
Free University of Bozen/Bolzano
Faculty of Computer Science

Bachelor Thesis

A Time-Dependent Data Model for
Multi-Modal Networks

by
Luca Bellettati

Supervisor: Johann Gamper
March 20th, 2015

Contents

1 Introduction 5
1.1 Isochrones . 5
1.2 Motivation . 5
1.3 Contribution of the Thesis . 6
1.4 Road map . 6

2 Related Work 7

3 A Time-Dependent Data Model 10
3.1 Data Model . 10

3.1.1 Street Network . 10
3.1.2 Timetable Network . 11
3.1.3 Link Network . 13

3.2 Database Schema . 14
3.2.1 Street Network Schema 14
3.2.2 Timetable Network Schema 15
3.2.3 Link Network Schema 18

3.3 Tables Data Examples . 19

4 Implementation of a Data Import Tool 23
4.1 Street Data . 23
4.2 Timetable Network . 24
4.3 Data Import Tool . 25

4.3.1 Initialization . 25
4.3.2 Data Import . 27

5 Discussion 29

i

Abstract

The concept of multi-modal spatial network is becoming very popular as
the availability of data is exponentially increasing, and new web and mobile
technologies are using them to build nice solutions for route searching
or trip planning. Most of the times, the problem is how to model such
data in a way that many types of networks can be used efficiently for a
desired solution. In fact, multi-modal network data are of different type:
pedestrian, bus, train, railway, bicycle, etc. all with different features. In
particular, there are some of them, like bus or railway, that hold a time
table which are to be considered when building a system.

In our work, we propose a time-dependent data model for multi-modal
networks that build a representation of the information based on the
different features of each mode inside the network. To achieve this, we
clearly separate each mode from the others in order to obtain a detailed
structure for that specific graph. To create the final multi-modal network,
we introduce the concept of links, that connects each sub-graph without
modifying the structure of the existing modes by using switch points
inside the graph. Furthermore, the idea of separation is applied to public
transportation system modes to create sub-networks based on routes. For
such graphs, the time table is kept in a separated structure as well.

We provide a detailed description of our solution by describing the
structure of each network together with an import tool that stores instances
of real data into a PostgreSQL database, comparing the new model with the
existing one.

1

Riassunto Breve

Il concetto di reti multi modali è diventato sempre più popolare e usato,
grazie alla crescente disponibilità di dati, e alla tecnologie web e mobile che
usano queste numerevoli informazioni per sviluppare soluzioni software
riguardanti il route searching e trip planning. Nella quasi totalità dei casi, il
problema maggiore è causato da come questi dati possono essere modellati
e rappresentati. Ciò è dovuto al fatto che una rete multi modale contiene
al suo interno diversi tipi di grafi: pedonale, ciclabile, bus, treni, etc.
Alcuni di essi sono associati ad una lista di orari, che deve essere presa in
considerazione nel momento in cui si vuole costruire un sistema che usi
queste informazioni.

Nel nostro studio, proponiamo un modello di dati time-dependent che
rappresenti i dati di una rete multi modale in base alla caratteristiche di
ogni singolo grafo. Per ottenere tale modello, noi proponiamo di separare
ogni singolo mode, in modo tale da avere una struttura dettagliata per
ognuno di essi. Inoltre, per le reti che contengono diversi percorsi, come
ad esempio i bus o i treni, viene applicata un’ulteriore separazione in
base a questi percorsi, ottenendo dei sottografi. Un struttura aggiuntiva
è usata per salvare gli orari per i modes nei quali sono presenti. La rete
finale contenente tutte le altre, viene creata attraverso il concetto di
links, i quali connettono sia i diversi modes tra di loro, sia i diversi sot-
tografi, ove presenti. Tutto ciò avviene senza modificare la struttura iniziale.

In questo report, forniamo una descrizione dettagliata del nostro modello
insieme ad una procedura che salva dati reali in un database PostgreSQL,
comparando infine il nuovo modello con quello già esistente.

2

Kurzfassung

Als Folge des exponentiellen Wachstums der Verfügbarkeit von Informatio-
nen ist das Konzept des multi-modal spatial network sehr bekannt geworden.
Neue web und mobile Technologien benutzen diese um Routensuche oder
Tourenplanung Lösungen zu entwickeln. Diese müssen sich mit der
vielfältigkeit der Netzwerkarten auseinandersetzen und dafür sorgen, dass
die Datenverarbeitung in Beziehung der Netzwerke zu erfolgreichen Ergeb-
nissen führt. Multi-modal network Daten teilen sich in unterschiedlichen
Arten ein und besitzen unterschiedliche Eigenschaften: Fußgänger, Busse,
Züge, Fahrräder usw. Im Falle der Busse und Züge muss bei der Entwicklung
und bei dem Bau dieser insbesondere auf den Zeitplan geachtet werden.

Im Folgenden wird ein auf den unterschiedlichen Eigenschaften der
einzigen Modalitäten des multi-modal networks basiertes Zeitabhängiges
Darstellungsmodell angeboten. Um das Ziel zu erreichen wird jede
Modalität einzeln graphisch dargestellt. Anschließend wird das multi-
modal network mit der Einführung des Konzepts der links dargestellt.
Das letztgenannte Konzept verknüpft jedes Sub-Graph ohne seine Struk-
tur zu verändern indem er switch points im jeweiligen Graph. Dieses
Trennungskonzept wird auch am System öffentlicher Verkehrsmitteln
angewandt um auf Routen basierte Sub-Netzwerke zu entwickeln. Auch für
ein solches Netzwerk wird der Zeitplan auf einer anderen Ebene gespeichert.

Durch die Implementierung der entwickelten Lösung dank echter Daten
wird es möglich, eine detaillierte Beschreibung der Struktur unserer Lösung
zu liefern. Zum Schluss, wird ein Vergleich zwischen den neue und den
existierende Modell angezeigt.

3

Acknowledgements

First of all, I would like to thank my supervisor Prof. Johann Gamper for his
incredible support during the past months, in particular for his willingness
and his encouraging suggestions that I received while working on this thesis.
I would like to mention and thank Markus Windegger, Kevin Wellezohn and
Paolo Bolzoni for the small but important help they provided me at the
beginning of my work.
I will never forget the memorable moments with Michael, Emanuela, Sara,
Irene, Verena and Laura while working for SCUB and Snowdays: dinners,
party, and movie nights that we enjoyed together are the best moments I
had during my bachelor career.
I have met lots of people at UniBz and I cannot mentioned everybody, but
I cannot forget Alex, Simone, David and Beatriz, my girlfriend, for their
support in these years, in particular in the last months, while I was writing
this thesis, and for the special moments we had during our university life.
I would like to thank also all the friends I still have at home, in particular
Matteo, Anna, don Roberto, don Stefano, don Francesco and don Luciano
because they were part of the most important moment of my life, always
supporting me with the best advices. We did a lot together and looking back
now, I am suprised to see the person I was and what I became thanks to
all the experiences we enjoy together. In particular I want, to thank Matteo
because he introduced me to the world of computer some years ago, and
make me discover what I really like.
I cannot forget to mention Pater Otto for his happiness, his willingness and
his ideas that made and make my time at Haus St. Benedikt an opportunity
to know nice people and spend beautiful moments with them.
Last but not least, my family, my parent Eugenio and Maria Carla, my syster
Irene, my uncle Marco and my grandmother Cosetta: you encourage me,
you support me, and you were always available for me. All the experiences,
all the bad and good moments would have not been possible without you
and your sacrifices.

4

Chapter 1

Introduction

1.1 Isochrones

The idea behind this thesis is based on the contributions of Innerebner et
al. in [16] and [15], where they introduce the concept of isochrone. As
defined in [15], given a multi-modal spatial graph and a query point p, an
isochrone is the minimal sub-graph derived by merging all the paths from p
to all reachable locations that are within a given time span, using any type
of available networks (street, bus, train, bicyle, etc.).
To show the result of their theoretical studies, Innrebner et al. built a system
called ISOGA, available at [4], which apply isochrones to some cities around
the world.
Figure 1.1 displays the result of a query from the point "*". The panel on
the right side of the picture contains the parameters the algorithms use to
calculate the desired isochrone: time interval, preferred mode (street, bus,
etc.) city data set. As a result of the calculation the system display the grey-
coloured areas on the map, with some icons that denotes the mode used
to reach a specific point, and some statistic about the covered portion of
surface.
The data sets of ISOGA are stored in PostgreSQL database with PostGIS
extension. The information saved are about street, bus and train networks
as well as points of interest, like museums or restaurant, and buildings.

1.2 Motivation

During the maintenance of the database of [4] (see section 1.1), we dis-
covered that the model used is not suitable to perform periodic efficient
updates. The existing solution is a time-dependent model for multi-modal
spatial networks that stores the data of every mode inside one graph, using
shared points to connect the different modes. This is not a good solution

5

CHAPTER 1. INTRODUCTION 6

since the data come from different sources and, in particular, have several
structures.

Figure 1.1: ISOGA.

1.3 Contribution of the Thesis

We propose a new time-dependent data model that take into account the
differences between various modes of a multi-modal network, in order to
have a data set as real and efficient as possible. Our solution clearly sep-
arates each graph, in order to store only the required information for each
mode, introducing links to connect all the network in a single final one. As
a result of our work we have:

• a time-dependent data model for multi-modal spatial networks

• a data import tool to store in a PostgreSQL database a real implemen-
tation of the new model inside Linux systems

• a theoretical discussion on our solution

• a set of procedures to import the data using the old time-dependent
model of ISOGA

1.4 Road map

In Chapter 2, we report references to previous works proposing solutions for
modelling multi-modal networks. In Chapter 3, we describe our solution by
specifying the data model as well as the database schema. In Chapter 4, we
report the work we have done to implement a simple script that create and
populate a database with the described model. In Chapter 5, we report a
comparison between old and new solution. Finally, we summarize our work
and we report future works that can be applied to the current version of the
model.

Chapter 2

Related Work

In this chapter we briefly report the most important works about the
topic of data modelling for multi-modal networks, in order to have a solid
starting point for the next chapters, where we will explain in details our
contribution and the results.

A simple version of time-expanded model is presented by Bast et al.
[11] as a base for path discovering in public transportation networks. The
solution uses three kinds of nodes, departure node, arrival node, and transfer
node to implement the idea of multi-modality with mode change during a
trip. This tries to minimize the number of transfer from mode to mode and
from different routes of the same mode to achieve the so called fast-direct
connection between a given source and destination points.
Booth et al. [12] described a detailed time-dependent data model for multi-
modal transportation system, including the different networks occurring
in a real world, together with some facilities related to each of them, like
grocery, fast food, museum and other points of interest. Shared nodes are
used instead of edges to connect different modes, i.e. to transfer from one
network to another.
A distinction between private and public transport networks is presented
by Zhang et al. [22] while proposing a data model which take into account
multiple attributes like dynamic travel and time tables. In their work, a
distinction is done between private and public transportation networks.
The first one contains only physical nodes, i.e. real ones like bus stops, train
or subway stations; on the contrary, the second one is described by both
physical (real) and event (virtual) nodes, to consider also time table options
at a given node. They also stress about the need of an explicit transfer edge
or link in the network in order to change modality during a trip, where it is
possible.
Mahrous [19] describes and discuss the challenges of multi-modal network
modelling and proposes to clearly separate modes networks, creating one

7

CHAPTER 2. RELATED WORK 8

dataset for each of them. What is proposing here is to perform an horizon-
tal separation in order to avoid overlapping of network inside a dataset.
Furthermore, he noticed that also inside bus mode the sub-networks of the
routes are overlapping: he also proposed to vertically separate bus network
by assigning the routes number to each line segments, i.e. to each edge of
the network. Note that the vertical separation can be done in other type of
networks where different routes are present. As transfer strategy between
modes, he also proposed explicit transfer edges in the graph.
The work of Kircher [17] takes into account the condensed model where
no time table information are present but only the physical structure of
the network. He underlines: first, how the time-expanded model explicits
the time table itself compared to the time-dependent version; second, the
importance of transfer edges in order to have the model as real as possible.
Antsfeld and Walsh [10] [9] proposed a combination of time-expanded
and time-dependent model by distinguishing two layers in multi-modal
networks: the station graph and the events graph. The first one contains
station links, i.e. connections via a transport system, and walking links,
i.e. street connections; the second one stores the information about events
using three type of nodes (arrival, departure, transfer), and four type of
links (deaparture, continue, changing, waiting). In addition, it used the
concept of hub nodes to denote stations where several transport system
edges from different nodes are entering. In this way non-hub nodes are
discarded when searching for mode change.
Another different way of representing public transportation data was
proposed by Liu [18], who used the concept of switch point to denote the
place where a change of mode occurs. In this solution the cost of mode
transfer is not associated with an edge but with a point, which also contains
all the information about the modes entering and/or exiting to/from it, like
time tables.
Delling et al. [14] concentrated on the optimization part of a time-expanded
network. They discovered that the contraction technique, which simply
bypasses nodes during path search, has a dramatic growth in number of
edges. The solution they proposed is based on the assumption that if we
found a path towards a given station A with arrival time ta, there is no need
to search for path that arrive at A later than ta. Then, only a few number of
transfer edges from arrival to departure nodes have to be added: it avoids
to maintain the unuseful connections with certain transfer nodes.
An interesting solution specific for flight networks has been proposed in
detail by Pajor [20]. He states that the structure of such a network is
different in the real world compared to other types like, street, train or
bus one. Hence, he developed a suitable model with different alternatives
taking into account the characteristic of flight network: check-in, check-out,
transfer action, actual flight time and class of flight (domestic or abroad).
In addition, he proposed a general framework including time function that

CHAPTER 2. RELATED WORK 9

handles the features described above.
Most of the work described in this thesis is based on the content of [21]
and [13], where Pyrga, Delling et al. presents and compare their solution
for time-expanded and time-dependent data model. They describe in detail
how each proposed model is structured and how it behaves with the two
main problem regarding transportation networks with time table, i.e. the
earliest arrival problem and the minimum number of transfer problem. Since
they take into account both simple and realistic version, the concepts of
traffic days and link edges are added to handle respectively different time
tables for different days and to explicitly connect the various modes inside
the final multi-modal network. In particular, in [13] they proposed:

• an optimization for public transportation network by introducing the
concept of access nodes, which allows to prune part of the search space
by entering one network and stay on it until it is possible to avoid too
many changes which would raise up the time

• a detailed description about how to use traffic days to check validity
of the time table to built a realistic version of the network

Chapter 3

A Time-Dependent Data Model

The next pages will report in details the time-dependent data model that
we study and develop. In section 3.1, the new data model is presented and
described. In Section 3.2, the database schema of a real application of the
new model is reported. In Section 3.3, we provide examples tables entries
of the model.

3.1 Data Model

The main characteristic of the new data model is the separation of different
modes to have a clear representation for each of them. To obtain this, we
define a different structure for each different network included in the multi-
modal graph. We consider basically two types: street network and timetable
networks, like bus, train or tram networks.

3.1.1 Street Network

We define a street network as a directed graph Gs = (V s, Es), where V s

is the set of vertices or nodes, and Es is the set of edges connecting pairs
of nodes. Each node represents a physical point in the world where two
or more streets intersect forming a crossroad. A street or part of it in the
real world is stored as edge object, with source and destination nodes. This
denotes the directed connection between a specified source point and its
corresponding destination point. The reverse connection is expressed by a
different edge object where source and destination are swapped. Nodes that
are connected by at least one edge are said to have a neighbourhood rela-
tionship. For example, a node snj is said to be a neighbour of another node
snk, if there exists an edge from snk to snj . The reverse is also true. Fur-
thermor, the number of incoming and outgoing edges to and from a node
snj represent respectively the in-degree and the out-degree of snj , which are
essential information for isochrone calculation.

10

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 11

Figure 3.1 shows an instance of street network. Nodes sn8, sn9, sn10, sn3

are examples of street nodes, connected by pairs of street edges, one denot-
ing the road segment for one direction, the other denoting the same road
segment but in the reverse direction. Let us take node sn8: it is directly con-
nected to sn10, sn3 and sn9. This means that it has three outgoing edges,
respectively se24, se19, se21, and three incoming edges, respectively se23,
se20, se22. Then, it has in-degree equal to three and an out-degree still equals
to three.

sn1

sn2

sn3 sn4

sn5

sn6

sn7

sn8

sn9

sn10

se1

se2

se3

se4

se5

se6

se7
se8

se9

se10

se11

se12

se13 se14

se15

se16

se17

se18
se19

se20

se21

se22
se23

se24

se25

se26

se27se28

se29

se30

se31

se32

sen

sen+1

Figure 3.1: Street network.

3.1.2 Timetable Network

A time table network has an underlay graph Gt = (V t, Et), where V t and
Et are respectively the set of nodes and edges. Each node tnj in V t denotes
a stop or station in the real world and is connected to other nodes through
an edge tek in Et. The different routes are considered to further separate
the data. A sub-graph Gi

t = (V i
t , Ei

t) is created for each route i over the
graph Gt, where a node tni

j in V i
t denotes a stop or station in real world

for route i. Then, there is one node representing the same physical point in
the real world for each different route using that stop or station, and there
exists only one edge teik in Ei

t that connects two consequent nodes tni
j and

tni
m of route i.

In Figure 3.2, tn5
1, tn

3
5, and tn10

2 represent all station1 respectively for route
5, 3 and 10. In the same way, tn3

3, tn
5
4, and tn9

6 represent station2 respec-

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 12

tively for route 3, 5 and 9. Since station1 and station2 are consequent nodes
and both have route 5 and 3, there exists an edge te51 to connect tn5

1 and tn5
4

for route 5, and another edge te32 from tn3
5 to tn3

3 for route 3. Nodes tn10
2 and

tn9
6 are not connected since they represent two different routes, but there

exist an edge te10m from tn10
2 to another node tn10

j of stationk and an edge
te9n from a node tn9

h of stationl to tn9
6.

The timetable is added to all Gi
t by associating to each edge teij of route i a

pair of time points. Each of such connections is referred to as trip sequence
tsik that store the departure time timed at source node tni

s and the arrival
time timea at destination node tni

t. Then, to build a complete trip from the
start node tsistart to the final node tsiend the corresponding trips sequences
are grouped using two more attributes: the id of the trip tsid and the a num-
ber tsseq denoting the position of a specific connection tsij inside the set of
trip sequences with same id tsid. This means that for an edge teij of route
i there is a trip sequence tsik for each time connection over teij . A further
attribute is added to a trip sequence tsik to denote its validity, i.e. on which
days it actually runs. Then, a traffic day vector vn is associated to tsik which
contains a sequence of 0s and 1s: a 1 at position p in vn means that on day
of the year p, tsik is valid, i.e. runs; a 0, instead, means that it is not valid
for day p. Thanks to vn we have two advantages:

• the timetable is not equal for all days, i.e. it is more realistic

• we do not have to store the date for each tsik, so that only one copy of
it is actually stored and not a copy for all the day on which it is valid
and running

tn5
1

tn10
2

tn3
3 tn5

4tn3
5

tn9
6

te51

te32

station1 station2

te10m te9n

Figure 3.2: Timetable network.

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 13

3.1.3 Link Network

The final multi-modal network is constructed by connecting the two graphs
Gs and Gt thorugh link edges, that represent the switching points between
two modes. To obtain all the connections, there must be a mapping of the
timetable network(s) on the street one, since there is no correspondence
between nodes of Gs and Gt. This requires to further add new nodes to the
street network which are the common shared point between Gs and Gt. For
each pairs of different nodes (snj , tni

k), there will be one link lv = (snj ,
tni

k) and one link lu = (tni
k, snj), both with zero cost, that denote a switch

in the two directions: from street to timetable and vice versa.
In Figure 3.3, the complete multi-modal network is represented including
Gs, Gt, and link edges (boldface lines). The nodes sn1, sn2 and sn3 are
all street nodes of Gs, but only sn2 is a pure street node: sn1 and sn3 are
added to Gs while mapping Gt on Gs, i.e. when station1 is mapped to sn1

and station2 to sn3. As consequence, each node of station1 and station2 are
connected respectively to sn1 and sn3 with a pair of link edges: tn5

1 has one
incoming edge l24 and one outgoing edge l23 from and to ts1, tn3

3 has one
incoming edge l19 and one outgoing edge l20 edge from and to ts1, and so
on for the remaining couples of nodes of Gs and Gt. In addition, all nodes
of station1 are connected through link edges l1, l2, l3, etc.; the same is for
all nodes station2.

tn5
1

tn10
2

tn3
3 tn5

4tn3
5

tn9
6

sn1 sn2 sn3

station1 station2

te51

te32

se1

se2

se3

se4

l1

l2l3
l4 l5 l6

l7

l8

l9
l10

l11

l12

l13 l14 l15l16

l17
l18

l19
l20

l21
l22

l23
l24

Timetable network Gt

Street network Gs

Figure 3.3: Multi-modal network with link edges in boldface.

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 14

When all link edges are added between Gs and Gt, the network is com-
plete. Then, Figure 3.3 is an example of the final multi-modal network
obtained by applying our time-dependent data model.

3.2 Database Schema

This paragraph is dedicated to described how the new data model is imple-
mented in a database, by reporting the correspondent ER schema for both
street and timetable network.

3.2.1 Street Network Schema

The street network as described in Section 3.1.1 is imported into a database
by using one table for nodes and one for edges.
The data for street nodes are saved in the a relation with schema:

StreetNodes(NodeID,NodeGeom,NodeInDegree,NodeOutDegree).

Each entry in this table is uniquely identify by the primary key constraint on
the NodeID field, NodeGeom contains the spatial information for the node,
i.e. longitude, latitude and altitude values, NodeInDeg and NodeOutDeg
store respectively the number of incoming and outgoing edges for the node,
needed during the calculation of isochrones.
The street edges are defined in the database according to the following
schema:

StreetEdges(EdgeID,EdgeSource, EdgeDest, EdgeGeom,EdgeLength)

where EdgeID is the unique identifier for the tuple, EdgeSource and EdgeDest
are the extremes of the street segment, EdgeGeom store spatial information
for the line shape, and EdgeLength is the actual length in meters of the line. A
foreign key constraint is applied to EdgeSource and EdgeDest with a reference
to NodeID field of StreetNode relation. In fact, if EdgeSource or EdgeDest or
both contains values that are not in NodeID field of StreetNodes, the edge
cannot exist as entry of StreetEdge.
In Figure 3.4 we represent the two relations StreetNodes and StreetEdges
as ER-diagram, including all the fields, their data type and the constraints
previously described. In particular, we use the bigint type for node_id,
edge_source and edge_destination because the source we use has big values
for identifier and we keep such numbers in order to maintain the source
and destination references for edges. This is not applied to edge_id field
which is defined as an integer. Two are the reasons: first, there are no fur-
ther references to identifier values of an edge; second, when link edges are
built, the initial street connections are update, the identifier as well, and
the values are not kept in any case. Then, starting a new enumeration for

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 15

this field is more convenient to not create confusion when adding new en-
tries or during maintenance works. We use double type for edge_length to
preserve precision on the measure of the segment. We denote primary key
constraint by underlining node_id and edge_id; 1 and 2 represent the foreign
key constraints respectively on edge_source and edge_destination.

StreetNodes

node_id bigint

node_geometry geometry
node_in_degree integer
node_out_degree integer

StreetEdges

edge_id integer

edge_source bigint
edge_destination bigint
edge_geometry geometry
edge_length double

1

2

Legend:
1: edge_source_fk
2: edge_destination_fk

Figure 3.4: Relational schema for street network.

3.2.2 Timetable Network Schema

The timetable network we describe in Section 3.1.2 includes relation for
nodes and edges and three more to store the schedule.
The information for timetable nodes are save in a schema similar to StreetN-
odes with an additional field for the route. The relation is as follows:

TimetableNodes(NodeID,NodeGeom,NodeRoute,
NodeInDegree,NodeOutDegree)

The unique identifier is still NodeID, NodeGeom can have same value for
several nodes, NodeRoute is a numeric value for the route associated to the
node, NodeInDegree and NodeOutDegree represent respectively incoming and
outgoing edges, both link and timetable edges. A primary key constraint is
used to ensure the uniqueness of NodeID.
The schema for edges has less information with respect to StreetEdges rela-
tion. Its definition is:

TimetableEdges(EdgeID,EdgeSource, EdgeDest, EdgeRoute)

There are no attributes for geometry and length, but there is a field for the
route. EdgeID is an unique value that identify the single connection between
EdgeSource and EdgeDest for the route indicated in EdgeRoute. Since each
edge represent a connection between two stop or station for a specific route,
the values of NodeRoute of the corresponding entry in TimetableNodes for

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 16

EdgeSource and EdgeDest must be equal to the value in field EdgeRoute of
this tuple. To ensure correctness of the data constraints are used: a primary
key on EdgeID field and foreign key on EdgeSource and EdgeDest to ensure
that such identifiers exist in TimetableNodes.

TimetableNodes

node_id bigint

node_geometry geometry
node_in_degree integer
node_out_degree integer

TimetableEdges

edge_id integer

edge_source bigint
edge_destination bigint
edge_geometry geometry
edge_length double

TimeTableSchedule

trip_id integer

trip_edge integer

trip_edge_source integer
trip_edge_dest integer
trip_route_id integer
trip_time_d text
trip_time_a text
trip_service integer
trip_service_start_date text
trip_service_end_date text
trip_seq_nr integer

TimetableRoutes

route_id integer

route_descr_long text
route_descr_short text

TimetableCalendar

service_id integer

service_start_date text

service_end_date text

service_vector char(366)

1

2

3

4

5

6

7

8
9

10

Legend:
1: edge_source_fk 5: trip_edge_fk 9: trip_service_s_date
2: edge_destination_fk 6: trip_edge_source_fk 10: trip_service_e_date
3: node_route_fk 7: trip_edge_dest_fk
4: trip_route_id_fk 8: trip_service_fk

Figure 3.5: Relational schema for timetable network.

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 17

A simple schema is used for information about routes. It is as follows:

TimetableRoutes(RouteID,RouteDescrLong,RouteDescrShort)

The values for RouteID are unique, then a primary key constraint is applied
on this field; RouteDescrLong and RouteDescrShort are string value to store
respectively the long and short version of the name use to denote a route in
real world.
The calendar containing the validity periods for trip sequences is store in
this form:

TimetableCalendar(ServiceID, ServiceStartDate,
ServiceEndDate, ServiceV ector)

To uniquely identify an entry we use a primary key constraint on ServiceID,
ServiceStartDate, and ServiceEndDate, since same value for ServiceID can
have different of ServiceStartDate, ServiceEndDate, and ServiceVector. This
is a structures solution to keep exeception days, like Christmas or Easter,
separated from the regular schedule. The value for ServiceID is a simple in-
teger, ServiceStartDate and ServiceEndDate are string representing a date as
"YYYYMMDD", ServiceVector is a sequence of 366 0s or 1s, each representing
a day of the year. For example, if at position 31 we have a 1, it means that
on the 1st of February (beacause the enumeration starts from 0, not from 1)
all the associated trip sequences of TimetableTripSchedule are valid.
The whole schedule for the timetable network is contained in one relation,
whose schema is:

TimetableTripSchedule(TripID, TripEdge, TripEdgeSource,)
TripEdgeDest, TripRouteID, TripT imeDep, TripT imeArr,

TripService, TripServiceStartDate, TripServiceEndDate, TripSeqNr)

To uniquely identify an entry we use both TripID and TripEdge. We can-
not only use TripID since one tuple denotes just a piece of the trip and the
same identifier must be used for the other segments. There is, instead, only
one entry with a specific pair of TripId and TripEdge. TripEdgeSource and
TripEdgeDestination seems to be not useful in this table but they are crucial
at query time to avoid a join with TimetableEdge to find edge extremes. In
fact, a typical query on TimetableTripSequences could be: give me all the
connections exiting node tni

j after a specific time point given by timed on
day d. Having the edge extremes in TimetableTripSchedule as well avoids
the join of this table with TimetableEdges, because the query will search
all the entries of TimetableTripSequences whose TripEdgeSource is equal to
tni

j and whose TripTimeDep is after timed. The only join that needs to be
performed is with TimetableCalendar to check that the service vector cor-
responding to TripService has a one in the position for day d. Of course, the
tuples that are not valid on the specified day d are not included in the query

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 18

result. TripRouteID associates a trip sequence, and in turn a trip, to a route
in TimetableRoute. TripSeqNr is fundamental to build the complete chain
of trip sequences from the beginning of a trip to the end: number 1 in this
fields of an entry means that TripEdgeSource is the station where the trip
starts, any number n > 1 denotes that TripEdgeSource is the nth station, any
other number m > 1, such that for any n in the chain of this trip m > n,
means that TripEdgeDest is the terminus of the trip, i.e. the last station.
Figure 3.5 represents the whole schema of a timetable network, including
all the primary key (underlined fields) and foreign key, this latters reported
in the Legenda of the picture.

3.2.3 Link Network Schema

The schema for link network is very simple since it just creates pairs of
connected node between the entries of StreetNodes and TimetableNodes.
Each tuple is of the form:

Links(LinkID,LinkSource, LinkSourceMode,
LinkDest, LinkDestMode)

LinkID is the unique identifier with a primary key constraint on it; LinkSource
and LinkDest are respectively the source and destination extremes of the link
edge; LinkSourceMode and LinkDestMode denote respectively the mode of
the source and destination: 1 means that the correspondent node belongs
to StreetNodes, 0 that it is part of TimetableNodes. We do not use a foreign
key constraint on LinkSource and LinkDest since both can have an identifier
coming from two or more different tables and a double references on a table
field nor a check constraint with sub-queries cannot be done.
Figure 3.6 report the ER-model for link edges, which is a stand-alone table
for the reasons we have just explained in the previous paragraph regard-
ing the foreign keys constraints. In particular, we define link_source and
link_destination as bigint type to fit both StreetNodes and TimetableNodes
identifier.

Links

link_id integer

link_source bigint
link_source_mode integer
link_destination bigint
link_destination_mode integer

Figure 3.6: Relational schema for links.

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 19

3.3 Tables Data Examples

In this section we report some pictures about real table data for our data
model as well as an explanation of the information displayed.

Street Nodes. In Figure 3.7 are data about street_nodes table. As you
can see, values for node_id are large and can be even larger for other
rows: for this reason we choose bigint type for this fields. The geom-
etry is stored a Extended Well-Known Text (EWKT), one of the format
used by PostGIS to represent point and line shape with alphanumeric
values. node_in_degree and node_out_degree are simple integer and are al-
ways equals since the number of incoming and outgoing edges are the same.

row_id node_id node_geometry node_in_degree node_out_degree

1 9192415 0100123ED749... 2 2
2 29541604 0101000020E4... 1 1
3 60958599 0101030040B5... 3 3
...

Figure 3.7: Data example for street_nodes table.

Street Edges. Once we have the points of the network, we use them
to build the edges. Figure 3.8 gives an idea of some rows store in the
street_edges table. We note that edge_id contains smaller values with re-
spect to node_id, since we do not keep the values of the source, but we
restart the numeration, as already said in Section 3.2.1. Under edge_length
field are double precision values with 12 decimal digit, obtained from the
PostGIS function ST_Length() applied over edge_geometry attribute.

row_id edge_id edge_source edge_destination edge_geometry edge_length

...
10 35 334643920 359085948 01200020E6... 173.102640511226
11 49814 3352099002 3352098999 0120549E08... 35.392863527394
12 24103 3259420147 3126879985 0120309F07... 64.896363827364
...

Figure 3.8: Data example for street_edges table.

Timetable Nodes. Points for timetable network are saved in the database
similar to the street ones. In addition they have the node_route field,
which references values in timetable_routes relation. Furthermore,
node_in_degree and node_out_degree are still equal and are always equal
to 1, as you can see in Figure 3.9. It could be the case that a variant of a

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 20

route exists; then, there is a timetable node where the alternative starts: at
that location the node_out_degree will be two or even more if more than one
alternative path is present there.

row_id node_id node_geometry node_route node_in_degree node_out_degree

...
89 54 01000A5F... 201 1 1
90 423 01002D8C... 5000 1 1
91 1035 0112E0F... 5 1 1
...

Figure 3.9: Data example for timetable_nodes.

Timetable Edges. The table for edges is lighter for a timetable network.
In Figure 3.10 we have an example of such a table, where no fields for ge-
ometry and length are present. In addition we have the edge_route attribute
to denotes the route the edge belongs to. For example, row 200 store edge
843 for route 6 that start at node 741 and ends at node 231. Also the next
row store an edge for route 6, with extremes 25 and 54.

row_id edge_id edge_source edge_destination edge_route

...
200 2569 874 1547 11
201 843 741 231 6
202 1789 25 54 6
...

Figure 3.10: Data example for timetable_edges.

Timetable Route. Figure 3.11 shows some rows of timetable_routes. The
information in this table are few and for our model only the route_id is ac-
tually needed. route_descr_long and route_descr_short are useful for user
interface purposes and we decided to keep them since our model referred
to ISOGA, which need to show these information together with the compu-
tation results.

row_id route_id route_descr_long route_descr_short

...
43 110 110 BZ 110
44 211 211 ME 21
45 1071 7A BZ 7A
...

Figure 3.11: Data example for timetable_routes.

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 21

Timetable Calendar. An example of timetable_calendar is Figure 3.12.
As you can see, row 20 and 21 has the same route_id 1. This means that
this specific service is valid for the time interval of both row 20 and row 21.
Actually, the information that we need from this table is the value in the
service_vector field, since it already contains the validity for a specific day d,
denoted by the position d in the vector.

row_id service_id service_start_date service_end_date service_vector

...
20 1 20141224 20141224 000000000000010000...
21 1 20141225 20141225 000000000000001000...
22 8 20151229 20150106 000001001100100110...
...

Figure 3.12: Data example for timetable_calendar.

Timetable Schedule. The core of the timetable network is in
timetable_schedule relation. Here we store each single connection at each
different time in the schedule. This means that there will be more than one
trip running on the same edge with different values for timed and timea.
For example, edge 529 is used by trip 15865 at 13:20:00 and by trip 9854
at 10:25:00 respectively with validity identifier 8 and 1. Furthermore, row
1000 is an example of a trip start point, since the seq_nr is 1, and row 1001 is
its consequent edge, because the trip identifier is the same and the seq_nr is
2. This is how timetable is stored in the database: simple direct connections
from that starts at edge_s at timed and arrives to edge_d at timea.

row_id trip_id edge edge_s edge_d edge_r time_d time_a service seq_nr

1000 15865 529 489 488 112 13:20:00 13:20:00 8 1
1001 15865 528 488 479 112 13:20:00 13:21:00 8 2

...
3567 9854 529 489 488 112 10:25:00 10:26:00 1 7
3568 9854 474 81 130 112 10:30:00 10:30:00 1 10

...
4010 5412 621 25 300 2 18:55:00 18:56:00 15 20
4011 2014 1254 789 900 2 07:14:00 07:15:00 5 10

...

Figure 3.13: Data example for timetable_schedule.

Links. The last table of the schema is links which is the most important in
order to construct the final multi-modal network. In each entry, a node_id of
street_ndoes is associated with one of timetable_nodes to build the specific
link edge.
As Figure 3.14 shows, row 100 define the edge between node 899 with

CHAPTER 3. A TIME-DEPENDENT DATA MODEL 22

mode 0, i.e. a timetable node, and node 3352098263 with mode 1, i.e.
a street node. Since the mode change can happen in both directions, row
101 store another link edge where link_source is 3352098263 with mode
1, and link_destination is 899 with mode 0. Furthermore, link edges can
also connect two different timetable nodes of different routes at the same
station. This is the case of row 104 and row 105, where the bidirectional
connection between node 101 and node 99 is expressed. In this situation,
link_source_mode and link_destination_mode are both 0.

row_id node_id node_geometry node_route node_in_degree node_out_degree

...
100 88 899 0 3352098263 1
101 89 3352098263 1 899 0
102 90 3215478953 0 992 1
103 91 992 1 3215478953 0
104 92 101 0 99 0
105 93 99 0 101 0
...

Figure 3.14: Data for links table.

Chapter 4

Implementation of a Data
Import Tool

This chapter report the work done to implement the model described in the
previous chapter. First of all, the sources for street and bus data are intro-
duced; then, the created SQL, Java, and Bash script are briefly presented
and discussed together with the actual process for importing the data.

4.1 Street Data

The complete network for streets is based on the public accessible data of
OpenStreetMap, available at [6] in some different format like .pbf, .bz2, or
shape file. For convenience, in our implementation we used the PBF for-
mat, which is based on Google Protocol Buffer, a mechanism to serialize
structured data in order to read/write them from/to several streams using
different languages. The serialization phase is performed using a so called
.proto file, where the data are define as messages, a logical record which
contains a list of key-value pairs, denoting the attributes of the object de-
scribed by that specific record. In order to use the defined protocol buffer
messages to parse a file with high-level languages like Python, Java or C++,
a compiler is needed to create specific functions to access the fields as well
as read/write raw bytes that store the actual data. A complete documen-
tation as well as usage examples are available at [3]. Note that we do not
build our own compiler, but we use an existing one available at [7].
Each .pbf file is organized in blocks containing both meta-data and actual
data. In our implementation, we have to deal only with data block, which
can contain the following objects:

• node: a physical point in real world representing entities like bus
stops, street crosses, points of building perimeter, etc.

23

CHAPTER 4. IMPLEMENTATION OF A DATA IMPORT TOOL 24

• way: ordered list of not more than 2000 nodes representing railways,
street, footpaths, etc.

• relation: ordered list of nodes, ways and relations representing an
entity like administrative boundaries or routes

• tag: sub-element common to nodes, ways and relations that store ad-
ditional information as key-value pairs

More details about the actual parsing and data usage are presented in sec-
tion 4.3.2.

4.2 Timetable Network

The implementation of the time table network part is based on the data
coming from SASA, the local agency of the Province of Bozen-Bolzano re-
sponsible for urban bus system. These data are available at [5] and are
represented following the data model created by the Verband Deutscher
Verkehrsunternehmen (VDV) which offer a complete framework to handle
many types of networks with time table. As this data model is very articu-
lated and sometimes difficult to understand, due to the high number of en-
tity it holds, we decided to switch to the General Transit Feed Specification
representation, which has been developed by Google to give an interface
for mapping public transportation systems into Google Maps database. This
model is simpler than the one proposed by VDV and it can be quickly ob-
tained through a tools developed by Google itself that convert files in VDV
format to actual GTFS structure. As a result we obtain the following .txt
files:

• agency: list of agency appearing in the data set, in our case only one
entry for SASA

• calendar and calendar_dates: traffic days with exceptions

• routes: all the routes in the data set

• stops: a complete list of all bus stops

• trips: all the trips for the available routes with traffic day

• stops_times: the list of all simple connection between two stops for a
given trip, with related arrival and departure times

In this way, we have a model that is more similar to the one that we imple-
ment. The big difference is that GTFS does not store a connection as an arc
going from the source to the destination, but it stores the fact that at some
node an arrival event is happening at arrival time, which will be followed by

CHAPTER 4. IMPLEMENTATION OF A DATA IMPORT TOOL 25

the departing event at departure time at the same node. As fig. 4.1 shows,
in the GTFS solution there are no explicit arc that describe a direct connec-
tion between node n10 and noden20: this has to be discovered by retrieving
two different tuples. In our solution, this is not necessary because the arc is
explicitly stored in one tuple. To have a complete overview about VDV and
GTFS please refers respectively to [8] and [1].

n3n5

n10 n20

GTFS solution

Our solution

t1:e10,d1,a1

t2:e10,d2,a2

t1:n10,a1,d1

t2:n10,a2,d2

t1:n20,a3,d3

t2:n20,a4,d4

Figure 4.1: Implicit and explicit arc for trip sequence.

4.3 Data Import Tool

The import process to build our model has been built and tested under Linux
Ubuntu 14.04 using Java 8 SE, PostgreSQL 9.3 and PostGIS 2.1. The whole
flow of work is managed by bash scripts where Java, SQL and shell com-
mands are executed to construct the desired networks. The complete work
flow consists of an initialization phase, where the environment is set up, fol-
lowed by an import phase, where the desired data are retrieved and stored
in a database.

4.3.1 Initialization

As one is using the code for the first time, a pre-processing phase has to take
place to set up the database environment with the required schemas and
tables. This process create:

CHAPTER 4. IMPLEMENTATION OF A DATA IMPORT TOOL 26

• a PostgreSQL user called spatial

• a PostgreSQL database called spatial

• a schema time-dependent that contains the implementation of our
model

• a schema time-dependent-old, for testing purposes

• a schema vdv-gts-tmp to manage the import of time table networks

• directories to store temporal data

The whole initialization phase is managed by a shell script called setup.sh,
where psql commands as well as bash commands are executed in order
to create the items listed above. In Figure 4.2, we show the setup steps:
first the database and the user are created by executing db-create.sql; then,
time-dependent, time-dependent-old and vdv-gts-tmp are created thorugh
schema-create.sql.
Most of the work will be concentrated on the time-dependent schema, as
it implements our data model. However, one can also decide to import
the old version of the model to time-dependent-old schema. This option is
offered for testing purposes to compare the behaviour of some algorithms
with same data modelled in different manner.

Start

setup.sh

db-create.sql

schema-create.sql

Stop

SQL CREATE

SQL CREATE

Figure 4.2: The initialization work flow.

CHAPTER 4. IMPLEMENTATION OF A DATA IMPORT TOOL 27

4.3.2 Data Import

Once the setup phase has successfully terminated, the actual import process
can take place by running the root script net-builder.sh, which create each
network (street, bus, link, or test) separately, depending on the user choice.
Note that we provide a list of cities for which the data are available; in the
future,the idea is to offer also the possibility to the user to input the coor-
dinates of the bounding box of a city, in order to import a specific data set
not included in the list. Unfortunately, for bus network the data are more
difficult to retrieve, due to the several agencies that manage local public
transportation system even within a region.
Figure 4.3, shows the complete work flow for the data import. As already
said, the whole process is controlled by the root bash script called net-
builder.sh, which execute other bash files depending on the options that are
used.
For street network, the option -s must be present; one can decide to down-
load the latest version of the data from Openstreetmap by using the option
-u in addition to -s, or start the parsing from already downloaded local data,
if available. In case, the requested data are not available locally and the -u
is not present, the script will automatically download them from [2]; then
the bounding box for the desired city is obtain using a Java tool called os-
mosis, which return an OSM file; at the end, osmconvert transform the OSM
file into a PBF one. At this moment, Java code is called to parse the data
and insert them into the appropriate tables. If the data are already available
locally, the bounding box extraction and the file conversion are skipped, and
the parsing is directly executed.
For timetable network, the process is started with -b option. The VDV files
are always downloaded from [5], they are transformed into GTFS through
the tool from Google, and imported into the tables of vdv-gtfs-tmp schema.
At this moment, The Java code is called and the bus information are inserted
into the tables of our model.
If both -s and -b options have been used, the user can add also -l and the link
network is created. Here only Java code is used to map the bus network to
the street one, add the resulting links to Links table, and update the street
edge after the process.
As we mentioned before, the data can also be imported using the old model.
This is achieved in the script -t option which starts the execution of Java
code that translate the data stored with the new schema into tables of the
old one.

CHAPTER 4. IMPLEMENTATION OF A DATA IMPORT TOOL 28

Start

net-builder.sh

-s

-u

street-net-update.sh street-net.sh

time-dep.jar

-b

bus-net-vdv.sh

time-dep.jar

-l time-dep.jar

-t time-dep.jar

Street Network

Bus Network

Link Network

Test Network

SQL INSERT

SQL INSERT

Stop

true

true

false

false

SQ
L

IN
SER

T

SQL INSERT

false

true

true

false

true

false

Figure 4.3: The complete work flow for data import.

Chapter 5

Discussion

In the next lines, we discuss our new data model, in particular we compare
it with the one used for ISOGA, in order to underline the differences, the
advantages and disadvantages of the two solutions.

Old Model. We present the old time-dependent data model, providing the
details of its structure required for the comparison we show. The idea behind
this solution does not separate the different modes from each other but
stores them together in a single graph. Then, there is no explicit distinction
between the street network and a timetable network. For this reason, the
old model defines different schemas, in particular for nodes and edges, and
it does not have a links table, since no further connections are required in
addition to street and timetable segments.
Each node in this model is defined as:

Nodes(ID,Geom,Mode, Type, InDegree,OutDegree)

where NodeType and NodeMode provide both the mode of the point, respec-
tively with a string among PED or BUS and with an integer among 1 and 0.
The other fields are defined as in our solution.
An edge contains much more information with respect to our idea. It has a
schema like this:

Edges(ID, Source,Dest, Length,Route,
Mode, SourceMde,DestMode,Geom)

which contains all the fields to best suit both street an timetable edges. In
addition, it stores also the a mode for the segment, for the source point
and for the destination point. Then, we can have two types of connection:
street and timetable. In the first one, the extremes can be of any mode,
even both of BUS, since it may be the case that one go from a station on one
side of a street to another station on the opposite side of the same street.
In the second one, the situation is much simpler, since extremes must be

29

CHAPTER 5. DISCUSSION 30

only of type BUS. Important is the Route value of an entry: as in our new
model, there is one edge for each route connection between two stations in
a timetable network, but the id of the extremes are always the same, since
no route is associated with entries of Nodes table. Clearly, some fields are
empty for both street and timetable connection: in the first case, no route is
provided; in the second one, no geometry and length are present, since only
the schedule has to be considered.
Information of schedules and routes are stored in the same way as we do;
the calendar has a slightly different structure, which is as follows:

Calendar(ID, StartDate, EndDate,Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, Sunday)

where ID, StartDate and EndDate has the same meaning as in our solution;
the rest of fields contains boolean values and replace the service vector that
we use. An entry in such a table is means that from StartDate to EndDate a
service is valid for days of week where the value is TRUE.

New-Old Model Comparison. We defined the old model and we proceed
with a comparison of the two ideas, underlining the crucial aspects that dis-
tinguish them. First of all, the model we propose needs more space to store
the data due to the separation we perform. In fact, for timetable networks
the numbers of nodes is higher in comparison to the old model, since for
each route that use a station, there is an entry in TimetableNodes that reg-
ister this event. Furthermore, also the size of street nodes is greater, since in
the old model the entries added after the mapping of the timetable network
correspond exactly to the timetable nodes. In other words, if sn, bn, ln, Sold,
Snew are respectively the total number of street, timetable and link nodes
(added to street graph after mapping), the size of all nodes of old model,
and the size of all nodes for new model, we have that:

• Sold = sn + bn

• Snew = sn + bn + ln ; since ln = bn , Snew = sn + 2bn

As the formulas show, in the new model the separation cause the number of
timetable nodes to be doubled, for each of such network. In terms of edges,
nothing change for both street and timetable networks. For the timetable
edges of old model, each segment connecting the same extremes stations
is associated to a route, which means that it is used only for that specific
connection on that route; however, the same pair of source and destination
points can be used for many different edges. The situation is not the same
when merging the street and timetable graph to build the final multi-modal
network. In fact, in the new model for each timetable node tni

j , there are
two entries in the Links tables for each node that represent the same station

CHAPTER 5. DISCUSSION 31

Old model

n1 n2n3n4 n5

e51

e32

e3

e4

e5

e6

e7

e8

e9

e10

New model

tn5
1

tn10
2

tn3
3 tn5

4tn3
5

tn9
6

sn1 sn2 sn3 sn4sn5

station1 station2

te51

te32

se1

se2

se3

se4

se5

se6

se7

se8

l1

l2l3
l4 l5 l6

l7

l8

l9
l10

l11

l12

l13 l14 l15l16

l17
l18

l19
l20

l21
l22

l23
l24

Timetable network Gt

Street network Gs

Figure 5.1: Old and new version of the time-dependent data model.

as tni
j but for different route i, and for the street node that map tni

j on the
street graph. Then, each entry in StreetNodes has a pair of link connections
for each node in TimetableNodes that corresponds to the station it maps. In
case a new route is added or removed for one or more stations, the number
of entries to add or removed from Links table are equal to

(
n
1

)
, where n is

the number of existing nodes at that station.
In Figure 5.1, we provide a graphical representation of the comparison. In

the old model version of the graph portion, node n1 correspond to station1

in the new model version, and in turn to sn1. The same is for n2, station2

and sn2. The remaining nodes n3, n4 and n5 are street nodes that corre-
sponds respectively to sn2, sn6 and sn4 in the new model: in both situation

CHAPTER 5. DISCUSSION 32

they are the same, with same number of edges entering and exiting them.
The timetable edges as well do not change in size: line e51 and e32 corresponds
respectively to te51 and to te32. The crucial difference between the two model
is the number of timetable nodes and link edges. For example, if we add a
new route 9 for station1, we add a new timetable node tn9

j to represent it.
In addition, we add an edge te9k from tn9

j to tn9
6. Then, to connect tn9

j to
the other timetable nodes and to the correspondent street nodes, we have
to add 2·3!

2! = 6 link edges. In the old model, instead, we just need to add
just one edge e9h in Edges table and we are done.
The situation we are interested in is when a single network has to be up-
dated and the data are imported from scratch. Suppose we want to have
the last version of a timetable network. In the old model, this requires to
remove entry by entry all timetable nodes and edges from the correspon-
dent tables plus the information about routes, calendar and schedule. After
that, the new data can be imported paying attention to the consistency of
the already existing information. In the new model, the update can be per-
formed by completely remove the tables, re-create them and store the new
data into them. In this way, the street network table is not modified until
the link edges are inserted.

Conclusion

This last section is dedicated to report the inferences of our work, the ad-
vantages and disadvantages of the proposed model, as well as the future
optimizations that can be performed on our initial proposal.
Regarding the actual modelling, the separation we adopted in our solution
handles well the differences between various mode in a graph. This allows
us to add or remove a new type of network without changing the structure
of existing one. However, when adding a new mode, the existing networks
has to be updated in order to include links: this means that new nodes are
added that represent the switch points between modes.
In terms of performance and space, this model has some limitations, espe-
cially when applying graph discovering algorithm. On one side, the sepa-
ration of the network and of the sub-networks (for graph with time table)
store each single event at the same physical (real) point in a different object,
as nodes or edges, which results in having many copies of the same location
with different values for route (and also for id). Furthermore, when apply-
ing a graph search algorithm, the nodes and the edges to explore increased
in number: this could be crucial when working with very big data sets. On
the other side, the separation could help when working with system that
uses preferences for modes, like ISOGA [4].
As future works, we propose some optimizations to enhance the reality of
the data. First of all, the cost of the links can be take into account, since
switching from one mode to another actually costs something in terms of
time. Then, the street network can be further separated to obtain pedes-
trian, bicycle and car modes. In addition, if the data set of interest covers
a big area, like country or continent, flight and ferry mode can also be in-
cluded: they have still different structure in comparison with street or bus
network. Since this model is thought for system like ISOGA [4] that works
with isochrones, one could also think of including POIs to the model in order
to have a complete scenario for a planning system.

33

Bibliography

[1] General Transfer Feed Specification. https://developers.google.

com/transit/gtfs/reference.

[2] Geofabrik. http://download.geofabrik.de/.

[3] Google Protocol Buffer. https://developers.google.com/

protocol-buffers/docs/overview.

[4] ISOGA. http://www.isochrones.inf.unibz.it/isoga.

[5] Opendata. http://sasabus.org/it/opendata.

[6] OpenStreetMap. http://http://www.openstreetmap.org.

[7] PBF parser. https://github.com/scrosby/OSM-binary.

[8] Verband Deutscher Verkehrsunternehmen. https://www.vdv.de/

oepnv-datenmodell.aspx.

[9] Leonid Antsfeld and Toby Walsh. Finding Multi-Criteria Optimal Paths
in Multi-Modal Public Transportation Networks using the T[r.

[10] Leonid Antsfeld and Toby Walsh. Finding Optimal Paths in Multi-
Modal Public Transportation Networks using Hubs Nodes and TRAN-
SIT algorithm.

[11] Hannah Bast, Erik Carlsson, Arno Eigenwillig, and Robert Geisberger.
Fast Routing in Very Large Public Transportation Networks Using
Transfer Patterns. ESA, 2, 2010.

[12] Joel Booth, Prasad Sistia, Ouri Wolfson, and Isabel F. Cruz. A Data
Model for Trip Planning in Multimodal Transportation System. 2003.

[13] Daniel Delling, Thomas Pajor, and Dorothea Wagner. Accelerating
Multi-Modal Route Planning by Access-Nodes.

[14] Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering
Time-Expanded Graphs for Faster Timetable Information.

34

BIBLIOGRAPHY 35

[15] Johann Gamper, Michael Boehlen, Willi Comett, and Markus Innereb-
neri. Defining Isochrones in Multimodal Spatial Networks. CIKM,
2011.

[16] Markus Innerebner. Isochrones in Multimodal Spatial Network. PhD
thesis, 2013.

[17] Dominik Kircher. Efficient Routing on Multi-Modal Transportation Net-
works, 2013.

[18] Lu Liu. Data Model and Algorithms for Multimodal Route Planning with
Transportation Networks. PhD thesis, 2010.

[19] Reem Fawzy Mahrous. Multimodal Transportation Systems: Modelling
Challenges, 2012.

[20] Thomas Pajor. Multi-Modal Route Planning, 2009.

[21] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaro-
liagis. Efficient Models for Timetable Information in Public Transporta-
tion Systems. ACM Journal of Experimental Algorithmics, 12(2), 2008.

[22] Jianwei Zhang, Theo Arentze, and Harry Timmermans. A Multimodal
Transport Network Model for Advanced Traveler Information System.
2012.

