
Computing all Paths between two
Locations with a Maximal Time

Budget

Christine Lunger

supervised by

Prof. Johann Gamper

October 2015

Abstract

In my thesis I am focusing on finding all paths in a unimodal spatial
network from a source node to a target node, where the total time for a
single path is within a given time budget. Cycles are allowed as long as no
edge is traversed twice in the same direction.

This problem can be used for tour planning. If all paths are known, they
can be intersected with a relation that contains the points of interest to find
the best route. Once computed, the set of paths can be used multiple times.

The algorithms I studied to solve this problem are Breadth-First Search
(BFS), Depth-First Search (DFS), and A*. Additionally, I developed the
BFS* and the DFS* algorithm, where BFS* and DFS* are versions of BFS
and DFS that use a heuristic function to reduce the search space. I ad-
apted the first three algorithms and developed the last two to improve the
performance. The algorithms were implemented in Java and I made some
experiments to compare their runtimes for the pedestrian network of Bozen.

When comparing the runtimes of the five algorithms, BFS, DFS, A*,
BFS*, and DFS*, it becomes clear that BFS is the slowest one. The runtime
of DFS lies between BFS and the other three algorithms. The performance
of A*, BFS* and DFS* is better, because they use some heuristic function,
which is the Euclidean distance. The Euclidean distance helps to keep the
search space small, but still it becomes clear from these results that there is
a need for more efficient algorithms, if large time budgets should be used.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Problem Description and Contribution 4
1.3 Organization of the Thesis . 4

2 Preliminaries 5

3 Algorithms 6
3.1 Breadth-First Search . 6
3.2 Depth-First Search . 9
3.3 A* Algorithm . 11
3.4 BFS* . 14
3.5 DFS* . 17

4 Experimental Evaluation 19
4.1 Setup and Data . 20
4.2 Runtime Experiments . 21

5 Related Work 26
5.1 Shortest Path Algorithms . 26
5.2 Isochrones . 27

6 Conclusion and Future Work 28

1

List of Figures

1 All possible paths . 3
2 Example of a graph . 6
3 First steps in BFS . 9
4 First steps in DFS . 12
5 First steps in A* . 14
6 First steps in BFS* . 17
7 First steps in DFS* . 19
8 Runtimes Q0 . 21
9 Runtimes Q1 . 22
10 Runtimes Q2 . 23
11 Runtimes Q3 . 24
12 Runtimes Q4 . 25
13 Runtimes Q5 . 25

2

1 Introduction

1.1 Motivation

Finding the right path has always been a problem. Already in the Stone Age
travelling and finding the right way had a deep impact on live. Nowadays
we have different reasons to travel and a lot more information available, but
the problem is still the same: finding the best path.

There are now many tools to help us to find the best path, such as Google
Maps or TomTom. These and other companies that work on routing-related
projects compute often in addition to the shortest path some alternatives
that should be short and significantly different from the shortest path and
other alternatives.

Example 1. Consider the case you are in the Computer Science Faculty
Building of the Free University of Bolzano-Bozen and you want to make a
break of twenty minutes. You just want to go out for a few minutes and
return in time. As you do this more often and do not want to take always the
same route, you calculate all the paths and before starting you decide which
path to take. The result you want to get is something like in Figure 1. The
black lines represent the pedestrian network of Bozen, the red lines mark
the streets that are part of a path for which at most 20 minutes are needed
with an average walking speed of 0.5m/sec. The star is the source and the
target node, which are the same in this case.

Figure 1: All possible paths

3

1.2 Problem Description and Contribution

The problem I am focusing on is finding all paths in a static unimodal spatial
network from a source node to a target node, where the total time for a single
path is less than or equal to the time in the time budget. Source and target
do not need to be different. In addition, the walking speed is considered for
the computation of the cost, as the cost is the time needed to traverse an
edge. As the network is a pedestrian one, both directions between two nodes
are possible. It is also possible to have cycles in a path, but an edge can just
be traversed once in both directions. In other words, one can traverse the
edge in one direction and return from the other one. The target node can
be several times on the path, but a path has always to end with the target
node, i.e., a path to the target can go beyond the target and then return
using the same edges in reverse order and direction or on another path.

The result is the collection of all paths from source to target, and not
the set of all edges that are part of a path. These solutions are different,
because the first one is a collection of paths and the second one a collection
of edges and not all combinations of the edges that are part of a path respect
the time constraint and build a path. The network I use has discrete space,
continuous time mode, i.e. the user can traverse the edges whenever he
wants, but can just start and stop at a node, and not in between.

Two basic algorithms to solve the problem of finding all paths are Depth
First Search and Breadth First Search. They both expand the nodes of the
underlying network until they run out of nodes or meet some stop condition.
The A* Algorithm uses additionally some heuristic function to reduce the
search space.

The main contributions are:

• Adaption of Breadth-First Search (BFS), Depth-First Search (DFS),
and A* for the problem of computing all paths between two nodes
with a given maximal time budget.

• Development of BFS* and DFS* as versions of BFS and DFS that use
a heuristic function.

• Experimental evaluation of the algorithms in terms of runtime.

1.3 Organization of the Thesis

This thesis in organized as follows: In Section 2, I will introduce some
preliminary concepts, like pedestrian network, path in a spatial network,
and Euclidean distance. Then, I will explain the algorithms I found to solve
the problem, which are BFS, DFS, A*, BFS*, and DFS*, in Section 3. In
Section 4 I will compare the algorithms. For the comparisons of the runtime,
I use the pedestrian network of Bozen. In the end I will talk about some
related work in Section 5.

4

2 Preliminaries

In this section, I provide a formal definition of a pedestrian network and the
Euclidean distance. As I decided to focus on paths for pedestrian networks,
I need to define it here.

Definition 2.1. (Pedestrian Network) A pedestrian network is a directed
graph PN = (V,E, λ), where V is a set of vertices (nodes) and E ⊆ V ×V is
a set of edges. λ : E 7→ R+ is a function that assigns to each edge (u, v) ∈ E
a positive real number that represents the length of the edge.

Nodes represent the beginning or the end of a street segment or a cross-
road, edges represent street segments, and λ models the length of a street
segment. Through walking in a pedestrian network is typically allowed in
both directions, it is modelled as a directed graph and represents a street
segment as a pair of edges of the same length but opposite directions.

Definition 2.2. (Path, Path Cost) A path from a source node vs to a target
node vt is defined as a sequence of connected edges p (vs, vt) = 〈x1, . . . xk〉,
where xi = (vi, vi+1). The path cost is the sum of the costs of the edges
γ(〈x1, . . . xk〉) =

∑k
n=1 λ (xn).

Definition 2.3. (Adjacent Edge) An edge e ∈ E is adjacent to a node
v ∈ V , if e = (v, x), where x ∈ V .

Definition 2.4. (Cycle) A cycle is a path where both endpoints coincide.
A cycle is thus a sequence of connected edges c (vs, vt) = 〈x1, . . . xk〉, where
xi = (vi, vi+1) and vs = vt.

There is also a need to define the Euclidean distance and the Euclidean
Lower-Bound Property, because they are used for the A* Algorithm and I
used them to improve the performance of Depth-First Search and Breadth-
First Search. The definition of the network distance is needed for the defin-
ition of the Euclidean Lower-Bound Property, as it says that the Euclidean
distance lower bounds the network distance.

Definition 2.5. (Network distance, Shortest Path) The network distance
dN (vs, vt) from a source node vs to a target node vt is defined as the min-
imum cost of any path from vs to vt, if such a path exists, and∞ otherwise.
The path with the minimum cost is the shortest path.

Definition 2.6. (Euclidean Distance) The Euclidean distance between two
points p = (xp, yp) and q = (xq, yq) in the plane is defined as follows:
de (p, q) =

√
(xp − xq)2 + (yp − yq)2, where p and q are two points in a

rectangular xy Cartesian coordinate system. The distance is also the length
of the straight segment, having p and q as its endpoints.

5

Definition 2.7. (Euclidean Lower-Bound Property) The Euclidean Lower-
Bound Property states that for any two nodes vi and vj , the Euclidean
distance, de (vi, vj), lower bounds the network distance, dN (vi, vj), i.e.
de (vi, vj) ≤ dN (vi, vj).

The Euclidean Lower-Bound Property means that there cannot be a path
from vi to vj that is shorter than the Euclidean distance, as there cannot
be a shorter path than the straight connection of the two nodes.

Definition 2.8. (Set of all Paths between two Locations with a Maximal
Time Budget) The set of all paths between two locations vs and vt with a
maximal time budget t is defined as AP = {p|γ (p (vs, vt)) ≤ t}

The set of all paths between two locations with a maximal time budget
is the set of all path AP such that the cost for the paths that are in the set
is less than the time budget.

3 Algorithms

In this section, I am going to explain the algorithms in detail. All the
algorithms were implemented in Java. I will use the graph in Figure 2 to
illustrate how the different algorithms work. The numbers near the arrows
represent the length of the edge, which is in both directions the same. The
time budget t = 11, the walking speed ws = 1, A is the source node and E
is the target node.

Figure 2: Example of a graph

3.1 Breadth-First Search

Breath-First Search (BFS) visits first all the nodes in a graph that are k
edges away from the source and then it goes on with the nodes that are k+1

6

edges away. It continuous to do this until no more nodes are reachable.
Breath-First Search uses a queue to store the nodes that are still to be
expanded. Therefore, it may need a non-trivial storage space. [6]

Algorithm 1 shows the Breadth-First Search. The algorithm takes the
source, the target, the time budged in seconds, and the walking speed in
meters per second as parameters and returns a collection of paths.

My implementation of the Breadth-First Search starts by enqueueing all
the adjacent edges of the source node. Then it goes through all the elements
in the queue. First, it increases the current cost by the length of the edge
divided by the walking speed and adds the current edge to the current path.
If the end node of the current edge is the target, then a new path was found.
If the cost for that path, which is the current cost, is less than or equal to the
time budget, then the new path is added to the collection of the found ones.
Afterwards all the adjacent edges of the end node of the current edge are
enqueued, if the current cost is less than the time budget, which means that
there could be enough time to traverse another edge. Another condition for
enqueueing an edge is that it is not already contained in the current path.
The method returns when there are no more elements in the queue.

Example 2. Figure 3 illustrates a few steps of the BFS algorithm, using
the network in Figure 2. A is the start node and E is the target node. The
time budget is 11 and the average walking speed is for simplicity 1.

• First, node A is expanded (Fig. 3a). The cost to reach B is 3 and to
reach C from A is 5. The costs are shown between the brackets. B
and C are enqueued.

• Then, B is expanded (Fig. 3b). The nodes next to B are A and
E. To reach A from B the cost is 3, so the total cost for the path
〈(A,B) , (B,A)〉 is 6. To reach E from B the edge of length 7 has to
be traversed. Therefore, the cost to reach E from A is 10. A and E
are enqueued.

• C is the next node in the queue. It is expanded next (Fig. 3c). The
adjacent nodes to C are A and D, and the costs to reach them from
A are 10 and 11 respectively. Again, the nodes are enqueued.

• Figure 3d shows the next step. A is the next node that is expanded.
B and C are the adjacent edges. As the path to A already contains
the edge e = (A,B), node B is not enqueued anymore. C is the only
node that is enqueued.

• The next node in the queue is E (Fig. 3e). E is also the target node.
Therefore, a new path was found: p = 〈(A,B) , (B,E)〉. The cost
for the path is 10. As 10 is still below the time limit, B and D are
enqueued.

7

Algorithm 1 Breadth-First Search

1: procedure BFS(source, target, timeBudget, walkingSpeed)
2: queue← ∅
3: foundPaths← ∅
4: adjacentEdges← source.adjacentEdges
5: for all edge ∈ adjacentEdges do
6: queue.enqueue (edge, ∅, 0)
7: end for
8: while queue 6= ∅ do
9: qo := queue.dequeue ()

10: currentEdge := qo.currentEdge
11: currentPath := qo.currentPath
12: cost := qo.cost+ currentEdge.length/walkingSpeed
13: currentPath.add (currentEdge)
14: if currentEdge.endNode = target then
15: startNode := currentPath.firstEdge.startNode
16: endNode := currentEdge.endNode
17: if cost ≤ timeBudget then
18: newPath := Path (startNode, endNode, cost, currentPath)
19: foundPaths.add (newPath)
20: end if
21: end if
22: adjacentEdges := currentEdge.endNode.adjacentEdges
23: if cost < timeBudget then
24: for edge ∈ adjacentEdges do
25: if edge /∈ currentPath then
26: queue.enqueue (edge, currentPath, cost)
27: end if
28: end for
29: end if
30: end while
31: return foundPaths
32: end procedure

• Afterwards the next node is expanded, which is A (Fig. 3f). The edge
e = (A,C) is already contained in the current path. Therefore, only
B is enqueued.

• The algorithm continues until the queue is empty.

8

(a) (b) (c)

(d) (e) (f)

Figure 3: First steps in BFS

3.2 Depth-First Search

Depth-First Search (DFS) follows a different approach from Breadth First
Search. It solves the problem by making as much forward progress as pos-
sible and by assuming that the target is not far away. That means, randomly
select a direction whenever one has to be chosen and go on in that direction,
marking where you have come from. Whenever a dead end is reached or
the only possible progress is by revisiting a state, go back until a branch is
found that is not explored and continue in that direction. [6] Depth-First
Search uses a stack to store the information needed.

Algorithm 2 shows the Depth-First Search. The algorithm takes the
source, the target, the time budget in seconds, and the walking speed in
meters per second as parameters and returns a collection of paths.

My implementation of the Depth-First Search starts by pushing all the
adjacent edges of the source node onto the stack, together with the inform-
ation about the current path, which is empty at the beginning, and the
current cost, which is zero. I store also the information about the current
path and the current cost, because each node can be visited more than once
and so it is not possible to store the information in the node. After the
initialization of the stack, it iterates though all the elements on the stack.
In each iteration, it adds the current edge to the current path and the cost
for traversing the current edge to the current cost. If the end node of the
current edge is the target and the cost for the path is less than the given

9

maximal cost, the time budget, then a new path was found. The new path
is added to the collection of the found ones. Then, if the current cost is
less than or equal to the given maximal cost, the adjacent edges of the end
node of the current edge are pushed onto the stack, if they are not already
contained in the current path. The method returns when there are no more
elements on the stack.

Algorithm 2 Depth-First Search

1: procedure DFS(source, target, timeBudget, walkingSpeed)
2: stack ← ∅
3: foundPaths← ∅
4: adjacentEdges← source.adjacentEdges
5: for all edge ∈ adjacentEdges do
6: stack.push (edge, ∅, 0)
7: end for
8: while stack 6= ∅ do
9: so := stack.pop ()

10: currentEdge := so.currentEdge
11: currentPath := so.currentPath
12: cost := so.cost+ currentEdge.length/walkingSpeed
13: currentPath.add (currentEdge)
14: if currentEdge.endNode = target then
15: startNode := currentPath.firstEdge.startNode
16: endNode := currentEdge.endNode
17: if cost ≤ timeBudget then
18: newPath := Path (startNode, endNode, cost, currentPath)
19: foundPaths.add (newPath)
20: end if
21: end if
22: adjacentEdges := currentEdge.endNode.adjacentEdges
23: if cost < timeBudget then
24: for edge ∈ adjacentEdges do
25: if edge /∈ currentPath then
26: stack.push (edge, currentPath, cost)
27: end if
28: end for
29: end if
30: end while
31: return foundPaths
32: end procedure

Example 3. Figure 4 illustrates a few steps of the DFS algorithm, using
the network in Fig. 2. A is the source node and E the target. The time

10

budget is 11 and the average walking speed is for simplicity 1.

• First, node A is expanded (Fig. 4a), and C and B are pushed onto
the stack. The distance to B is 3 and to C is 5, which is shown in the
brackets.

• The next step is to expand B (Fig. 4b). The adjacent nodes to B are
A and E. A is 3 away from B and E is 7 away, so the total cost to
reach A from A through B is 6 and to reach E through B is 10.

• DFS then continues by expanding A (Fig. 4c). The only node to be
added to the stack is in this case C, because the edge e = (A,B) is
already contained in the path to A.

• The next node that is extracted from the stack is C (Fig. 4d). The
cost from C is already 11. Therefore, no path can be found to E that
is shorter than 11 continuing the path p = 〈(A,B) , (B,A) , (A,C)〉.

• On figure 4e A and C are not shown anymore, because they cannot
be part of a path. E is expanded next, as it is the next node on the
stack. B and D are the adjacent nodes and have a distance of 17 and
16 to the source respectively. E is also the target node. The new path
is p = 〈(A,B) , (B,E)〉 and the cost for it is 10.

• The algorithm continues to look for a path and pops B from the stack
(Fig. 4f). The cost for B is greater than the time limit. Therefore, the
adjacent nodes are not pushed onto the stack.

• The algorithm continues like this until no more nodes are on the stack.

3.3 A* Algorithm

The A* Algorithm is an iterative, ordered search that maintains a set of
states to explore in an attempt to reach the target. At each iteration, A*
uses an evaluation function f∗ (n) to select a state n from the set of states to
explore whose f∗ (n) has the smallest value. f∗ (n) = g∗ (n) +h∗ (n), where:

• g∗ (n) estimates shortest path from source to n

• h∗ (n) estimates shortest path from n to target

• f∗ (n) estimates shortest path from source to target through n

g∗ (n) can be computed on the fly by recording with each state its dis-
tance from the start. [6]

Algorithm 3 shows the A* Algorithm. The algorithm takes the source,
the target, the time budget in seconds, and the walking speed in meters per
second as parameters and returns a collection of paths.

11

(a) (b) (c)

(d) (e) (f)

Figure 4: First steps in DFS

My implementation of A* starts by checking if the Euclidean distance
from source to target is less than the time budget. If that is the case,
it enqueues all the adjacent edges of the source node, together with the
information about the path so far, which is empty, and the cost so far,
which is zero as no edge was traversed so far. Then it goes one by iterating
through the priority queue. In each iteration, it dequeues an element and
adds the cost for traversing the current edge to the cost so far and the
current edge to the current path. Afterwards it checks if the end node of
the current edge is the target and the cost is within the time budget. If that
is the case, the newly found path is added to the found paths, otherwise it
just continues by checking if it can still go on, which means that the cost
so far plus the Euclidean distance to the target is less than the time in the
time budget. In that case, the adjacent edges to the end node of the current
edge are inserted into the priority queue, if they are not already contained
in the current path, together with the cost so far and the current path. The
method returns when there are no more elements in the queue.

Example 4. Figure 5 illustrates a few steps of the A* algorithm, using the
network in Figure 2. A is the source node and E is the target. The average
walking speed is for simplicity 1 and the time budget is 11. The first number
in the brackets of the path trees in Figure 5 is the value for g∗ (n), the cost
so far, and the second number is the value for h∗ (n), the estimate for the
cost to reach the target from n on.

12

Algorithm 3 A*

1: procedure A*(source, target, timeBudget, walkingSpeed)
2: adjacentEdges← ∅
3: priorityQueue← ∅
4: foundPaths← ∅
5: if distanceToTarget <= timeBudget then
6: adjacentEdges := source.adjacentEdges
7: for all edge ∈ adjacentEdges do
8: priorityQueue.enqueue (edge, ∅, 0)
9: end for

10: while priorityQueue 6= ∅ do
11: qo := priorityQueue.dequeue ()
12: currentEdge := qo.currentEdge
13: currentPath := qo.currentPath
14: cost := qo.cost+ currentEdge.length/walkingSpeed
15: currentPath.add (currentEdge)
16: if currentEdge.endNode = target then
17: startNode := currentPath.firstEdge.startNode
18: endNode := currentEdge.endNode
19: if cost ≤ timeBudget then
20: newPath := Path (startNode, endNode, cost, currentPath)
21: foundPaths.add (newPath)
22: end if
23: end if
24: adjacentEdges := currentEdge.endNode.adjacentEdges
25: if cost+ distanceToTarget <= timeBudget then
26: for edge ∈ adjacentEdges do
27: if edge /∈ currentPath then
28: priorityQueue.enqueue (edge, currentPath, cost)
29: end if
30: end for
31: end if
32: end while
33: end if
34: return foundPaths
35: end procedure

• First, A is expanded (Fig. 5a). The value for f∗ (n), the estimated
cost from source to target through A, is 9. B and C are enqueued.

• The next node that is expanded is B, because f∗ (B) = 10 and
f∗ (C) = 15, and the node with the smallest value for f∗ (n) is chosen
(Fig. 5b). A and E are the adjacent nodes to B.

13

• E is dequeued and expanded next (Fig. 5c). As E is the target, a new
path was found: p = 〈(A,B) , (B,E)〉. The algorithm enqueues the
adjacent nodes B and D, because f∗ (E) = 10 is less than the time
budget 11.

• Now the node to dequeue is A. The value for f∗ (A) is greater than
the time limit. Therefore, there cannot be found a path to E from
this A on (Fig. 5d).

• The same is for C (Fig. 5e). The estimated cost is too high and
therefore no adjacent node is enqueued.

• The only nodes in the queue are B and D. The value for f∗ (B) = 24
and f∗ (D) = 22. D has the smaller value and is considered next
(Fig. 5f). Its value is higher than the allowed one, so no node is
enqueued.

• The algorithm continues until the queue is empty.

(a) (b) (c)

(d) (e) (f)

Figure 5: First steps in A*

3.4 BFS*

To optimize the Breadth-First Search I changed the condition for continuing
the search. Only if the sum of the current cost and the Euclidean distance
from the end node of the current edge to the target is less than or equal to

14

the time in the time budget, the adjacent edges are pushed onto the stack
together with the information about the current path and the current cost.
As of the Euclidean Lower-Bound Property, we can exclude that there can
be found a path to the target, if the sum of the cost so far and the Euclidean
distance to the target are greater than the time budget. I used the planar
geometry, because the network spans only over a small area and the mistake
is therefore minimal. The asterisk (*) next to the name of the algorithm
indicates that some heuristic function is used to restrict the search space.

Algorithm 4 shows the BFS* Algorithm. The algorithm takes the source,
the target, the time budget in seconds, and the walking speed in meters per
second as parameters and returns a collection of paths.

The implementation of the BFS* is almost the same as the implementa-
tion of the BFS. The only difference lies in the condition for enqueueing an
edge. In BFS the condition is that the cost so far has to be less than the
time budget. BFS* includes also the estimated distance, i.e. the sum of the
cost so far and the Euclidean distance to the target has to be within the
time budget. This reduces the search space, because it forces the algorithm
to stop going in one direction, when it gets out of range of the target.

Example 5. Figure 6 illustrates a few steps of the BFS* algorithm, using
the network in Figure 2. A is the source node and E is the target. The
average walking speed is for simplicity 1 and the time budget is 11. The
first number in the brackets of the path trees in Figure 6 is the the cost so
far, and the second number is the estimate for the cost to reach the target
from the current node on.

• First, A is expanded (Fig. 6a). The estimated cost from A to E is 9.
That is inside the time budget, so the adjacent nodes B and C are
enqueued.

• Like BFS, BFS* follows the first in first out principle (FIFO), i.e. it
selects first the nodes that are k edges away from the source and then
the nodes that are k + 1 edges away, because the nodes on the k-th
level were enqueued first. Therefore, the node that is expanded next
is B (Fig. 6b), followed by C (Fig. 6c). While the estimated cost to
the target through B is still inside the time budget, it is too high to
enqueue the adjacent nodes for C.

• The value for A, the next node in the queue, is like the value for C,
too high (Fig. 6d). Thus, the adjacent nodes to A are not enqueued.

• Figure 6e shows the next step. The node E is expanded and a new
path was found (Fig. 6e). The new path is p = 〈(A,B) , (B,E)〉 and
the cost for it is 10. The adjacent nodes to E are B and D.

• B is enqueued before D and is therefore the next node to be considered
(Fig. 6f). The estimated cost for the path through B is 24. That is

15

Algorithm 4 BFS*

1: procedure BFS*(source, target, timeBudget, walkingSpeed)
2: adjacentEdges← ∅
3: queue← ∅
4: foundPaths← ∅
5: if distanceToTarget <= timeBudget then
6: adjacentEdges := source.adjacentEdges
7: for all edge ∈ adjacentEdges do
8: queue.enqueue (edge, ∅, 0)
9: end for

10: while queue 6= ∅ do
11: qo := queue.dequeue ()
12: currentEdge := qo.currentEdge
13: currentPath := qo.currentPath
14: cost := qo.cost+ currentEdge.length/walkingSpeed
15: currentPath.add (currentEdge)
16: if currentEdge.endNode = target then
17: startNode := currentPath.firstEdge.startNode
18: endNode := currentEdge.endNode
19: if cost ≤ timeBudget then
20: newPath := Path (startNode, endNode, cost, currentPath)
21: foundPaths.add (newPath)
22: end if
23: end if
24: adjacentEdges := currentEdge.endNode.adjacentEdges
25: if cost+ distanceToTarget <= timeBudget then
26: for edge ∈ adjacentEdges do
27: if edge /∈ currentPath then
28: queue.enqueue (edge, currentPath, cost)
29: end if
30: end for
31: end if
32: end while
33: end if
34: return foundPaths
35: end procedure

not in the time budget anymore. The adjacent nodes to B are not
enqueued.

• The algorithm continues until the queue is empty.

16

(a) (b) (c)

(d) (e) (f)

Figure 6: First steps in BFS*

3.5 DFS*

To reduce the runtime of the Depth-First Search I used again the Euclidean
distance. It restricts the number of edges that are enqueued. As already
explained previously, the Euclidean distance is a lower bound to the network
distance. Therefore, if the sum of the cost so far and the Euclidean distance
is lower than the time budge, there could exists a path that reaches the
target in time.

Algorithm 5 shows the DFS* Algorithm. The algorithm takes the source,
the target, the time budget in seconds, and the walking speed in meters per
second as parameters and returns a collection of paths.

This algorithm is very similar to DFS. The only difference lies in the
condition for pushing an edge onto the stack. While DFS just considers the
cost so far, DFS* considers the Euclidean distance to the target too.

Example 6. Figure 7a illustrates a few steps of the DFS* algorithm, using
the network in Figure 2. A is the start node and E is the target. The time
budget is 11 and the average walking speed is for simplicity 1. The first
number in the brackets of the path trees in Figure 7 is the the cost so far,
and the second number is the estimate for the cost to reach the target from
the current node on.

• First, A is considered (Fig. 7a). As the estimated cost from A to E is
9, the adjacent nodes C and B are pushed onto the stack.

17

Algorithm 5 DFS*

1: procedure DFS*(source, target, timeBudget, walkingSpeed)
2: adjacentEdges← ∅
3: stack ← ∅
4: foundPaths← ∅
5: if distanceToTarget <= timeBudget then
6: adjacentEdges := source.adjacentEdges
7: for all edge ∈ adjacentEdges do
8: stack.push (edge, ∅, 0)
9: end for

10: while stack 6= ∅ do
11: so := stack.pop ()
12: currentEdge := so.currentEdge
13: currentPath := so.currentPath
14: cost := so.cost+ currentEdge.length/walkingSpeed
15: currentPath.add (currentEdge)
16: if currentEdge.endNode = target then
17: startNode := currentPath.firstEdge.startNode
18: endNode := currentEdge.endNode
19: if cost ≤ timeBudget then
20: newPath := Path (startNode, endNode, cost, currentPath)
21: foundPaths.add (newPath)
22: end if
23: end if
24: adjacentEdges := currentEdge.endNode.adjacentEdges
25: if cost+ distanceToTarget <= timeBudget then
26: for edge ∈ adjacentEdges do
27: if edge /∈ currentPath then
28: stack.push (edge, currentPath, cost)
29: end if
30: end for
31: end if
32: end while
33: end if
34: return foundPaths
35: end procedure

• Like DFS, DFS* follows the last in first out principle (LIFO), i.e. the
last node that is pushed onto the stack is popped out first. B is on
top of the stack and is extracted and expanded next (Fig. 7b). Its
estimated cost is 10. The adjacent nodes are A and E. Both are
added to the stack.

18

• Then A is on top of the stack (Fig. 7c). The cost so far (6) plus the
Euclidean distance from A to the target (9) is greater than the time
in the time budget. The adjacent nodes to A are not pushed onto the
stack.

• Figure 7d show the next step, the expansion of E, which is the target,
and the newly found path p = 〈(A,B) , (B,E)〉.

• The estimated cost for the path through B, the next node on the stack,
is 24 and thus above the time limit (Fig. 7e).

• The same is valid for D (Fig. 7f). Both times, no node is added to the
stack.

• The algorithm finishes when no more elements are on the stack.

(a) (b) (c)

(d) (e) (f)

Figure 7: First steps in DFS*

4 Experimental Evaluation

In this section, I am going to compare the algorithms of the previous section
in terms of runtime. The runtime includes also the time for reading all the
nodes and edges from the database, which is on average 122 milliseconds.

19

4.1 Setup and Data

The database and the JVM run on the same computer, a Lenovo B570e
2.2GHz Intel Premium B960 with 4GB of RAM. The database server con-
sists of a PostgreSQL server version 9.3.9. For the evaluation the pedestrian
network of Bozen is used. The relation bz edges contains 7287 entries, from
which 6484 are edges of the pedestrian network. Additionally, the relation
bz nodes is used, which has 3245 entries and contains the nodes of both
pedestrian and public transport system network. The length of the edges
is between 0.72 and 5213.4 meters, and on average 144.4 meters. The aver-
age walking speed is in all experiments 0.5m/sec. The runtime is given in
milliseconds.

There are six classes of queries:

• Q0: Source and target are the same node

• Q1: The network distance between source and target node is below
240 meters.

• Q2: The network distance between source and target node is between
240 and 480 meters.

• Q3: The network distance between source and target node is between
480 and 720 meters.

• Q4: The network distance between source and target node is between
720 and 960 meters.

• Q5: The network distance between source and target node is between
960 and 1200 meters.

According to Nielsen [7] the basic advice regarding response time is the
following:

• 0.1 second is about the limit for giving the user the impression that
the system is reacting instantaneously. No special feedback should be
necessary, except for displaying the result.

• 1.0 second is about the limit where the user will notice the delay, but
his flow of though stays uninterrupted. The user loses the feeling of
operating directly on the data, but no special feedback is necessary.

• 10 seconds is about the limit for keeping the attention of the user
focused. For longer delays, special feedback is needed, as the user will
want to perform other tasks while waiting for the computer to finish.
There should be a feedback indicating how much longer the computer
will take.

20

4.2 Runtime Experiments

For each query ten examples are taken. For the computation of the runtime,
the algorithms run five times per algorithm and per time budget. The time
budgets lie between 1 and 35 minutes. Then the arithmetic mean is taken
from the runtimes for each query, algorithm, and time budget. The figures 8,
9, 10, 11, 12, 13 show the results for the different queries. The y-axis is in
logarithmic scale, so that the differences for small time budgets are better
visible.

Q0 is the set of queries, where source and target are the same node.
Every path contains at least one cycle, but usually there are more. The
simplest path for this queries is to traverse one adjacent edge and return on
the same edge. Figure 8 shows the results until the algorithm reaches an
average runtime around one second. If the time budget is very small or the
edges are long, it can happen that no paths are found.

BFS is the first algorithm to reach the limit of one second, which is the
limit where the user notices the delay, according to Nielsen. The average
runtime is 1.561 seconds with a time budget of 25 minutes. DFS is the next
one to reach the limit. For a time budget of 26 minutes it needs on average
1.142 seconds. The runtime of A*, DFS*, and BFS* is at a time budget of
half an hour around one second. For A* it is 1.125 seconds, for BFS* it is
944 milliseconds, and for DFS* it is 958 milliseconds. These results show
that BFS is the worst one, followed by DFS. A*, BFS*, and DFS* have
comparable results and are clearly better than the other two, but DFS* is
the best one for the queries of Q0.

0 5 10 15 20 25 30
251

398

631

1,000

1,580

Time budget[min]

R
u

n
ti

m
e[

m
se

c]

A*
BFS

BFS*
DFS

DFS*

Figure 8: Runtimes Q0

Figure 9 shows the results for the queries in Q1. The length of the

21

shortest path from source to target for the queries in Q1 is less than 240
meters, but source and target are different. The figure shows the results
until the algorithm reaches an average runtime around one second.

BFS is again the first algorithm to reach the limit of one second, which is
the limit where the user notices a delay. At a time budget of 25 minutes its
average runtime is 1.673 seconds. Again DFS reaches a runtime of over one
second before DFS*, BFS*, and A* reach it. Its average runtime is 1.136
seconds with a time budget of 18 minutes. At a time budget of 25 minutes
DFS*, BFS*, and A* have an average runtime over one second. DFS* needs
1.150, BFS* 1.437, and A* 1.673 seconds. Again BFS is the slowest one and
DFS* the fastest one.

0 5 10 15 20 25
251

398

631

1,000

1,580

Time budget[min]

R
u

n
ti

m
e[

m
se

c]

A*
BFS

BFS*
DFS

DFS*

Figure 9: Runtimes Q1

In Figure 10 the runtimes for the queries of Q2 are shown. The nodes
of source and target in Q2 are at least 240 meters apart and at most 480.
If the walking speed is 0.5m/sec, like it is the case in these experiments, a
time budget of at least 480 seconds, or 8 minutes is needed. While BFS and
DFS look for a path, DFS*, BFS*, and A* stop immediately, if the time
budget is too low and the Euclidean distance is not too far from the actual
cost of the shortest path. The figure shows the results until the algorithm
reaches an average runtime around one second.

BFS and DFS are the first to reach the limit, like before. BFS reaches
the limit of one second at 26 minutes of time budget. The average runtime of
DFS is at 939 milliseconds with a time budget of 27 minutes. DFS*, BFS*,
and A* are faster and reach the limit at a time budget of 29 minutes. Here
the average runtime of A* is a bit faster than the runtime for DFS*. For
A* it is 1.246 seconds, BFS* needs 1.272 seconds, and DFS* 1.266 seconds.

The queries of Q3 use examples, where source and target are between

22

0 5 10 15 20 25 30
251

398

631

1,000

Time budget[min]

R
u

n
ti

m
e[

m
se

c]

A*
BFS

BFS*
DFS

DFS*

Figure 10: Runtimes Q2

480 and 720 meters apart. Figure 11 shows the results. A time budget of
at least 16 minutes, or more is needed to reach the target, if the we assume
an average walking speed of 0.5m/sec. For lower time budgets no path can
be found. BFS and DFS try to compute a path and expand the nodes as
long as they have enough time. A*, DFS*, and BFS* do not expand the
nodes, as long as the time budget is not high enough to traverse a distance
of the Euclidean distance from source to target. Therefore, BFS and DFS
need some time to compute, also for low time budgets, while the other three
do not. The figure shows the results until the algorithm reaches an average
runtime around one second.

The average runtime for BFS reaches the limit of one second at a time
budget of 20 minutes. Its runtime is 1.012 seconds. DFS is again faster
than BFS. It reaches the limit at 23 minutes of time budget and needs for
that time budget on average 1.189 seconds. For the queries of Q3 A*, BFS*,
and DFS* reach the limit of one second not at the same time budget. A*
is the first of the three to come near the limit. It has a runtime of 929
millisecond at a time budget of 29 minutes. With one minute more, so at 30
minutes, BFS* has an average runtime of 926 milliseconds. Again with one
minute more, DFS* reaches a runtime of 909 milliseconds on average. For
the queries of Q3 the order in which the algorithms come near the limit is:
BFS, DFS, A*, BFS*, DFS*.

Figure 12 shows the results for Q4. The shortest path between source
and target is between 720 and 980 meters long. That means that a time
budget of more than 24 minutes is needed. BFS and DFS search also for
lower budgets a path, but cannot find one. DFS*, BFS*, and A* need a time
budget that is high enough to traverse a path of the length of the Euclidean

23

0 5 10 15 20 25 30
251

398

631

1,000

Time budget[min]

R
u

n
ti

m
e[

m
se

c]

A*
BFS

BFS*
DFS

DFS*

Figure 11: Runtimes Q3

distance before they start looking. The figure shows the results for BFS and
DFS until the algorithm reaches an average runtime around one second and
for A*, BFS*, and DFS* until a time budget of half an hour.

Like before, BFS is the first to cross the limit of one second. It reaches
2.036 seconds of runtime at 23 minutes of time budget. DFS has a runtime
of 1.375 seconds at 24 minutes. This is the point where the average runtime
is above the limit of one second. The runtime for A*, DFS*, and BFS* is
still around 0.3 seconds for a time budget of 30 minutes. Because of the
high distance there are not many possible paths and the direction in which
to search is therefore relatively clear defined.

Figure 13 shows the results for the queries of Q5. The shortest path
between source and target has at least a length of 960 and at most a length
of 1200 meters. With a walking speed of 0.5m/sec that means that for the
shortest path between 32 and 40 minutes are needed. The figure shows the
results for BFS and DFS until the algorithm reaches an average runtime
around one second and for A*, BFS*, and DFS* until a time budget of half
an hour.

The first algorithm to reach the one-second-limit is again BFS. Its
runtime is 1.107 seconds at a time budget of 12 minutes. The runtime
of DFS is at 14 minutes of time budget above the limit of one second. It
needs there 1.509 seconds on average. That means that BFS and DFS cross
the limit of one second before even getting enough time to reach the target.
As the runtimes are only computed up to a time budget of 30 minutes, the
runtimes for A*, DFS*, and BFS* are low, i.e. their runtime is still below
0.3 seconds. They just need the time to read the database and check that
the target is too far away from the source to reach it.

24

0 5 10 15 20 25 30
251

398

631

1,000

1,580

Time budget[min]

R
u

n
ti

m
e[

m
se

c]

A*
BFS

BFS*
DFS

DFS*

Figure 12: Runtimes Q4

0 5 10 15 20 25 30
251

398

631

1,000

1,580

Time budget[min]

R
u

n
ti

m
e[

m
se

c]

A*
BFS

BFS*
DFS

DFS*

Figure 13: Runtimes Q5

All in all, one could say that DFS* is almost always the best one for the
cases considered here. BFS is the worst one. Also DFS is not very useful
for low time budgets and high distances. They start the search for paths
although there is not enough time to reach the target. DFS*, A*, and BFS*
are doing better and stop immediately when the time budget is too low for
the distance between source node and target node.

25

5 Related Work

5.1 Shortest Path Algorithms

The research field of graph algorithms lies at the intersection of graph theory
and computer science. Problems that are of great interest are the shortest
path problems. As Demetrescu, Goldberg, and Johnson [1] put it:

Shortest path problems are among the most fundamental com-
binatorial optimization problems with many applications, both
direct and as subroutines in other combinatorial optimization al-
gorithms. Algorithms for these problems have been studied since
the 1950’s and still remain an active area of research.

Whenever we want to send something or someone through a network between
two points or want to traverse a network in a fast or cheap way, solving the
shortest path problem is likely to provide the optimal solution.

Shortest path algorithms can be classified according to the problem type.
There are single source shortest path algorithms, single pair shortest path
algorithms, and all pairs shortest path algorithms. The single source shortest
path algorithms find a shortest path from a given source node to all other
nodes of the graph. Single pair shortest path algorithms find the shortest
path between two given nodes. All pair shortest path algorithms find for
every pair of nodes the shortest path between them.

The most famous algorithm for solving single source shortest path prob-
lems is Dijkstra’s algorithm [2]. It starts at the source node and explores the
whole graph in all directions until all the shortest paths and the distance to
all the other nodes is known. The algorithm maintains two sets of nodes:

• A: Set of nodes for which the distance to the source is known

• B: Set of remaining nodes, for which the exact distance is not know
yet

At the beginning the distance d(s, s) = 0 and all the other nodes have labels
with the distance set to ∞. At each step the algorithm selects the node
u with the shortest tentative distance to the source from the set B. The
tentative distance is the distance to the node only through the nodes in
A. When a node is selected, its exact distance from the source is known.
Then, the algorithm updates the labels of all the neighbors of u in the
set B if necessary. That is, if the tentative distance of v is larger than
dN (s, u) + λ (u, v), then its label is decreased.

Dijkstra’s algorithm can also be used to solve single pair shortest path
problems. It just needs to stop, when the target node is extracted from set
B.

26

For road networks in addition to the graph the coordinates of the nodes
are know. Heuristics based on the geometry help to guide the search towards
the target [3].

The A* algorithm uses this heuristics. In the implementation of Dijk-
stra’s algorithm that uses a priority queue, at each iteration the node with
the shortest distance to the source is dequeued. The A* algorithm orders
the nodes by their distance from the source plus the potential distance from
the target. A good potential function alters the order in which the nodes
are removed from the queue, so that the nodes that lie on a shortest path
are removed first. In road networks the Euclidean distance provides a good
lower bound on the graph distance and thus a good potential function, if
the coordinates are known [3].

5.2 Isochrones

Isochrones is a similar concept to our problem. ‘An isochrone in a spatial
network is the minimal, possibly disconnected subgraph that covers all the
locations from where a query point is reachable within a given time span
and by a given arrival time’ [4]. That means, an isochrone is a subgraph
that can be disconnected and it contains all space points with a shortest
path to the query point that is smaller than the given time span. Given an
objects relation, all objects within an isochrone can be determined without
computing the distance to the individual objects. That can be done by
intersecting the area of the isochrone with the relation [5].

I have tried to use isochrones to solve the problem of computing all paths
between two locations with a maximal time budget. For this approach two
isochrones are used to restrict the search space. An isochrone in a spatial
network cannot only be the minimal, possibly disconnected subgraph that
covers all the locations from where a query point is reachable within a given
time span and by a given arrival time, but it can also be the minimal,
possibly disconnected subgraph that covers all the locations that can be
reached from a query point within a given time span.

For this approach two isochrones are computed, one with the source
location as a query point and one with the target location. The first one
contains all the points that are reachable from the query point, i.e. all
the nodes are on outgoing edges from the source node, and the second one
contains all the points from where the query point is reachable, i.e. all the
nodes are on ingoing edges to the target node. As time span the given
time budge is used. The arrival time can be ignored, because a pedestrian
network is used and there is no schedule for that one.

Lemma 1. All the nodes that are part of a path of the solution have to lie
in the intersection of the two isochrones.

Proof. Let us assume by contradiction that ∃vx ∈ V s.t. vx ∈ Is ∧ vx /∈

27

It ∧ vx ∈ AP , where Is is the isochrone for the start node and It for the
target node.

If vx ∈ AP ⇒ ∃p ∈ AP s.t. vx ∈ p ⇒ ∃q (vs, vx) ∈ p ∧ ∃r (vx, vt) ∈ p
s.t. γ (q) + γ (r) ≤ t ⇒ γ (r) ≤ t − γ (q) , where p is a path, q and r are
subpaths of p, and t is the time in the time budget. Then γ (r) ≤ t, which
means that vt is reachable from vx in less than or equal time to the time in
the time budget. As It contains all the nodes from where vt is reachable, it
has to contain also vx, which contradicts our assumption that ∃vx ∈ V s.t.
vx ∈ Is ∧ vx /∈ It ∧ vx ∈ AP .

As I have proven that all the nodes that are part of a path lie in the
intersection of the isochrones, I can reduce the search to just those nodes.
After this reduction another algorithm, like BFS* or DFS* has to be used
to find all the paths. The computation of the isochrones is very expensive
and time consuming.

6 Conclusion and Future Work

In this thesis I looked for solutions for the problem of finding all paths
between two locations with a given time budget. I presented five algorithms
that could be uses, which are Depth-First Search, Breadth-First Search,
DFS*, BFS*, and A*. Depth-First Search makes as much forward progress
as possible, while Breadth-First Search looks first at all nodes that are k
edges away from the source and then continues with the nodes at a distance
of k + 1 edges. A* uses a heuristic function and a priority queue to decide
where to continue the search. DFS* and BFS* use similar approaches to
DFS and BFS respectively. They use a heuristic function to stop them from
searching too long in the wrong direction.

As one can see, these approaches are useful for relatively small time
budgets and low walking speeds. Breadth-First Search is in all cases the
slowest one, followed by Depth-First Search. BFS*, DFS*, and A* have low
runtimes compared to them. They are also more efficient, as they do not
try to compute the set of paths, if the time budget is too low. DFS* is the
best of the last three in the experiments.

For my implementations of the algorithms I used the network with dis-
crete space mode. In reality a pedestrian network is usually continuous, i.e.
it can be accessed and left wherever one wants. Therefore, the algorithms
need to be extended, so that the paths can also contain edge segments. I
did not do that here.

28

References

[1] C. Demetrescu, A. V. Goldberg, and D. S. Johnson, “Implementation
challenge for shortest paths,” in Encyclopedia of Algorithms (M.-Y. Kao,
ed.), pp. 1–99, Springer US, 2008.

[2] E. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[3] R. Sedgewick and J. Vitter, “Shortest paths in euclidean graphs,” Al-
gorithmica, vol. 1, no. 1-4, pp. 31–48, 1986.

[4] J. Gamper, M. Böhlen, W. Cometti, and M. Innerebner, “Defining iso-
chrones in multimodal spatial networks,” in Proceedings of the 20th ACM
International Conference on Information and Knowledge Management,
CIKM ’11, (New York, NY, USA), pp. 2381–2384, ACM, 2011.

[5] J. Gamper, M. Böhlen, and M. Innerebner, “Scalable computation of iso-
chrones with network expiration,” in Scientific and Statistical Database
Management (A. Ailamaki and S. Bowers, eds.), vol. 7338 of Lecture
Notes in Computer Science, pp. 526–543, Springer Berlin Heidelberg,
2012.

[6] G. T. Heineman, G. Pollice, and S. Selkow, Algorithms in a Nutshell.
Sebastopol: O’Reilly Media, 2008.

[7] J. Nielsen, “Response times: The 3 important limits.” http://www.

nngroup.com/articles/response-times-3-important-limits/,
1993. Accessed August 3, 2015.

29

