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Abstract

In database applications time has become an aspect of growing importance. As
consequence the amount of data to store increases exponentially. To facilitate
evaluation and interpretation of information temporal aggregation is used. Two
important aggregation types are Instant Temporal Aggregation (ITA) and Span
Temporal Aggregation (STA). Parsimonious Temporal Aggregation (PTA) ad-
dresses the weakness of both combining the best properties. The drawback
of PTAc is the computational complexity of O(n2c) and the space complexity
O(n2).

In this work two optimizations to the existing PTAc algorithm are introduced.
The first one consists in reducing the search space of the dynamic programming
scheme adopted by PTAc. This leads to an avoidance of computations reducing
the overall complexity of the algorithm. The second optimization addresses the
space complexity problem. Through the introduction of a new data structure
Split Point Graph memory consumption can be noticeably reduced. Empirical
evaluation shows the effectiveness and the limits of the optimizations.
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1 Introduction

In most database applications time has become an aspect of growing impor-
tance. Example are record-keeping applications, financial applications and mea-
surement of phenomena. Nowadays commercial database management systems
have only limited support for temporal data. A non temporal database cap-
tures only an instantaneous snapshot of the represented mini-world. If such a
database is used, management of the temporal aspect has to be modeled at ap-
plication level and is not really supported by the Database Management System
itself.

In the past three decades conceptual models have been studied [BBJ98, JSS94]
and different concrete temporal data models have been developed. However,
there are advantages and disadvantages in each model and no consensus in the
adoption of a concrete model has yet been reached.

Temporal datasets may grow very fast since one single fact is represented by
multiple tuples in each relation. Each tuple is associated to a single time point
or time interval, depending on whether the point based time model or interval
based time model is used.

To summarize the huge amount of data, temporal aggregation can be applied.
Non temporal aggregation transforms an argument relation into a summary
result relation. The aggregation process is a two step task. The first step
is the partitioning of the relation in different groups based on the value of
the grouping attributes. The second task is the application of the aggregate
functions to these groups. Temporal aggregation, substantially more complex,
involves the time dimension as additional grouping attribute. The timeline is
partitioned and the argument relation is grouped over these partitions. The
two main types of temporal aggregation that have been studied in the past are
Instant Temporal Aggregation (ITA) and Span Temporal Aggregation (STA).
Parsimonious Temporal Aggregation (PTA) addresses the weakness of ITA and
STA combining the best properties of both. According to Gordevičius et al.
[GGB12] the drawback of PTA is the computational complexity of O(n2c). The
space complexity or PTA is O(n2).

This work aims to reduce both the runtime and the memory consumption of the
PTAc algorithm. On basis of experimental evaluation is shown that both can be
reduced substantially. In more detail, the contribution is the following:

Pruning reduction of the runtimes by avoidance of superfluous computations
in the dynamic programming scheme adopted by PTAc.

Split Point Graph substitution of a matrix used in the PTAc computation
by a graph structure to achieve a reduction of the used memory.

Experimental evaluation on different dataset showing the effectiveness and
limits of the proposed optimizations.
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In section 2 different forms of temporal aggregation are compared and the Par-
simonious Temporal Aggregation operator is explained. In section 3 two op-
timizations of the PTAc algorithm are proposed. Both approaches are based
on the avoidance of unnecessary computations. The second problem, the con-
sumption of memory space, is addressed in section 4. The following two sections
are focussing on the algorithms and their implementation. In section 7 some
experiments on different datasets are described.

2 Background

2.1 Running Example

As example data for the explanations a constructed dataset containing informa-
tion about patients in a hospital is used. For each patient the name (pat), the
department where he/she was located (dep), the therapy type (therapy) which
the patient receives, the daily cost of the therapy and the time period of the
hospitalization (T) is given. The single records and a graphical representation
emphasizing the temporal distribution of the records and the therapy type is
shown in figure 1a.

2.2 Overview of Temporal Aggregation

Span Temporal Aggregation and Instant temporal Aggregation differ in how the
timeline is partitioned.

STA [BGJ06] partitions on a defined time period, such as week or month. For
each of these intervals a result tuple is produced by aggregating all tuples in
the input relation that are overlapping the interval. Thus the partitions are not
dependent on the data distribution. An example query which can be answered
with a STA result set is For each half-year period and department, what is the
number of patients?.

ITA [KS95, BGJ06] instead identifies time partitions over which the aggregate
values are remaining constant. These intervals are called constant intervals. As
explained in [BGJ06] because of overlapping tuples in the input relation the
output relation can be twice as large as the input relation which contradicts
the idea of aggregation. An example query which can be answered with an
ITA result set is For each day and department, what is the number of patients?.
This work does not address the computation of the intermediary ITA relation
as multiple algorithms for their computation have already been studied [KS95,
MLI03, YW03].

The advantage of ITA over STA is that the grouping interval length is chosen on
the basis of the available data, hence it considers the distribution of the tuples
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pat dep ther cost T

r1 Bob Ortho1 A 600 [1,4]
r2 Mary Ortho1 A 400 [1,2]
r3 Mart Ortho2 A 300 [4,7]
r4 Joe Ortho2 A 50 [5,6]
r5 Max Ortho1 A 300 [9,12]
r6 John Ortho2 B 500 [1,3]
r7 James Ortho1 B 200 [4,8]
r8 Luis Ortho2 B 300 [4,5]
r9 Mel Ortho1 B 20 [7,8]
r10 Luisa Ortho1 B 300 [7,8]

(a) Relation patients

t
1 2 3 4 5 6 7 8 9 10 11 12

r1

r2

r3

r4 r5

r6

r7

r8 r9

r10

ther val ts te

s1 A 1000 1 2
s2 A 600 3 3
s3 A 900 4 4
s4 A 350 5 6
s5 A 300 7 7
s6 A 300 9 12
s7 B 500 1 5
s8 B 200 6 6
s9 B 520 7 8

(b) ITA

t
1 2 3 4 5 6 7 8 9 10 11 12

s1=(A, 1000)

s2=(A, 600)

s3=(A, 900)

s4=(A, 350)

s5=(A, 300)

s6=(A, 300)

s7=(B, 500)

s8=(B, 200)

s9=(B, 520)

ther val ts te

s1 A 1350 1 7
s2 A 300 8 14
s3 B 1000 1 7
s4 B 520 8 14

(c) STA, aggregation period week

t
1 2 3 4 5 6 7 8 9 10 11 12

s1=(A, 1,350)

s2=(A, 300)
s3=(B, 1000)

s4=(B, 520)

ther val ts te

z1 A 1000 1 2
z2 A 750 3 4
z3 A 333.3 5 7
z4 A 300 9 11
z5 B 467.5 1 8

(d) PTA, size 5

t
1 2 3 4 5 6 7 8 9 10 11 12

z1=(A, 1000)

z2=(A, 750)
z3=(A, 333.33)

z4=(A, 300)

z5=(B, 467.5)

ther val ts te

z1 A 875 1 4
z2 A 333.3 5 7
z3 A 300 9 11
z4 B 467.5 1 8

(e) PTA, size = 4

t
1 2 3 4 5 6 7 8 9 10 11 12

z1=(A, 875)

z3=(A, 333.33)
z4=(A, 300)

z5=(B, 467.5)

Figure 1: Example patients and different temporal aggregations

8



over the timeline. The disadvantage is the fact that in most cases the input
relation increases in size.

Generating the ITA aggregation of the example relation patients with grouping
attributes therapy, aggregation function sum over the attribute type cost leads
to the data reported in figure 1b. As expected the ITA result is about the same
size (9) as the argument relation (10). In figure 1c the STA result set is shown.
It is evident that the result s4 with value (B,520) and a duration from day 7
to day 14 results from three tuples (r7, r9, r10). Each one of these overlaps for
only one day with the aggregation period but it has a rather high contribution
to the result.

PTA addresses the weakness of ITA and STA combining the best properties of
both. The construction of a PTA result set out of an input relation r includes
two steps. First the construction of an intermediary ITA result and in a second
step the approximation of this relation until a specified size or error is reached.
The approximation minimizes the introduced error. Therefore in a PTA result
the time partitions are depending on the data and the size of the resulting
relation can be chosen by the user. In figure 1d and 1e the aggregations using
the PTA operator to size c = 5 and c = 4 are shown.

2.3 Parsimonious Temporal Aggregation

In this section some base concepts of PTA are briefly described.

2.3.1 Adjacent Tuples

Definition 1. Adjacent tuples: given a sequential relation s with schema S =
(A1, . . . , Ak, B1, . . . Bp, T ). Two tuples si and sj are adjacent if the following
two conditions hold

si ≺ sj ⇐⇒

{
si.A = sj .A

si.te = sj .tb − 1

The attributes A = {A1, . . . Ak} are grouping attributes; B1, . . . , Bp are the ag-
gregation attributes, i.e. the attributes over which with an aggregation function
is applied to coalesce values. The first condition ensures, that the tuples have
the same values in the grouping attributes. The second condition ensures that
the tuples are not separated by a temporal gap. Tb is the begin of the duration
whereas Te is the end of the duration.

Example 1. In the example the relation tuple s5 is not adjacent to tuple s6
(s5 ⊀ s6) because they are separated by a temporal gap since s5 ends at time
instant 7 while s6 starts at time instant 9. Also tuples s6 ⊀ s7 since the values
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in the grouping attribute therapy differs. For all other tuples the adjacency
property holds: s1 ≺ s2 ≺ s3 ≺ s4 ≺ s5 and s7 ≺ s8 ≺ s9.

2.3.2 Merging Adjacent Tuples

PTA reduces the size of the ITA input relation by merging adjacent tuples.
The merging function is a weighted mean over the aggregation attributes. The
weights are the length of the timestamps of the two tuples.

Definition 2. The merge of two adjacent tuples si ≺ sj is defined as

si ⊕ sj = (si.A, v1, . . . vp, [si.Tb, sj .Te])

where vd =
|si.T |si.Bd+|sj .T |sj .Bd

|si.T |+|sj .T |

Since the precondition for merging tuples is the adjacency property, the grouping
attributes si.A and sj .A are value equal. There is no temporal gap between si
and sj as well. The duration of the resulting tuple is the combination of the
duration of si and sj , equals to [si.Tb, sj .Te].

Example 2. Merging two tuples of the example relation s1 = (A, 1000, [1, 2])
and s2 = (A, 600, [3, 3]). The resulting tuple sz = s1 ⊕ s2 = (A, 866.67, [1, 3]).
The merge value is computed as (2 ∗ 1000 + 1 ∗ 600)/(2 + 1) = 866.67.

2.3.3 Reduction of the Input Relation

To reduce the ITA result set s to a specified size adjacent tuples are merged
recursively until a specified size is reached.

Definition 3. c is the size of the result of the reduction. The minimal size of
the reduction, cmin is bound by the number of non adjacent tuples .

cmin = |{(si, si+1)|si, si+1 ∈ s ∧ si ⊀ si+1}|+ 1

Example 3. The relation patients has minimum size of 3 due to a temporal gab
between tuples s5 and s6 and a grouping attribute gap between tuples s6 and
s7.

In the reduction process adjacent tuples are substituted by the merged tuple
until the relation reaches size c. Each merge step introduces an error.

PTA defines a non deterministic reduction function ρ which is defined as fol-
lows.

Definition 4. The non deterministic reduction function ρ is defined as
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ρ(s, c) =

{
s |s| ≤ c
ρ(s{si, sj} ∪ {si ⊕ sj}, c) |s| > c.

The reduction function does not state which tuples are selected for merging.

Example 4. Relation patients can be reduced to size c = 4. A possible reduction
is the relation z = {z1 = s1 ⊕ s2, z2 = s3 ⊕ s4, z3 = s5, z4 = s6 ⊕ s7 ⊕ s8 ⊕ s9}.
However different selection of tuples to merge would give a different result set.

2.3.4 Error Function and Efficient Computation

During the reduction process pairs of adjacent tuples have to be selected for
merging. Each one induces an error in respect to the original ITA input set.
The selection of tuples is based on the result of a grading function.

Example 5. Assume that the better solution among two possible merges, s1⊕s2
and s4 ⊕ s5, have to be chosen. Tuple s1 has a value of 1,000 with duration 2;
tuple s2 a value of 600 with duration 1. The resulting merged tuple z1 = s1 ⊕
s2 = (A, 866.67, [1, 3]) while for merging tuples z2 = s4⊕ s5 = (A, 333.33, [5, 7]).
It is intuitively evident, that the merge of s1 and s2 induces a higher error than
the merge of s4 and s5. The aggregation values in the latter pair are closer than
in the first, hence the approximation is better.

PTA uses as grading function for the merging selection as error measure the
squared sum error between the ITA input relation and the reduction.

SSE(s, z) =
∑
z∈z

∑
s∈sz

p∑
d=1

w2
d|s.T |(s.Bd − z.Bd)2

z is a reduction of the ITA input set s, for every z ∈ z let sz be the set of
ITA tuples that are merged into z. The term wd is a weighting factor for
each aggregation attribute to leverage the impact of the different aggregation
attributes.

Example 6. Considering the reductions of example 5. Assume the reduction z
is gained by merging tuples s1 and s2. The weight factor w for attribute cost is
set to 1.

The resulting relation is therefore formed by the tuples z1 = s1 ⊕ s2⊕, z2 = s3,
z3 = s4, z4 = s5, z5 = s6, z6 = s7, z7 = s8.

z = {z1, . . . , z7} = {s1 ⊕ s2, s3, s4, . . . , s8}

11



The set sz1 are the tuples in the ITA relation merged into z1

sz1 = {s1, s2}

Therefore the error SSE(s, z) = 2(1000−866.67)2 +1(600−866.67)=106666.67.

It is not necessary to compute the errors for the tuples z2, . . . , z7 since for each
of these tuples the error contribute is 0, because they coincide with the original
tuples.

For the second reduction where tuples s4 and s5 are merged, the error is 2(350−
333.33)2 + 1(300 − 333.33)2 = 1, 666.67, hence the merge of tuples s4 and s5
induces a lower error than the merge of tuples s1 and s2 and therefore it is the
better selection.

For efficient error computation PTA uses a technique introduced by Jagadish et
al. [JKM+98] in order to compute the error in constant time.

2.3.5 Concept of Split Point

The reduction n tuples to size c can be divided into two steps: first find a certain
point j, and merge all following tuples into 1, ρ({sj+1, . . . , sn}, 1), second reduce
the remaining tuples (the tuples {s1, . . . , sj}) to size c − 1: ρ({s1, . . . , sj}, c −
1).

Definition 5. Let be a sequential ITA set s = {s1, ..., sn}, sj = {s1, ..., sj},
s \ sj = {sj+1, ..., sn}, j is called split point.

Example 7. The split point j = 7 splits the sequential ITA relation into two
parts, s7 = {s1, . . . s7} and s \ s7 = {s8, s9}. Each set is then reduced in a
separate step.

i (no. of tuple)
1 2 3 4 5 6 7 8 9 10

s1=(A, 1000, [1,2])

s2=(A, 600, [3,3])

s3=(A, 900, [4,4])

s4=(A, 350, [5,6])

s5=(A, 300, [7,7])

s6=(A, 300, [9,11])

s7=(B, 500, [1,5])
s8=(B, 200, [6,6])

s7=(B, 520, [7,8])

split point j = 7

Figure 2: Splitpoint j=7
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Function ρ can then be rewritten as

ρ(s, c) =

{
ρ(sj, c− 1) ∪ ρ(s \ sj, 1) c < |s|
s if c = |s|

For an optimal reduction, the sum of errors introduced on both sides of j must
be minimized at each step.

Example 8. There are 7 possible split points to reduce the example relation to
size c = 3: 2, 3, 4, 5, 6, 7, 8. However only three splitpoints (6, 7 and 8)
are useable because for all split points lower than 6 a merge over non adjacent
tuples is necessary. For split point 5 the tuples {s6, . . . , s9} have to be merged
to size 1 which is not possible because s6 ⊀ s7.

i (number of tuple)
1 2 3 4 5 6 7 8 9 10

s1=(A, 1000, [1,2])

s2=(A, 600, [3,3])

s3=(A, 900, [4,4])

s4=(A, 350, [5,6])

s5=(A, 300, [7,7])

s6=(A, 300, [9,11])

s7=(B, 500, [1,5])
s8=(B, 200, [6,6])

s7=(B, 520, [7,8])

split point j = 6

split point j = 7

split point j = 8

Figure 3: Splitpoints for example 8

2.3.6 Error Matrix E

PTA uses a dynamic programming technique that constructs an error matrix E
and a split point matrix J. Both matrices are of size c× n. In the error matrix
each element Ek,i is the smallest error in reducing i tuples to size k.

The matrix is filled incrementally row-wise and each row column-wise, in each
row the values computed in the previous row are used.

Ek,i =


min

k−1≤j<i
{Ek−1,j + SSE(si \ sj , ρ(si \ sj , 1))} k > 1

SSE(si, ρ(si, 1)) k = 1 ∧ (s1 ≺ . . . ≺ si)
∞ k = 1 ∧ ¬(s1 ≺ . . . ≺ si)

E, shown in table 1, is initialized to values 0 if i = k (no reduction has to be
made at all); infinity if the error has to be computed and is not initialized if
the reduction is not possible (k > i), that is if the reduction is greater than the
input set.
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Table 1: Initialization of the E matrix

i = 1 2 3 4 5 6 7 8 9

k = 1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
k = 2 − 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
k = 3 − − 0 ∞ ∞ ∞ ∞ ∞ ∞
k = 4 − − − 0 ∞ ∞ ∞ ∞ ∞
k = 5 − − − − 0 ∞ ∞ ∞ ∞

For the first row the reduction of si to 1 tuple is computed by evaluating
SSE(si, ρ(si, 1)). This can be done until reaching the first non adjacent tu-
ple pair.

Example 9. For the example relation in the cell E1,2 the error in reducing the
first two tuples to size 1 is found, i.e. SSE({s1, s2}, {s1 ⊕ s2}) = 2(1000 −
866.67)2 + 1(600 − 866.67)2 = 106, 666.67. The value of cell E1,3 is set to
SSE({s1, s2, s3}, {s1⊕s2⊕s3}) = 2(1000−875)2+1(600−875)2+1(900−875)2 =
107, 451. The value of s1 ⊕ s2 ⊕ s3 = (A, 875, [1 : 4]).

The values for E1,6, . . . ,E1,9 = ∞ because the first gap lies between tuples s5
and s6.

The results for k = 1 are shown in table 2.

Table 2: E matrix after computing the first row

i = 1 2 3 4 5 6 7 8 9

k = 1 0 106667 107500 475000 612143 ∞ ∞ ∞ ∞
k = 2 − 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
k = 3 − − 0 ∞ ∞ ∞ ∞ ∞ ∞
k = 4 − − − 0 ∞ ∞ ∞ ∞ ∞
k = 5 − − − − 0 ∞ ∞ ∞ ∞

The E matrix is filled row-wise and the results of the previous row are reutilized
in the computation of each row. For example in the second row the elements
of row 1 are used to compute the minimal error. The value of variable j for
which the minimum error is found is the split point for reducing the partial
relation.

Example 10. Which is the error in reducing the first 3 tuples to size 2, therefore
the value for element E2,3? There are two possibilities: a) merge tuples s1 and
s2, leave tuple s3 and b) leave tuple s1 and merge tuples s2 ⊕ s3. In the first
case the error can be computed from E1,2 + SSE({s3}, {s3}). In the second

14



case the error is E1,1 + SSE({s2, s3}, {s2 ⊕ s3}). The least of these errors is
memorized in the error matrix E. For the merge possibility a) the split point
value is 2, for possibility b split point has value 1.

As shown in table 3 the values from E1,1 to E1,2 are used to compute E2,3. The
values from E3,3 to E3,7 are used to compute E4,8.

Table 3: Reutilization of cells in computation of the E matrix

i = 1 2 3 4 5 6 7 8 9

k = 1 0 106667 107500 475000 612143 ∞ ∞ ∞ ∞
k = 2 − 0 45000 107500 109167 612143 ∞ ∞ ∞
k = 3 − − 0 45000 46667 109167 612143 687143 694493

k = 4 − − − 0 1667 46667 109167 184167 191517

k = 5 − − − − 0 1667 46667 109167 129017

More in general the error in reducing the first i tuples to size k, i.e. the value in
Ek,i is given by finding the minimum of Ek−1,j + SSE({sj+1, . . . , si}, {sj+1 ⊕
. . .⊕ si}) for j ranging from k − 1 to i.

2.3.7 Split Point Matrix J

It is not sufficient to keep only the information about the least error to recon-
struct the output relation. PTA uses a second matrix, the Split Point matrix J.
Each element of Jk,i is the first split point to use for the reduction of the first
i tuples to size k. The split point values are computed during the computation
of the error matrix and are the value of the variable j for which the error is
minimal.

Example 11. In example 10 the value of E2,3 has been computed. The two
possibilities to reduce the first three tuples to size 2 were: a) split point j = 2:
tuples s1 and s2 are merged, s3 is left separated b) split point j = 1: tuples
s2 and s3 are merged, tuple s1 is left separated. Solution b) has a lower error,
therefore J2,3 = 1. Computing the value for E3,5 the optimal split point is 3.
Therefore tuples s4 and s5 are merged, the information about further processing
of the remaining 3 tuples is retrieved from row 2 of the matrices, thus, the next
split point is found at J2,3

When reducing i tuples to size k, at most k split points have to be kept. In the
J matrix all possible ways to reduce i tuples to size k are kept (i ranges from
1 to n, k from 1 to c). This is necessary because only in the last computation
step when computing Ec,n and Jc,n the starting point of the optimal reduction
is decided, hence only one way for the reduction is decided.
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Example 12. The result of the computation of the matrices for c = 5 of the
running example is the split point matrix J shown in table 5. The first split
point is indicated at J5,9 which is 6, therefore all tuples after tuple number 6,
s7, . . . , s9 are merged to size 1 and the remaining tuples s1, . . . s6 are reduced to
size c−1 = 4. The necessary information how to reduce the first 6 tuples to size
4 can be found in cell J4,6 with value 5. This means that the tuple s6 remains
and the tuples s1, . . . , s5 are reduced to size 3. Following all entries until split
point 0 is reached leads to the list [6, 5, 3, 1, 0]. Under the assumption that J5,9

has value 5 the list of split points is different: [5, 3, 2, 1, 0] which gives a different
reduction.

2.3.8 Matrices E and J of Example

Applying the PTA-Algorithm to the ITA result set of the example data (figure
1b) with parameter c = 5 the resulting error matrix E is shown in table 4 and
the split-point-matrix J in table 5.

Table 4: Error matrix E of the running example

i = 1 2 3 4 5 6 7 8 9

k = 1 0 106667 107500 475000 612143 ∞ ∞ ∞ ∞
k = 2 − 0 45000 107500 109167 612143 ∞ ∞ ∞
k = 3 − − 0 45000 46667 109167 612143 687143 694493

k = 4 − − − 0 1667 46667 109167 184167 191517

k = 5 − − − − 0 1667 46667 109167 129017

Table 5: Split point matrix J of the running example

i = 1 2 3 4 5 6 7 8 9

k = 1 0 0 0 0 0 0 0 0 0

k = 2 0 1 1 3 3 5 0 0 0

k = 3 0 0 2 3 3 5 6 6 6

k = 4 0 0 0 3 3 5 6 6 6

k = 5 0 0 0 0 4 5 6 7 6
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3 Optimization of the Dynamic Programming
Scheme of PTA

As explained in the previous section, the PTA algorithm uses a dynamic pro-
gramming technique to compute two matrices, the error matrix Ec×n and the
split point matrix Jc×n, with c columns and n rows where c is the size of the
reduction and n is the number of tuples in the input relation.

In this section, two reductions of the search space of the dynamic programming
algorithm are proposed.

3.1 Existing Optimizations

Before presenting the optimizations of this work, the optimizations PTAc al-
ready uses to reduce the number of computations are briefly summarized.

The first approach is based on the presence of gaps (either temporal or based on
mismatch in grouping attribute values). If a sequential ITA relation is gapped
some reductions are not possible since PTA is designed not to merge non adja-
cent tuples.

To retrieve these tuples a gap vector G is used. This vector stores the positions
of non adjacent tuple pairs in the sorted ITA input relation.

Example 13. In the running example the first 6 tuples of the ITA argument
relation can not be reduced to a size of 1 since there is a gap between tuples s5
and s6. Therefore value E1,6 will lead to an in finite error. This holds also for
E1,7,E1,8,E1,9. The gap vector has value G =< 5, 6 > since s5 ⊀ s6 ⊀ s7.

Intuitively if the number of non adjacent tuple pairs in si is greater than k then
merging is not possible. Therefore the k-th element of the gap vector indicates
the size of the set si ∈ s that can be reduced to k. All computations for Ek,i

where Gk > i will give an infinite error. In other words imax = Gk indicates an
upper bound to i. If k > |G|, i.e. Gk does not exist, i cannot be upper bounded
and therefore imax = |s|.

Example 14. Assume k has value 2, G2 has value 6, therefore s6 = {s1, . . . , s6
can be reduced to size 2. All computations of E2,i with i > 6 can be avoided
and the respective error is ∞. For k >= 3, since |G| = 2, imax = |s| = 9

The second approach defines a lower bound for variable j. When computing Ek,i

for k > 1 the term SSE(si\sj , ρ(si\sj , 1)) has to be evaluated for varying j. This
is the error in reducing the tuples si \sj = {sj +1, . . . , si} to size 1. This is only
possible if si \ sj has no gaps. A gap is enclosed if j is lower than the rightmost
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non adjacent tuple pair in si, i.e. jmin = max{Gl|Gl < i ∧ l = 1, . . . , |G|}. If
si contains no gaps jmin is set to k − 1.

Example 15. Assume i = 7, k = 4, j ranges therefore between 3 and 7. A
reduction of the first 7 tuples s7 to size 3 can have the following solutions:
ρ(s3, 3) ∪ ρ(s7 \ s3, 1), ρ(s4, 3) ∪ ρ(s7 \ s4, 1), ρ(s5, 3) ∪ ρ(s7 \ s5, 1), ρ(s6, 3) ∪
ρ(s7 \ s6, 1). In the first three solutions the second part has as argument of
the reduction function a relation which includes gaps and can therefore not be
merged, only the fourth solution with split point value j = 6 is admissible. In
the gap vector G the rightmost element with value < 7 has value 6. Therefore
j can be lower bounded to jmin = 6.

3.2 Diagonal Pruning

During the computation of the error matrix some elements are reused in further
computation steps as explained in section 2.3.7. To compute Ek,i the already
computed elements Ek−1,j with j ranging from jmin . . . i are reused. It is intu-
itively evident, that for computing the end result at Ec,n, corresponding to the
reduction of an input relation of size n to size c it is not necessary to compute
the value Ec−1,n since it can never be reused in computing the values of row c.
This holds for all elements with a column index i > n− (c− k). Therefore not
only the computation of elements in the lower left corner of the E matrix can
be omitted but also the elements in the upper right corner of the matrix.

In addition to the bounds for i and j defined by PTA for variable i can be
defined a further bound.

Lemma 1. For the computation of the matrices E and J the variable i has an
upper bound which is n− (c− k).

Ek,i =


mink−1≤j<i{Ek−1,j+

SSE(si \ sj , ρ(si \ sj , 1))} k > 1 ∧ (i ≤ n− (c− k))

SSE(si, ρ(si, 1)) k = 1 ∧ s1 ≺ · · · ≺ si
∞ k = 1 ∧ ¬(s1 ≺ · · · ≺ si)

Proof. To compute elements in row c the maximum range for j is c− 1 . . . n−
1. Therefore elements Ec−1,c−1, . . .Ec−1,n−1 are arguments of the minimum
function while Ec−1,n is not used. Hence the computation of element Ec−1,n
can be avoided. To compute the row k = (c− 1) variable j varies between c− 2
and n − 2. Therefore the rightmost argument element of the min function is
Ec−2,n−2. In general this holds for all elements computed in row k and the
rightmost used element in row k − 1 is shifted by 1 in left direction. Reaching
at row k = 1 the rightmost accessed element is E1,n−(c−1).

It follows that all elements Ek,i for which i < n − (c − k) are not used in the
computation of the next row.
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Example 16. Considering a reduction of the input relation to size c = 5 to
compute the final element E5,9 the element E4,9 is not needed. This can be
extended to the lines above, E3,8 and E3,9 are superfluous. In table 6 all elements
that are not strictly needed to compute the end result are shown highlighted by
a frame.

Table 6: E matrix diagonal pruning

i = 1 2 3 4 5 6 7 8 9

k = 1 0 106667 107500 475000 612143 ∞ ∞ ∞ ∞
k = 2 − 0 45000 107500 109167 612143 ∞ ∞ ∞
k = 3 − − 0 45000 46667 109167 612143 687143 694493

k = 4 − − − 0 1667 46667 109167 184167 191517

k = 5 − − − − 0 1667 46667 109167 129017

3.2.1 Improvements

The number of pruned computations is (c−1)∗(c−2)
2 , thus independent of the size

of the input relation n but depends on the size of the reduction c.

The computation effort increases with increasing column index i. For every
value with k > 1 the term mink−1≤j<i{Ek−1,j + SSE(si \ sj , ρ(si \ sj , 1))} has
to be evaluated.

Example 17. For example to compute E3,4 the minimum has to be searched
among two values, one for j=2 and one for j=3. In this case it is assumed
that no gaps are present in the argument relation, therefore jmin = k − 1. For
E3,7 instead it is necessary to evaluate the term 5 times for j ranging from 2
to 6. Therefore the computational improvement in avoiding computations for
elements with a higher i index should be greater than avoiding the computa-
tion for lower i values, which is already implemented in the PTA algorithm by
limiting imin = k.

If the argument relation contains non adjacent tuple pairs the computation of
some values of the matrices are avoided by the upper bound imax. These cells
are situated on the right end of each row matrix, thus the same cells indicated
by diagonal pruning. Therefore for gapped datasets effectiveness of diagonal
pruning should decrease since the avoided computations overlaps. As illustrated
in table 6 nodes with value∞ are the nodes for which the computation is avoided
by presence of gaps in the dataset.
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3.2.2 Space Complexity

For both matrices the elements in the upper right corner and the lower left corner
(highlighted as framed cells in table 7) can be pruned and therefore they have
not to be stored. Thus, in each row it is necessary to store n− c+ 1 elements.
The size of the J matrix in PTAc is given by nc since in each row there are
stored n elements. The size of the matrices is in the worst case therefore n2.
With diagonal pruning the size of each row can be reduced to (n − c + 1)c.

The matrix reaches its maximum number of nodes at c = n+1
2 and is n2+2n+1

4
.

Proof.
f(n, c) = (n− c+ 1)c

∂f

∂c
= n− 2c+ 1

∂f

∂c
= 0 for c =

n+ 1

2

which is a local maxima in the range [1, n]

f(n,
n+ 1

2
) =

n2 + 2n+ 1

4

Space complexity remains therefore quadratic S(n2+2n+1
4 ) = S(n2).

In table 7 the eliminate-able cells are shown which are framed by a solid line.
The matrix can be resized if each row k is shifted by k cells to the left.

Table 7: Eliminate-able cells with diagonal and last row pruning

i = 1 2 3 4 5 6 7

k = 1 0 26, 666 67, 500 208, 333 269, 285 ∞ ∞
k = 2 − 0 5, 000 41, 666 49, 166 269, 285 ∞
k = 3 − − 0 5, 000 6, 666 49, 166 269, 285

k = 4 − − − 0 1, 666 6, 666 49, 166

The error matrix E does not require the same amount of memory as matrix J.
To compute the k-th row only the results of row k−1 are reused. Therefore only
the last two rows of the matrix have to be stored and the matrix can be replaced
by two arrays. Therefore the space complexity to store E is linear with the size
of the input relation. Unfortunately this does not hold for the J matrix where
only after the last computation the split path is decided, hence the whole matrix
has to be kept until the last element for Ek,n and Jk,n is computed.

20



3.3 Pruning in Last Row

PTA computes all values from i = k to n where i has an upper bound as
described in the previous section or by evaluation of the gap vector G. Both
bounds do not take effect for computation of row k = c. The size of the gap
vector G is always lower than c, therefore imax = n. Also the upper bound for
i in diagonal pruning is equal to n− (c− k) = n.

Since row c is the last computed row the values can not be reused in further
computation steps. The only cell that is needed is element Jc,n and therefore
Ec,n, which is the starting point of the reduction.

As shown in table 7 the nodes framed by a dotted line are not needed to compute
any further result but are computed by PTAc without optimization.

Therefore for the computation of the row k = c the variable i can be lower
bounded at value n.

Lemma 2. To compute the error and split point matrix in the last row (k =
c only the element Ec,n has to be computed, for all elements Ec,i|i < n the
computation can be omitted.

Ek,i =



mink−1≤j<i{Ek−1,j+

SSE(si \ sj , ρ(si \ sj , 1))} k > 1 ∧ k < c ∧ (i ≤ n− (c− k))

SSE(si, ρ(si, 1)) k = 1 ∧ s1 ≺ · · · ≺ si
∞ k = 1 ∧ ¬(s1 ≺ · · · ≺ si)
minc−1≤j<n{Ec−1,j+

SSE(sn \ sj , ρ(sn \ sj , 1))} k = c ∧ i = n

The proof is similar to the proof of the previous lemma and is therefore omit-
ted.

Both optimizations described reduce the computational effort of the algorithm.
However the number of avoided computations for diagonal pruning depends only
on c, the size of the reduction. For small reductions only a very limited number
of computations is avoided. For last row pruning instead the number of avoided
computations depends on the size of the relation n and on the reduction size c.
The number of non computed cells is n− c− 2.
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4 Split Point Graph as Alternative to Split Point
Matrix

In this section the second problem of PTAc, the quadratic space complexity is
addressed. First the concept of split point is analyzed and the concept of split
path is introduced. A crucial point is then the description of a new representa-
tion of the matrix J the Split Point Graph (SPG).

4.1 Split Path

The end result of a PTAc query is the reduction of the intermediary ITA rela-
tion. The points indicating where merging steps occur is therefore the crucial
information to generate the reduction itself. These points are given by the split
points stored in the matrix J. After computation of the element Jc,n a list of
split points can be obtained. In the matrix J are stored all possible split points
a reduction may encounter. The construction of the output relation begins with
split point at jc = Jc,n and indicates the first split for the reduction. All tuples
following the split point jc point are merged to size 1. The remaining tuples
(all tuples with index i ≤ jc, {s1, . . . sjc}) are then reduced to size c − 1. The
next split point jc−1 = Jc−1,jc . The iterations are repeated until a split point
with value 0 is reached. The obtained sequence is named Split Path.

Example 18. In the example relation for c = 5 the element Jc,n has value 6.
This means that in order to reduce n tuples to size c = 5, all tuples after s6 are
merged into one tuple. In the next step the remaining tuples (s1 . . . s6) have to
be reduced to size c = 4. Therefore the next split point is found at J(4,6) with
value 5, followed by J(3,5) with value 3. In table 5 is illustrated the split point
matrix for the example data. The split points are highlighted, the split path is
[6, 5, 3, 1]. The output relation is therefore z = (s1, s2⊕s3, s4⊕s5, s6, s7⊕s8⊕s9).

The output relation is then reconstructed by merging all tuples lying between
the discovered split points.

Example 19. The split path [6, 4, 3, 1] of the running example can be visualized
as depicted in figure 4. The reduction is obtained by merging tuples s2 ⊕ s3,
tuples s4 ⊕ s5 and tuples s7 ⊕ s8 ⊕ s9.

For the computation of a PTAc query it is necessary to keep the whole matrix
with all intermediary results. This is motivated by the computation of the
starting point in the last computed element Jc,n. A different value in this
element would lead to different split paths.

Example 20. Assume that in the example the last split point was 5 instead
of 6, this would lead to different merging steps, i.e. [5, 3, 2, 1] equivalent to
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i (number of tuple)
1 2 3 4 5 6 7 8 9 10

s1=(A, 1000, [1,2])

s2=(A, 600, [3,3])

s3=(A, 900, [4,4])

s4=(A, 350, [5,6])

s5=(A, 300, [7,7])

s6=(A, 300, [9,11])

s7=(B, 500, [1,5])
s8=(B, 200, [6,6])

s7=(B, 520, [7,8])

split point j = 6

split point j = 5

split point j = 3

split point j = 1

Figure 4: Splitpoints for running example, reduction to c = 5

z = (s1, s2, s3, s4 ⊕ s5, s6 ⊕ s7 ⊕ s8 ⊕ s9).

4.2 Graph Representation of the Matrix J

Another way to represent the split points of the partial reductions is a graph.
The split points are not indicated by the value of a matrix element but by edges
between nodes. The nodes are organized in levels that are equivalent to the
rows in the split point matrix. Each node is labeled with the number of the
tuple in the sequential relation which therefore ranges between 1 and n. A node
Nk,i indicates node with index i at level k. Each node on level k = 1 has no
outgoing edges. These nodes are called the terminating nodes of the split path.
The information the graph captures is the same of the split point matrix J.
In order to reduce the first i tuples to size k the edges from the starting node
Nk,i have to be followed until reaching one of the terminating nodes at level 1.
The final split path is then obtained by following the edges from source node
Nc,n.

Example 21. The graph for the example relation is shown in figure 5. Each node
highlighted by a dotted pattern can be eliminated through diagonal pruning, see
section 3. An edge between node N5,9 and node N4,6 indicates that in order to
reduce 9 tuples from size 5 to size 4 the optimal split point is after tuple s6.
The remaining tuples from s1 . . . s6 are reduced to size c = 4. The necessary
split point is indicated by the edge outgoing from node N4,5 which points to
node N3,5. Following all edges from N5,9 to level 1 the resulting split path is
[6, 5, 3, 1].

If a node on level k > 1 has no outgoing edge this means that a reduction
indicated by the node itself is not possible. This is the case for all nodes where
i < k, i.e. all reductions where the size k is greater than the number of tuples.
Another case for non possible reduction is founded due to gaps. A subset of the
sequential argument relation with size j can not been reduced to a size k if the
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subset contains more than k − 1 non adjacent tuple pairs.

Example 22. For example node N2,1 has no outgoing edge because it is not
possible to reduce the first 1 tuples to a size of c = 2. It is neither possible to
reduce the first 7 tuples to size c = 2 due to gaps in the ITA result set. Therefore
N2,7 has no outgoing edge. Remember that s5 ⊀ s6 and s6 ⊀ s7. Therefore the
minimum reduction size of tuples s1 . . . s7 is 3.

Each node can have zero or multiple incoming edges. No incoming edges denotes
split points that cannot be reached from any node of the next level. Therefore
these nodes cannot make part of any split path.

k=1

k=2

k=3

k=4

k=5

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Figure 5: Split point graph for running example

4.3 Graph Creation and Insertion of new Entries

The graph is created by inserting the nodes in each level for k = 1 . . . c. For
k = 1 nodes with label 1 to n − c + 1 are created. Each of these nodes has no
outgoing link, hence no edge has to be added.

For k > 1 nodes with labels from k to n− (c−k) are created and after the node
creation the edge corresponding to the split point has to be inserted. Since each
node has exactly one outgoing edge it is appropriate to unify in a single step
node creation and edge insertion. Three parameters are needed for this step:
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number of the level the node is inserted (k), the index of the node and the index
of the destination of the edge, i.e. the split point. The destination is always on
the adjoining upper level k − 1.

Example 23. The necessary steps to insert a node with parameters k = 2, index
4, destination 2, i.e. node N2,4 with edge pointing to N1,2 are:

1. newnode = add new node N2,4 to level k = 2

2. destnode = search node with index destination on level k = 1, the result
is N1,2

3. add edge between newnode and destnode

Figure 6 shows the graph status before and after inserting the node and edge.

k=1

k=2

1 2 3 4 5

2 3

(a) before

k=1

k=2

1 2 3 4 5

2 3 4

(b) after

Figure 6: Node insertion in Split Point Graph (example 23)

Figure 7 shows the complete evolution of the split point graph for the running
example.

4.4 Search of Destination Nodes

At each level i the nodes are inserted sequentially from index j = i . . . n−(c−i).
For each newly inserted node Ni,j the destination node has to be retrieved
among the nodes of the level i − 1. Not all nodes have to be included in the
search space. The edge outgoing from the inserted node Ni,j points to node
Ni−1,l|i− 1 < l ≤ j. If l < i− 1 a non possible reduction of the first i− 1 tuples
to a size greater than i− 1 is requested in the next step. The second condition
is motivated by the fact that the split point following split point j is necessarily
lower than j.

Example 24. Considering the example relation. To insert node N3,5 the nodes
at i = 2 from index j = 2 to index j = 4 have to be searched, see figure 8.

The nodes at each level are inserted in ascending order and therefore the set
is sorted. The complexity for searching nodes in this set is logarithmic to the
number of elements. For inserting nodes at a certain level k the index of the
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k=3

k=4

1 2 3 4 5
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4 5 6 7 8

5 6 7 8 9

Figure 7: Evolution of Split Point Graph of the running example

k=1

k=2

k=3

1 2 3 4 5

2 3 4 5 6

3 4 5

Figure 8: Search space when inserting a node N3,5 with destination node 3
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node i ranges from k to n− (c− k), therefore n− c nodes have to be inserted in
the graph. For the first node with index i = k the search space at level k− 1 is
only the node Nk−1,k−1. For the second node with index i = k + 1 the search
space at level k − 1 is given by nodes Nk−1,k−1 . . . Nk−1,k.

The computational complexity of searching step in node inserting is for each
level

∑n−c
i=1 O(log i) = O(n log n)).

Since at most n levels have to be computed the worst case complexity for the
searching step over all levels is equal to O(n2 log n) = O(n2).

In section 5.2 a solution is proposed in order to reduce this quadratic complexity
to linear.

4.5 Optimization of SPG

In the following optimizations for the split point graph are described. In par-
ticular the size of the graph can be reduced after all nodes of a level are in-
serted.

4.5.1 Orphaned Elements in Split Point Matrix J

Not all split points contained in the matrix J are useful for the computation of
the final result. Non-used elements which are superfluous for the generation of
the split path are called orphaned. A split path is constructed by following the
split points starting at element Jc,n until reaching the element in column 1. It
is noticeable that some elements can never be reached.

Example 25. In the running example the split point J2,4 cannot be reached
by any element in row 3. In the whole row k = 3 no element with value 4 is
contained. Therefore the element is orphaned. Table 8 highlights by framing
all orphaned nodes.

Table 8: Not reachable split points of the example relation

i = 1 2 3 4 5 6 7 8 9

k = 1 0 0 0 0 0 0 0 0 0

k = 2 0 1 1 3 3 5 0 0 0

k = 3 0 0 2 3 3 5 6 6 6

k = 4 0 0 0 3 3 5 6 6 6

k = 5 0 0 0 0 4 5 6 7 6
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4.5.2 Elimination of Superfluous Nodes: Path Pruning

The orphaned nodes, as explained in section 4.5.1, are equivalent to the nodes
in the split point graph that have no incoming edges. If a node has no incoming
edge it can never be part of a valid split path and therefore it can be removed
from the graph. The nodes that can be removed by diagonal pruning, i.e. the
nodes Nk,i with i > (n − (c − k)) have no incoming edge. An exception is the
start node Nc,n.

Lemma 3. The elimination of some nodes Nk,i with edge pointing to Nk−1,j
can have as a consequence the elimination of nodes Nk−1,j.

Proof. If a node Nk,i is removed, the outgoing edge to node Nk−1,j has to
be removed, too. Each node can have at most 1 outgoing edge but multiple
incoming edges. Therefore node Nk−1,j can lose all incoming edges iff Nk−1,j
has only one incoming edge. If Nk−1,j has no incoming edge it can be deleted,
otherwise not.

Example 26. In the example graph shown in figure 5 each node without incoming
edge can be removed. This is the case for nodes N1,2, N1,4, N2,4, N3,4, N4,8,
N5,5, . . . , N5,8. It is also shown that the nodes removed by diagonal pruning
have no ingoing edge.

The deletion of node Nk−1,j can lead to a deletion of a node Nk−2,l by following
the edges. This repetition terminates if either a terminating node at level 1 is
reached or if a node is not deleted, hence no changes to the lower level are made.
The elimination of some nodes and, if existing also their connected parents, is
named path pruning. If after computing all nodes of a certain level k the graph
is resized through path pruning, the graph contains only nodes that make part
of a valid partial split path and the size is therefore minimal. After computation
of the last node Nc,n the split path of the result can be obtained.

Example 27. Figure 9 shows the split point graph after computation of level
k = 2. Nodes N1,3 and N1,3 are not connected to any node at level k = 2 and
they therefore be removed.

After computation for k = 3 the nodes at k = 2 without incoming edge can
be eliminated. In the running example this is the case for node N2,4 as shown
in figure 10. Since the deletion of this node also can have an influence on the
nodes at level k = 1 it is necessary to descend the graph to k = 1 and check if
the node with incoming edge from the deleted node N2,4 has no more incoming
edges. If this is so, the node can also be removed. In the example node N1,3

cant be removed since it has another incoming link from node N2,5

After computation for k = 4 the nodes N3,4 and N3,7 can be removed. Deletion
of N3,7 leads to deletion of node N2,6 and descending the graph also node N1,5

is removed (figure 11).
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(a) before node elimination
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(b) after node elimination

Figure 9: Split point graph for running example after computation step k=2
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Figure 10: Split point graph for running example after computation step k=3
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Figure 11: Split point graph for running example after computation step k=4
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Figure 12: Split point graph for running example after computation step k=5

After insertion of all elements in the last level k = c only node N4,8 can be
removed. In figure 12 the graph after insertion of all nodes is shown. If only
node Nc,n is computed which is the necessary element to obtain the split path
as described in section 3.3 the graph reduces after path pruning step to only one
split path as shown in figure 13. Since this step is not necessary for determining
the split path of the result, this step can be omitted.

k=1

k=2

k=3

k=4

k=5

1 3

2 3 5

3 5 6

4 5 6 7 8

9

Figure 13: Split point graph for running example after computation step k=5,
only node 9 is computed

4.5.3 Path Pruning Algorithm

After the insertion of all elements of a k-level the path pruning step can be
executed. The nodes on the level k− 1 have to be accessed directly and are the
starting nodes of path pruning. Path pruning can be formulated as a recursive
function, see algorithm 1, called for every node on level k − 1.
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Algorithm 1: Function pathPrune

1 Function pathPrune(node)
2 if node has no incoming edges then
3 next = follow edge from node;
4 delete node;
5 if next exists then
6 pathPrune (next);

4.6 Complexity Analysis

In this section the dependence of the graph size on the parameters n and c of the
reduction is analyzed. Also the effectiveness of path pruning is discussed.

4.6.1 Graph Size

In the graph only the edges and therefore also the split points which are com-
puted are inserted. If a node is not reached by the next level the edge is not
inserted, hence no additional space is used in the graph. In the split point
matrix J instead all possible split points are stored, even if they can never be
reached from the higher levels. Avoiding unnecessary computations of E and
therefore values for J limits the size of the split point graph.

The number of nodes in the split point graph depends on n, the size of the
input relation, and on c, size of the reduction. As evaluated in section 3.2.2 the
theoretical size of the split point matrix is (n− c+ 1)c, reaching its maximum

with n2+2n+1
4 at c = n+1

2 . The number of nodes in the split point graph is
growing on every step for variable k, reaching its maximum at k = c. Figure 14
shows the size of the graph for the reduction of an example dataset ”climacubes”
with size n = 870 to a reduction of c = 700. As expected it grows linear with
increasing k-value. The size of the split point graph at k=700 is equal to the
theoretical size, i.e. (870− 700) ∗ 700 = 119, 000.

Figure 15 shows the measured size of the split point graph in a reduction of
the same dataset for different reduction sizes (c). As expected the size of the
graph has its maximum at c = 436 and is very low for c near to 1 and c near to
n.

4.6.2 Node Pruning Efficiency

Node pruning reduces the size of the graph. The reduction efficiency depends
on c, if c � n the reduction is more efficient. The worst case for the path
pruning efficiency is given if c is equal to n. In this case also the number of split
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Figure 14: Size of split point graph dataset climacubes, n=870, c=700 for each
k-step
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Figure 15: Theoretical Model and real measures of Split Point Graph size

points is equal to n, therefore no nodes in the split point graph with multiple
incoming edges can exist. Therefore no nodes can be pruned. Despite this fact
the number of nodes in the graph is equal to n because most insertions are
avoided by diagonal pruning.

If c is very low some nodes have more incoming edges than others. These nodes
are split points between tuples in the ITA relation where a merge would intro-
duce a high error. In presence of non adjacent tuples the nodes this phenomena
is even more evident. In fact a node is a split point between two tuples of the
sequential ITA relation. Therefore it is always contained in the split path and
this node has certainly an incoming edge. Therefore since the number of edges
between two levels is fixed to n − c + 1, i.e. the number of nodes, other nodes
must lose their incoming edges and therefore are eliminated.

This behavior is shown in figure 16. The graph depicts the maximum number
of nodes in the graph at different reduction sizes of an example dataset. The
number of nodes without path pruning is symmetrically distributed with maxi-
mum at c = n/2 + 1 as shown in figure 15. The distribution of nodes with path
pruning is skewed to the right as expected.
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Table 9: Split Point Graph maximum size, dataset SYNTH, n=1000

c nodes without pruning nodes with pruning ratio
100 90100 12261 13.61%
200 160200 31901 19.91%
300 210300 53153 25.27%
400 240400 72838 30.30%
500 250500 87713 35.02%
600 240600 94952 39.46%
700 210700 91808 43.57%
800 160800 72877 45.32%
900 90900 45392 49.94%
mean 33.60 %
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Figure 16: Maximum size of Split Point Graph, dataset SYNTH, n=1000
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4.6.3 Memory Requirements

PTAc uses a matrix with dimension |n × c| of integer values to store the split
points of the reduction. The matrix is instantiated before the computation is
executed and the size of the matrix is data independent.

In contrast to this the split point graph solution uses a data structure that
requires more space for storing a single split point (node with incoming edge)
but the number of nodes are not fixed a priori. The graph is growing during
the computation and the growing rate is data dependent due to the possibility
of node pruning.

In the split point matrix each element requires 32 bits per single split point1.
In an exemplary split point graph implementation each node requires 128 bits
of memory as described in section 6.

If in the worst case the split point graph has (n− c+ 1)c elements. Under the
assumption that in each of the path pruning steps none of the paths is pruned
the total amount of memory necessary with matrix implementation is 32nc bits
while with split point graph implementation 128(n− c+ 1)c bits.

Therefore split point graph implementation uses less memory if c > 3
4n + 1.

Since the reduction size c is normally much smaller than n, c � n, the usage
of split point graph implementation is mainly dependent on the effectiveness of
the path pruning step.

Experiments showed that in average 65% of the nodes are removed in the path
pruning step. By taking into consideration this node reduction rate the break
even point for memory usage lowers to 4

14n+ 1 = 0.28n+ 1. For c < 0.28n the
memory consumption is slightly greater but the difference is negligible. Figure
17 shows the memory consumption of matrix solution and split point graph with
and without average path pruning of a dataset with n = 1000 in function of the
reduction size c.

Since the node pruning rate for small values of c is higher than for large c-values
as described in section 4.6.2 the break even point is reduced furthermore.

5 Algorithms

In the PTA algorithm the insertion of a split point was a simple assignment of
a value in the J-matrix. This step is concerns lines 9, 15 and 22 of the PTAc
Algorithm (see algorithm 2)

To substitute the split point matrix J with a split point graph only few modifi-
cations to the algorithm are necessary. The assignments to the matrix J have to

1It is assumed that the number of elements in the input relation is less than 232, otherwise
int64 has to be used.
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Algorithm 2: Algorithm PTAc

Input: r,A,F, c
1 s← G ITA[A,F]r;
2 Initialize G,L,S,SS;
3 Initialize E,J to ∞ and 0, respectively;
4 for k = 1 to c do
5 if k ≤ |G| then imax = Gk else imax = |s|;
6 for i = k to imax do
7 if k=1 then
8 E1,i ← SSE(Si, ρ(Si, 1));
9 J1,i ← 0;

10 else
11 jmin ← max{k − 1,Gl|Gl < i ∧ l = 1, . . . , |G|};
12 if Gk−1 = jmin then
13 j ← jmin;
14 Ek,i ← Ek−1,j + SSE(si \ sj , ρ(si \ sj , 1));
15 Jk,i ← j;

16 else
17 for j = i− 1 to jmin do
18 err1 = Ek−1,j ;
19 err2 = SSE(si \ sj , ρ(si \ sj , 1));
20 if err1 + err2 < Ek,i then
21 Ek,i ← err1 + err2;
22 Jk,i ← j;

23 if err2 > Ek,i then break;

24 z← ∅, n← |s|;
25 while c > 0 do
26 j ← Jc,n;
27 z← z ∪ {sj+1 ⊕ . . .⊕ sn};
28 n← j; c← c− 1;

29 return z
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Figure 17: Memory usage theoretical model, n=1000

be modified, the graph pruning step has to be introduced and the reconstruction
of the reduced output relation (lines 24 to 28) has to be adapted. Algorithm 5
shows the modified version of PTAc.

The function SplitPointGraphInsert (algorithm 3) is used for inserting new
nodes into the split point graph. In this function the search of destination nodes
is the most expensive step (section 4.4). In section 5.2 a solution to improve
the search of nodes is proposed. Function SplitPointGraphPrune (algorithm 4)
shows the procedure for the path pruning step. In both functions it is assumed
that each node Nk,i has three properties: i - the label of the element, nextsplit
- edge to the element on the lower level (splitpoint), numchilds - a counter in-
dicating how many incoming edge the node has. The whole graph is denoted
with SPG, the set of nodes at level k is denoted as SPGk.

Algorithm 3: Function SplitPointGraphInsert

Input: index, nextsplit, k
1 newnode = add new node to SPGk index index ;
2 destnode = node ∈ SPGk−1|node.index = nextsplit;
3 add edge from newnode to destnode;

5.1 Data Structure for Split Point Graph

A possible data structure for the implementation of the split point graph can
use pointers between single nodes. A node is represented by a triple (index,
nextsplit, counter). Index is the label of the node, nextsplit is the edge to the
next node at the next lower level. Counter is used for counting the number of
incoming links and is necessary to facilitate the node pruning phase. Figure
18 shows the split point graph for the running example. All nodes, also theses
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Algorithm 4: SplitPointGraphPrune

Input: k
1 foreach node in SPGk−1 do
2 startnode = node;
3 while startnode!=NULL and startnode.numchilds==0 do
4 nextnode=startnode.nextsplit;
5 if nextnode!=NULL then
6 startnode.pathparent.numchilds–;

7 remove startnode; startnode=nextnode;

which are not are inserted in the graph, no paths have been pruned.

At each computation step for variable k the nodes are inserted sequentially and
edges between the last two levels are inserted. Thus only the last two levels are
modified. For the path pruning step the elements at level k− 1 will be accessed
sequentially and the path pruning step is started at the found nodes.

When all nodes of level k have been inserted and the graph pruning step has
been executed all nodes at level k−1 have no longer to be accessed directly, each
access can be done by following the incoming edges starting at level k.

1 2 2 0 3 2 4 0 5 1 6 0 7 0 8 0 9 0

1 0 2 1 3 2 4 0 5 1 6 1 7 0 8 0 9 0

1 0 2 0 3 2 4 0 5 1 6 2 7 0 8 0 9 0

1 0 2 0 3 0 4 1 5 1 6 2 7 1 8 0 9 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

Figure 18: Split Point Graph implementation

5.2 Optimization of Node Insertion

As explained in section 4.4 the most complex computation step in inserting a
new node is the search of the destination at level k − 1. Since the elements in
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Algorithm 5: Algorithm PTAc, modified for split point graph

Input: r,A,F, c
1 s← G ITA[A,F]r;
2 Initialize G,L,S,SS;
3 Initialize E to ∞; SPG to empty graph;
4 for k = 1 to c do
5 if k ≤ |G| then imax = Gk else imax = |s|;
6 for i = k to imax do
7 if k=1 then
8 E1,i ← SSE(Si, ρ(Si, 1));
9 SplitPointGraphInsert(i, 0, 1);

10 else
11 jmin ← max{k − 1,Gl|Gl < i ∧ l = 1, . . . , |G|};
12 if Gk−1 = jmin then
13 j ← jmin;
14 Ek,i ← Ek−1,j + SSE(si \ sj , ρ(si \ sj , 1));
15 SplitPointGraphInsert(i, j, k);

16 else
17 for j = i− 1 to jmin do
18 err1 = Ek−1,j ;
19 err2 = SSE(si \ sj , ρ(si \ sj , 1));
20 if err1 + err2 < Ek,i then
21 Ek,i ← err1 + err2;
22 SplitPointGraphInsert(i, j, k);

23 if err2 > Ek,i then break;

24 SplitPointGraphPrune();

25 z← ∅, n← |s|;
26 startnode ← SPGk,n;
27 while startnode.nextsplit != null do
28 j ← startnode.index;
29 z← z ∪ {sj+1 ⊕ . . .⊕ sn};
30 startnode = startnode.nextsplit;

31 return z
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this level are inserted in ascending order and therefore are sorted one solution
to improve the search step is to use binary search. At each level at most n
elements have to be inserted. The maximum number of levels is n, therefore the
complexity is O(n2 log n).

A solution to reduce this complexity is to use two auxiliary arrays. One contain-
ing links to the nodes of level k and one containing links to the nodes of level
k − 1. This permits random access to the nodes of the last two levels.

At each computation step for level k nodes with index k to n−c−k are inserted.
Therefore at every level n − c elements are inserted. The first element of the
auxiliary array points to node k, the second element to node k+1. The nodes can
therefore be accessed randomly through the auxiliary array by shifting the index
position by k. Figure 19 shows the split point graph with auxiliary array.

The insertion of a new node can now be redefined as in algorithm 6.

Algorithm 6: Function SplitPointGraphInsert with auxiliary arrays

Input: index, nextsplit, k
1 newnode = add new node to SPGk index index
2 last[index-k].node = newnode
3 destnode = ntl[nextsplit-k-1].node
4 add edge from newnode to destnode

An example of the used structure for the running example after computation
for k = 3 is shown in figure 19. When computing a value for k = 4 the pointer
to the destination node can be retrieved accessing the auxiliary array ntl (abbr.
next to last). When all elements at level k = 4 are computed the array ntl is
not needed any more and can be discarded, the array last becomes the new ntl
and a new set of node objects for k + 1 as well as the auxiliary array last has
to be instantiated.

6 Implementation

In the implementation used for the experiments a c++ standard vector of refer-
ences to a node structure is used to store the references to the last two k-levels.
These levels can be considered as the root nodes. After the computation of ev-
ery level the vector instance levelkminus1 is destroyed, the node objects remain
still valid because the destructor frees memory only for the vector object, the
destructor for the node element objects is not called and has to be executed
explicitly. This is done during the node pruning phase. The vector levelk is
initialized after every computation step for variable k with a new set of n−c+1
elements.

Listing 1: Declaration of the auxiliary vectors
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Figure 19: Split Point Graph implementation with auxiliary arrays

1 struct spgNode {
2 long indexNr ;
3 spgNode∗ nex tSp l i t ;
4 long numChilds ;
5 } ;
6 std : : vector<spgNode∗> l e v e l k ;
7 std : : vector<spgNode∗> l eve lkminus1 ;

Listing 2: Swap and initialization of the auxiliary vectors

1 leve lkminus1 = l e v e l k ;
2 l e v e l k = ∗new std : : vector<spgNode∗>;
3 for ( long i =0; i<=(n−c+1) ; i++){
4 spgNode∗ newNode = new spgNode ;
5 newNode−>indexNr=i ;
6 newNode−>numChilds=0;
7 newNode−>nex tSp l i t = NULL;
8 l e v e l k . push back (newNode ) ;
9 }

In the path pruning phase the nodes referenced by the vector at level k − 1 are
processed sequentially. Each referenced node with no incoming edges, i.e. with
value for the variable numChilds equal to zero, is deleted. Before the deletion the
counter of the incoming edges of the pointed node is decremented. The loop
ensures that all connected nodes are deleted.

Listing 3: Path pruning function
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1 void pathPruning ( ) {
2 for ( long i =0; i<=(n−c ) ; i++){
3 spgNode∗ startNode = leve lkminus1 [ i ] ;
4 while ( startNode−>numChilds==0 && startNode !=NULL) {
5 spgNode∗ nextNode=startNode−>nex tSp l i t ;
6 i f ( nextNode !=NULL) {
7 startNode−>pathParent−>numChilds−−;
8 }
9 delete startNode ;

10 startNode=nextNode ;
11 }
12 }
13 }
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7 Experimental Evaluation

In this section investigations on the runtime performance and space require-
ments of the proposed modifications to the PTAc algorithm are presented.

7.1 Setup and Data

The experiments run on a OS X machine with one Core i5 1700MHz processor
and 8GB of ram. The algorithms implemented in c++ used only one core of the
dual core processor. A PostgreSQL 9.2 database running on the same machine
is used as data storage medium.

For the experiments three different datasets were used: the synthetic employee
temporal data set (ETDS) donated by F. Wang [Wan09], a synthetic dataset
(SYNTH) and subset a dataset of temperature measurements of a building in
Meran ”climacubes” (CC).

The ETDS relation reports the evolution of employees in a company and con-
tains 2875697 records. Each record stores employee number, sex, department,
title, salary, and contract validity interval in months. The ITA queries over this
relation are summarized in Table 10.

The SYNTH dataset consists of only one aggregation group, the values of the
aggregation attribute are random values in the range [1;1000]. The interval
duration of the single tuples are random values with range [1;40]. No temporal
gaps are in the data.

CC relation reports temperature measurements of a building in Meran. Each
record stores the temperature of 5 sensors, humidity and the value of the con-
sumed energy in [kw/h] used for heating the building.

Table 10 reports the details of the used datasets.

Table 10: Datasets used for experiments

name grouping attributes aggregation function ITA size cmin

ETDS1 none avg(salary) 6,393 1
ETDS2 empno,deptno avg(salary) 2,844,050 331,551
ETDS3 deptno avg(salary) 57,408 9
SYNTH none avg(value) 500,000 1

CC none avg(temp) 870 1

The unmodified PTAc algorithm is compared to the two introduced optimiza-
tion. PTAc with matrix implementation and pruning (MP), PTAc with graph
implementation and pruning (DP). The implemented algorithms used for the
experimental evaluation are reported in table 11.
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Table 11: Algorithm configuration used for experimental evaluation

Label split point implementation diaonal pruning pruning last row
PTAc matrix no no
MP matrix yes yes
GP graph yes yes

7.2 Runtime of Diagonal Pruning Approach

To evaluate the influence of the pruning optimization the algorithms PTAc and
MP are compared. Figure 20 reports the runtimes of the two algorithms on
the datasets SYNTH and ETDS2. The size of the input relation is 5000, the
reduction size varies between 100 and 4600. As expected the improvement for
low values for the reduction size c is negligible. Starting from a reduction to
about 10% of the size of the argument relation the runtimes of MP are slightly
lower than those of PTAc. For reduction sizes greater than 20% of the argument
relation size the runtimes of MP decreases until approximating to 0 for reduction
sizes c near to n.
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Figure 20: Runtime in function of reduction size c, algorithms PTAc and MP

7.3 Runtime Split Point Graph Implementation

In this experiment the influence of the graph implementation on the runtimes of
the aggregation is evaluated. As expected runtimes of the algorithm with split
point graph implementation (GP) are not changed in respect to the unmodified
algorithm (PTAc). Figure 21 reports the comparison of the algorithms GP and
PTAc on the datasets ETDS2 and SYNTH at reduction rates of 1%, 5% and
10% for different sizes of the argument relation. At 1% the runtimes do not
differ. At higher reduction rates due to diagonal pruning the GP algorithm is
slightly faster. The experiments for the two datasets differ because of the data
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dependence of PTA’s optimizations. ETDS2 contains non adjacent tuples. Thus
the search space reductions do partially overlap with the already defined bounds
in the original PTAc algorithm causing a lower runtime reduction.

Table 12: Average reduction of the runtimes GP vs PTAc

Dataset Reduction size in % of sequential relation
1% 5% 10%

ETDS2 -0.30% -2.49% -8.34%
SYNTH -2.86% -5.44% -10.28%
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Figure 21: Runtime in function of size of the argument relation n, algorithms
PTAc and GP

The graph implementation (GP) has nearly the same runtimes as the algorithm
with matrix implementation (MP). The graph implementation is slightly more
complex than the matrix implementation since it requires the additional path
pruning step. Figure 22 shows the comparison of the runtime of algorithm MP
and GP. For ETDS2 a difference of average 25% is measured, for SYNTH instead
the runtimes differ in average by only 1%. This difference is caused by the data
dependence of the path pruning step. For the SYNTH dataset the path pruning
phase is less effective, hence the time required for path pruning is negligible in
relation to the overall computation.

7.4 Memory Requirements

The evaluation of the memory requirements considers the same dataset and
algorithms as the previous evaluations. Algorithm DP reduces the memory
consumption in respect to PTAc. For the comparison a node size of 128 bits and
32 bits / entry in split point matrix J is assumed. Table 13 reports the reduction
rates of memory consumption for experiments on ETDS2 and SYNTH. The
average value of the reduction is 67.6% for the SYNTH dataset and 76.52% for
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Figure 22: Runtime in function of reduction size c, algorithms GP and MP

the ETDS2 dataset. The higher rate for the dataset ETDS2 is expected due
to the presence of temporal gaps in the ITA argument relation as explained
in section 4.6.2. Figure 23 shows the memory space used by the compared
algorithms GP and PTAc on the datasets ETDS2 and SYNTH for different
reduction rates.

Table 13: Average reduction of the memory usage for algorithms GP and PTAc

Dataset Reduction size in % of sequential relation
1% 2% 5% 10%

ETDS2 -70.8% -80.5 -80.95% -73.9%
SYNTH -69.5% -75.6% -69.6% -56.3%

Figure 24 shows the ratio between the memory of the graph implementation
GP in respect to the matrix implementation MP. As expected for very small
reduction sizes (c < 10) the graph implementation requires more memory. The
minimum graph size is given by the number of nodes of the two last levels,
|SPG|min ≥ 2 ∗ (n− c+ 1). Each node requires 4 times more memory then an
entry in the split point matrix. Therefore for small reduction sizes the overhead
of the graph implementation is greater than the node reduction through path
pruning. The reductions for very small values of c induce a high error and there-
fore are normally not used for approximation of the argument relation.

For reductions c > 10 the ratio between GP and MP decreases markedly. As
expected the ratio increases for c > 10 until it reaches a local maximum at a
reduction for c = n/2. In this case the theoretical number of nodes is maximal.
Due to the data dependence of path pruning the maximum is not reached at
c = n/2 for all datasets. For the SYNTH dataset the maximum is reached at
c = 1500.

In nearly all cases, with expect to very high reduction rates to c < 0.2% of the
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Figure 23: Memory consumption in function of argument relation size n, algo-
rithms PTAc and GP
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Figure 25: Runtime and memory requirements in function of argument relation
size n for large scale dataset SYNTH
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size of the argument relation, the graph approach consumes less memory than
the matrix implementation. As Gordevičius states for reductions up to 10% of
the ITA argument relation size the error remains still very low. This is also
the range where Split Point Graph outperforms the matrix implementation in
terms of memory usage.

7.5 Scalability to Large Datasets

In the following the ability of algorithm GP for reduction of large datasets is
analyzed. The experiments does not consider the PTAc algorithm motivated by
the memory limitations of the test system. For a sequential relation with size
n = 40000 and a reduction to c = 36000 the size of the J matrix exceeds 5.3
GB of memory.

The experiments performed to analyze the possibility to reduce large datasets
to 99% and 99.9% of its original size. Although the reduction concept is usually
used for smaller reductions also these reductions could be useful. An example is
the smoothing the ITA result set. Small changes between tuples were eliminated
while higher changes remains.

The elimination of a small number of tuples can also be useful in elimination
of outliers. The error function considers not only the value difference but also
the duration of the merged tuples. If the duration of some outlier tuple is short
a merge of long tuples with a similar value could induce a higher error than a
merge of a very short outlier tuple where the value differs strongly.

In figure 25a is shown the runtime of the reduction to 99% and 99.9% of its
original size of the dataset SYNTH for varying subsets of the argument relation.
The reduction to 99% was limited to 300,000 tuples due to memory limitations.
In figure 25b is reported the memory consumption for the same experiment. As
expected for reduction sizes close to the size of the argument relation both the
required space and runtimes decrease slightly.
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8 Conclusion

In this work two optimizations of the computation of Parsimonious Temporal
Aggregation Queries are introduced. The first optimization decreases the run-
time of the computation. This is achieved by reducing the search space of the
dynamic programming scheme adopted by PTAc as described by Gordevičious
et al. The second improvement regards the memory consumption which in
PTAc is quadratic. Experiments showed that the memory requirements with
this approach can be reduced to about one third of the space used by the origi-
nal PTAc algorithm. Effectiveness of both optimizations are mainly depending
on the compression rate. Best memory reduction is achieved for the usually
adopted reduction size up to 10% and for reduction sizes greater than 80% of
the size of the argument relation. Runtime improvements affects all reduction
sizes reaching its maximum value for reductions with size is close to the size of
the argument relation. Experimental evaluation showed that with the described
optimizations PTAc can be adopted also for large scale datasets if only a small
reduction is aimed.
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[BGJ06] Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Multi-
dimensional aggregation for temporal data. In Yannis E. Ioanni-
dis, Marc H. Scholl, Joachim W. Schmidt, Florian Matthes, Michael
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