end when the time of midnight is reached. In some cases this will also mean
that only one isochrone will be computed at all (e.g. time: 23:00 and time interval: 65 minutes).

Figure 3.5: the application has finished its computation

After the computation has finished (shown logically by a “Finished” in the very same

status bar; marked by (1) in the second figure) the first computed isochrone will be drawn on the
map. Now also the sliders have a function.

 19

The first slider (the “Times:” slider; marked by (2) in the second figure) allows to
change the starting time of an isochrone in an easy way by simply dragging it. If the isochrone
size has still the starting value it will read the data from the previously computed step and show
it directly on the map without computing it once more.

If we also move the second slider (the “Isochrone size:”-slider, marked by (3) in the
second figure), we can as easily change the size of the isochrone. This is done by those steps
that we previously described with the “Iso. size interval”-parameter (in our case 5 minutes): 5,
10, 15, 20, 25 and 30 minutes. A movement of this slider will let the application compute only
the specifically needed isochrone and draw them afterwards.

If it would be needed to insert new values, we could simply press “Compute” or drag
the “star” again, and it would overwrite the old computed values.

 20

4. Future Possibilities and Changes

When someone works with an existing project (in this case the ISOGA project) and wants to
improve it, it is only logical to think about what can be further done to expand it. This chapter
will deal with this question and give proposals of what can be done in the future. These points
can then be further elaborated and probably enhanced to a separate project.

Nevertheless, first of all I would like to mention that of course the ISOGA project has
also many portions that are – according to my opinion – already implemented in a very good
way and do not need much further changes. These are, for example, the functionality (there are
no main parameters which aren’t adjustable) or the presentation (all functions are easily
accessible within a graphical user interface). But this chapter instead will focus on these parts
that can still be improved.

Two points that – in my opinion - are quite interesting for future work are:

 a better reference to mobile devices (mainly smartphones);
 a rebuild of the code and the user interface and to make it slimmer.

As it is possible to see from the figures of the application, it is already fulfilled with

possible parameters and user changeable values. This on one hand gives the user a wide range
of possibilities to use the program exactly like he or she wants to. On the other hand, however, it
also blows up the interface, so that not even all options can be seen on one screen. This effect
gets even worse on mobile devices like smaller smartphones, were the screen is smaller and the
interactive elements have to be displayed bigger to be easily touchable. These devices are of a
special importance as many people would probably like to access route planning software not
only at home, but at any possible location with an internet connection. A possible solution could
be to only show a small amount of base parameters for the user and then to optionally allow the
user to expand the list of extended features. In this case a redesign of the user interface would
also be easier since not all parameters would have to be placed in a single window.

As smartphones gain more and more market share7, it could also be important to revise
the used algorithm and to adapt it to mobile devices. While the currently used variants all
either store temporary results in a devices’ memory (e.g. the MDijkstra algorithm) or disk (e.g.
the MineX algorithm), it could be a possible improvement to store these on a web server. This
would drastically reduce the foot print on the device but also lead to further costs as probably
there would now be a need for (always available) web servers.

An improvement which would not be only beneficial for the user of mobile devices
would be the implementation of an internal help system. As the application at the moment has
so many different functionalities, it is often not clearly visible, which parameter has which
effect. This problem could, for example, be handled by a helping function, which would give a
short explanation for the different parameters. The main work that has to be done here would
consist of the planning of how to implement it so that it does not overfill the already
“overfilled” application.

7 According to a survey from Bitkom in 2012 every third person in germany has a smartphone. [
http://www.bitkom.org/de/presse/64026_71854.aspx]

 21

While the previous statements focused on “outer” aspects of the application, a possible
future work could also be a rewriting of the existing code or, in an even more abrupt way, a
complete new application with the same (or similar) features but a better structured code. This
would have to be done because the existing code already got that big that it is not easy doable to
add further changes. To arrange the code and put it up in a better structured way could even be
more work than a complete rework because to do the former the programmer has to have insight
into every little detail of the code and possible side effects.

Another possible improvement in the technique field would be a modernization of the
used libraries. Ext JS is heavily used in the application, but in it’s now outdated version 3. The
4th version has included new functionalities especially for touch devices, which would be
therefore predestined for an adaption for mobile devices. While this sounds like a slightly easier
improvement, it is not. Through the circumstance that Ext JS 4 has much new functionality it is
not backwards compatible with Ext JS 3. So it would have to be evaluated if the work of
(possible) rewriting of many code fragments is the new functions worth.

 22

5. Conclusion

In this thesis I introduced a way to compute isochrones in a more interactive and user-friendly
way than it was possible before. We begun by briefly introducing the concept of isochrones (“a
line drawn on a map connecting points at which something occurs at the same time”) as well as
providing short overview of the ISOGA project, which uses isochrones to conduct geospatial
analyses. Then, we introduced to extensions to the existing ISOGA application. First, a slider
mechanism was added to the program, so that it is now possible to alter specific values for the
computation of isochrones by a simple movement of a slider instead of a reinsertion of values
and bugging repetitions of known steps. This permitted users to start the computation of similar
isochrones swifter. Second, the possibility to calculate multiple isochrones at once was
introduced. With this, the user (in specific cases) no longer needs to wait for the computation of
the desired isochrone, but instead can be directly linked to the temporarily stored previous
results. This allowed rendering the graphical representation of isochrones in a much faster way.

In a further attempt to ease the user’s way not only to work but also to code with the
ISOGA application, the appendix lists explains and lists all programs that were needed for the
development.

While the main target of the thesis was achieved (i.e., making the application easier for
the user to interact with), the concept could very well be further expanded to make the program
even more user-friendly. Some directions for future work were mentioned in the chapter of
future possibilities and changes. Some other extensions cannot be recognized today through the
everlasting (r)evolution of technologies. A program may never be without flaws, but each
improvement let us go nearer to that perfect status we want to achieve.

 23

References

[1] M.Innerebner, and M.H. Boehlen, and J. Gamper. ISOGA: a System for Geographical
Reachability Analysis Enhanced with Statistics. In Proc. of W2GIS-132, pages 9, April
3-5, 2013, Banff, Alberta, Canada.

[2] J. Gamper, and M.H. Boehlen, and M.Innerebner. Scalable Computation of Isochrones
with Network Expiration. In Proc. of SSDBM-12, pages 526-543, June 25-27, 2012,
Chania, Crete, Greece.

[3] J. Gamper, and M.H. Boehlen, and W. Cometti and M.Innerebner. Defining Isochrones
in Multimodal Spatial Networks. In Proc. of CIKM-11, pages 2381-2384, October 24-
28, 2011, Glasgow, Scotland.

[4] V. Bauer, J. Gamper, R. Loperfido, S. Profanter, S. Putzer, and I. Timko. Computing
isochrones in multi-modal, schedule-based transport networks (Demo paper). In Proc.
of ACMGIS-08, pages 1-2, November 5-7, 2008, Irvine, CA, USA.

[5] S. Marciuska and J. Gamper. The Allocation of Dynamic Objects Within an Isochrone.
In Proc. of ADBIS-10, pages 392-405, September 20-24, 2010, Novi Sad,Serbia.

[6] M.Innerebner, M.H. Boehlen, and I. Timko. A web-enabled extension of a spatio-
temporal DBMS. In .ACMGIS-07, pages 34-41., November 7-9, 2007, Seattle,
Washington, USA.

[7] Alexandros Efentakis, Nikos Grivas, George Lamprianidis, Georg Magenschab and
Dieter Pfoser: Isochrones, Traffic and DEMOgraphics. (Demo paper)
SIGSPATIAL/GIS 2013.

 24

Appendix – How to Compile the Project

The biggest (initial) problem in working with the ISOGA project was not the code changes
themselves but to make the application run. To avoid (or at least reduce) such obstacles for
future contributors, I would like to add a small explanation of how to compile and start it. The
text itself was mainly taken from the project’s “readme” text file and was supplemented with
further explanations by my own.

First of all to develop and work with this project, specific tools and/or libraries are
needed, without them it is not possible to even start the application locally. The necessary ones
are

 Linux (tested with Ubuntu 12.04 LTS8)
 Java SDK9 (at least version 7 or higher)
 Apache Maven (mvn)
 GeoServer
 PostgreSQL data base with PostGIS

After all these programs are installed they need to be configured and to be “feed” with

the correct data. The PostgreSQL database and the GeoServer instance have to be arranged
according to the config.xml – file found in the resources folder inside the main and test
directories, so that the project can successfully access them. As a second option it would also be
possible to alter the config.xml – file, so that it would match with the databases’ data. After
these configurations were adapted, the database has to be filled with the data from the following
3 SQL dumps:

 bz_export.sql
 it_export.sql
 sf_export.sql

Also, an additional SQL-command must be executed inside the database, which will

alter or respectively add the droptables function.

1: -- Function: droptables(text, text)

2: -- DROP FUNCTION droptables(text, text);

3: CREATE OR REPLACE FUNCTION droptables(_schema text,

_parttionbase text)
4: RETURNS void AS
5: $BODY$
6: DECLARE

8 Ubuntu can be downloaded from http://www.ubuntu.com
9 The current Java SDK can be downloaded from http://www.oracle.com/technetwork/java/

 25

7: row record;
8: BEGIN
9: FOR row IN
10: SELECT
11: table_schema,
12: table_name
13: FROM
14: information_schema.tables
15: WHERE
16: table_type = 'BASE TABLE'
17: AND
18: table_schema = _schema
19: AND
20: table_name ILIKE (_parttionbase || '%')
21: LOOP
22: EXECUTE 'DROP TABLE ' ||

quote_ident(row.table_schema) || '.'
23: || quote_ident(row.table_name);
24: RAISE INFO 'Dropped table: %',

quote_ident(row.table_schema) ||
25: '.' || quote_ident(row.table_name);
26: END LOOP;
27: END;
28: $BODY$
29: LANGUAGE plpgsql VOLATILE
30: COST 100;
31: ALTER FUNCTION droptables(text, text)
32: OWNER TO postgres;

With this step, the PostgreSQL database should be properly arranged. The GeoServer
instance will still need additional styles and workspaces. These can be found in the
geoserver_config directory, whereby the content of the styles folder goes to GeoServer’s
data_dir/styles and the content of the workspaces folder to data_dir/workspaces.

After everything is properly constructed, the project can be compiled and run by
executing the following commands inside the Linux terminal in the project’s main folder or
respectively the folder in which the pom.xml file, which is necessary for the Maven tool, is
stored:

 mvn clean install
 mvn jetty:run

The application can then be accessed via a web browser10. If it was, for example, locally

installed, it is located at http://localhost:8080/mineX/11

10 It was tested by Mozilla Firefox, which can be downloaded from http://mozilla.org/firefox
11 The number in the address can change if there was another port than 8080 used

 26

Referenced and Used Software

 Official Ubuntu home page: http://www.ubuntu.com
(Linux derivate on which the Isochrone project was tested)

 Official Java home page: http://www.oracle.com/technetwork/java/

(necessary programming language to make own code changes)

 Official Ext JS home page: http://www.sencha.com/products/extjs/
(JavaScript extension extensively used in this project)

 Offical cometD project home page: http://cometd.org/

(implementation of the Bayeux-protocol in Java)

 Official GeoServer home page: http://geoserver.org/
(an Open Source server for geospatial data)

 Official Apache Maven home page: http://maven.apache.org/

(a build tool for Java software)

 Official Mozilla Firefox home page: http://mozilla.org/firefox
(web browser with which the isochrone project was tested)

