

Free University of Bozen-Bolzano

Faculty of Computer Science

Discovering Related Terms on a large
Solr Document Database

Ettore Ciprian

Supervisor

Prof. Dr. Johann Gamper

Company Tutor

Dr. Christoph Moar

Alpin AG

September, 2015

Abstract

The search for documents and information represents the main activity for
researchers or ordinary users of a library, especially if it is easily accessible
with any Internet-connected device. Nowadays, the amount of these
particular virtual libraries, without shelves and librarians, is increasing due
to the digitalization of paper content. The responsibility of finding a specific
books, however, is left to the individual user, that knowing where to look, it
is not necessarily aware of what and how to obtain the desired information.
In our region, thanks to the project Teßmann Digital, you can now search
among more than two million pages of historical documents of South Tyrol,
including books, newspapers and prints.

This thesis will consider a solution, in the framework of the Teßmann Portal,
to enhance the experience of the researcher dealing with such a large
archive.
Specifically, I analyzed the discovery of related terms, terms in relevance to
a given search term in the corpus of documents, which will be used to
provide new search possibilities to the user.
The final solution integrates in the architecture already in use on the
extensive archive, not only to maintain sufficient response performance
during the search, but taking into account the relevance of the results and
effectiveness that these can have in improving the user search experience.
At the level of implementation, it will be considered the search engine
Apache Solr, already integrated in the portal, and two possible compatible
solutions are evaluated, that are the use of term vectors or clustering
algorithms. Finally, I have implemented a browsable word cloud in order to
show the related terms, which belong to specific categories: people,
organizations and places.

Abstract (Italiano)

La ricerca di documenti e informazioni rappresenta la principale attività per
il ricercatore o ordinario fruitore di una biblioteca, nondimeno se
quest’ultima è comodamente accessibile con qualsiasi dispositivo connesso a
Internet. Al giorno d’oggi, la presenza di queste particolari biblioteche
virtuali, senza scaffali e librai, è in continuo aumento grazie alla crescente
digitalizzazione dei contenuti cartacei.
La responsabilità del trovare uno specifico contenuto è però lasciata al
singolo utente, che pur sapendo dove cercare, non è necessariamente a
conoscenza di cosa e di come ottenere le desiderate informazioni.
A livello locale, grazie al progetto Teßmann Digital, è ora possibile cercare
tra più di due milioni di pagine tra documenti storici dell’Alto Adige, tra cui
libri, stampe e giornali.

In questa relazione verrà valutata una soluzione per migliorare l’esperienza
del ricercatore alle prese con un grande archivio, come quello disponibile sul
portale. Nello specifico, viene analizzata la scoperta di termini correlati,
termini in rilevanza ad un dato termine di ricerca all’interno del corpus di
documenti, che serviranno per fornire nuovi spunti di ricerca all’utente.
La soluzione finale vede l’utilizzo della tecnologia e architettura già in uso
sull’esteso archivio per mantenere non solo sufficienti le prestazioni di
risposta durante la ricerca, ma che prenda in considerazione la rilevanza dei
risultati e l’efficacia che questi possono avere nel migliorare l’esperienza di
ricerca dell’utente.
Viene infatti considerato il search engine Solr di Apache, già integrato nel
portale, e vengono estratte e valutate due possibili soluzioni compatibili, che
sono l’utilizzo di term vectors o di algoritmi di clustering. A fruizione
dell’utente, viene quindi prodotta una browsable word cloud di termini
correlati racchiusi in specifiche categorie: persone, organizzazioni e posti.

Abstract (Deutsch)

Die Suche nach Informationen und Dokumenten ist eine wichtige Aktivität
für Forscher und Bibliotheksbenutzer, vor allem wenn diese über Internet
zugänglich ist. Virtuelle Bibliotheken ohne Regale und Bücher nehmen zu,
dank der Digitalisierung von Drucksachen.
Das Durchsuchen von spezifischen Dokumenten in diesen Bibliotheken ist
allerdings oft schwierig für Nutzer, da diese wissen müssen wo und wie
gewünschten Informationen zu finden sind.
In der Region gibt es dank des Projekts Teßmann Digital jetzt die
Möglichkeit mehr als 2 Millionen Seiten von historische Dokumenten aus
der Region zu durchsuchen, darunter Bücher, Zeitungen und andere
Drucksachen.

Hier präsentiere ich eine Lösung welche die Informationen im Teßmann-
Portal für Nutzer einfacher zugänglich macht. Ich habe das Finden von
ähnlichen Begriffen analysiert, was dazu verwendet werden kann die Suche
für Nutzer zu verbessern. Meine Lösung passt in die existierende
Architektur und verbessert die Relevanz der Resultate und damit das
Benutzererlebnis, ohne nennenswerte Performanceeinbußen. Dafür wurde
die Suchmaschine Apache Solr verwendet und in das Portal integriert. Es
werden zwei mögliche, kompatible Lösungen vorgeschlagen: term vectors
und die Verwendung eines Clustering-Algorithmus. Es wird damit eine
"Word Cloud" mit verschiedenen ähnlichen Begriffen generiert, die in die
Kategorien Personen, Organisationen und Orte eingeteilt ist.

Contents
INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 The Problem ... 1

1.3 The Solution .. 2

1.4 Related Work .. 2

1.5 Organization ... 3

BACKGROUND .. 4

2.1 The OPATCH Project ... 4

2.2 The Teßmann Digital Library .. 4

2.3 Analyzed Layout and Text Object ... 5

THE ARCHITECTURE .. 8

3.1 Overview ... 8

3.2 Loader ... 8

3.3 Solr Server ... 9

3.4 Hardware .. 9

IMPLEMENTATION ... 10

4.1 Making the Named Entities Available .. 10

4.2 Retrieving Data from Solr ... 11

4.3 Term Vectors .. 11

4.4 Clustering in Solr ... 13

4.5 Visualization ... 19

EVALUATION .. 21

5.1 Data Set .. 21

5.2 Running Time Comparison Table .. 22

5.3 Correctness and Expressivity of the Results .. 22

CONCLUSIONS AND FUTURE WORK ... 25

REFERENCES ... 26

I Introduction

1.1 Motivation

Nowadays, the way people accesses information from printed documents
has changed. Thanks to technology and new precise information retrieval
techniques, we are able to search for a specific term across a six hundred
pages book written a century ago with the comfort of a simple smartphone.
This is because the entire written human heritage is turning into an easy-to-
use, compact and freely accessible format.
Because of the advantages of digital over physical material, such as term
search, faster linguistic analysis, portability, etc., libraries and collections all
around the world have started to embrace the digitalization of their
holdings. For example, The Library of Congress and the British Library, the
two biggest and most comprehensive selections of multi-language
documents, have both launched initiatives for publishing their material
online, making more than 10 million items available to the public.
This enormous amount of data is now accessible from over 3 billion of users,
leading to several dilemmas for both information technology experts and
final consumers. One of the most pressing need is well summarized in the
information retrieval paradigm:

Given a set of documents and a query, determine the subset of

documents relevant to the query (Selberg, 1999)

While the paradigm states an obvious and widely discussed problem, further
can be done in helping users refining the research for documents.
Unfortunately, only a fraction of them is able to find appropriate shelves and
books in this huge library. The knowledge of where to seek for information
turns out to be not enough, thus, I worked on a solution for a local digital
library, which should help an ideal researcher to better filter his/her
research in a large document archive.

1.2 The Problem

The main goal was to make available for the user of the Teßmann Library
portal specific metadata of the OCR-ed documents such as persons,
locations and organizations cited in the text.
The user should be able to know which of the three categories, from now on

1

referred as Named Entities, are contained in a page of a document, and it
should be able to filter a research by more than one Entity. More
importantly, the user should know which Named Entities have more
frequently occurred in relation to the query term and visualize this
information in a way that the strength of the connection is intuitively clear.
For instance, I want to search for the term “Andreas Hofer” and as a result I
am expecting not only to know in which pages it appears most, but also with
which locations, organizations and persons “Andreas Hofer” has been more
frequently mentioned.
Formally: given a set N of document which contains at least one occurrence
of the query term q, return the set R containing all the terms contained in N
ordered by importance.

1.3 The Solution

The solution I will discuss in this paper is the use of clustering algorithms,
such as Lingo and STC, compared to a simpler usage of the filter capabilities
of the Solr server. The idea is to collect, with clustering or term vectors, all
the most inversely frequent Named Entities that appears after the overall
document set has been reduced by the search term, that is, a subset of
document containing the query term. Correctness of the result,
performance and integration in the existent system architecture will be the
leading factors in the final choice of implementation.

1.4 Related Work

While the purpose of this paper is, given a pre-ordered list of elements, to
find the most frequent word by association to the search query, different
researches and algorithms other than the one cited here have been
developed for the associated term retrieval on a full text. In Information
Retrieval Architecture and Algorithms by Gerald Kowalski (2011) is
reported the general term clustering procedures and algorithms, focused on
generating a helpful thesaurus of topics from a document text. In Web
Document Clustering: A Feasibility Demonstration (Zamir and Etzioni,
1998) which set the foundation for meaningful term-based clusters retrieval,
with an algorithm (explained later in Paragraph 4.4.1) that allows the
categorization of full sentences surrounding a term and applications that
span from simple textual description to Web Search results.
However, the main contribution to this thesis was given by the critics to STC

2

itself, a new algorithm that provides clusters with a new top down approach
and revaluates the importance of sentences surrounding the query term. It
is the work of Stanislaw Osinski in An Algorithm for clustering of web
search results (2003), which reports the implementation of the algorithm
Lingo.

1.5 Organization

In Chapter 1, I will introduce the problem at the origin of my proposed
solution and in Chapter 2 it will be illustrated the context in which my
proposition has been developed. In Chapter 3 the architecture of the project
is analyzed, for a better understanding of the integration possibilities.
Finally, in Chapter 4 I will explain the possible solutions in detail, given the
problem stated; in Chapter 5 I will provide the final test results and
conclusions about the discovering of related terms in a large Solr document
database.

3

II Background

2.1 The OPATCH Project

The Open Platform for Access and Analysis of Textual Documents of
Cultural Heritage (OPATCH, s.d.) is an initiative financed by the “Provincia
Autonoma di Bolzano - Alto Adige”, which main aim is to provide a set of
standards and tools for accessing and analyzing a large collection of
electronic documents, specifically, the corpus of an historical document
collection. The main intent is to use open source front-end and back-end
technologies to allow a comprehensive and extended content search, with
the final goal of creating a set of tools for linguistic analysis.
Currently, the project is relying on the data provided by Teßmann Library,
which corpus infrastructure has been OCR-ed by a group of researchers at
the Institute for Specialized Communication and Multilingualism inside the
Eurac Research Center, Bolzano. In collaboration with Alpin S.r.l, the
company behind all of the development process of the portal and for which I
worked in order to produce this paper, they opened a virtual library called
Teßmann Digital.

2.2 The Teßmann Digital Library

The Dr. Friedrich Teßmann Library collects historical documents, mainly
newspapers, publications and artworks from 1800 published in South Tyrol,
Italy. In conjunction with the researchers at Eurac and Alpin S.r.l, Teßmann
opened a portal (http://digital.tessmann.it/), which gives free access to
more than 147,400 documents with more than 2,280,000 pages.
What is peculiar about the archive is that the research feature is not limited
to metadata, but there is also the possibility to search through actual
newspapers and books content. Moreover, the webpage highlights the term
queried directly on the scanned image of the founded page, providing the
user a normalized version of the text.

4

Figure 2.1 – The Tessmann Digital Portal

This has been made possible due to the Optical Character Recognition
research on Fraktur font based text, which was carried out at Eurac. Firstly,
the text is scanned and cleaned from noise, such as punctuation and bad
recognitions. Lastly, the obtained clean text is marked with appropriate
dictionaries: the result is an ALTO standard xml file.

2.3 Analyzed Layout and Text Object

Analyzed Layout and Text Object (ALTO) is a XML Schema that details
technical metadata for describing the layout and content of physical text
resources, such as pages of a book or a newspaper (Alto - Technical
Metadata for Optical Character Recognition, 2014).
An ALTO file consists of three major sections as children of the root <alto>
element:

<Description> <Styles> <Layout>

The <Description> section contains metadata about the ALTO file itself and
processing information on how the file was created.
The <Styles> section contains the text and paragraph styles with their

5

individual descriptions:

 <TextStyle> has font descriptions
 <ParagraphStyle> has paragraph descriptions, e.g. alignment information

The <Layout> section contains the content information. It is subdivided into
<Page> elements.
A page consists of margins and print space; all of those are non-intersection
rectangular areas within the page area. Each of these can contain any
number of objects like lines, images or text blocks and more. A text block is
divided into text lines and those are further divided in strings and spaces.

Figure 2.2 - A page of the “Pustertaler Bote” parsed into Alto

As shown in the scanned page (Figure 2.2), from version 3.0 of the schema it
is possible to mark, separately from the <Page> block, a series of specific
words, the Named Entities. Each Entity has a type tag:

6

POS/POS-ST: stores a location name
ORG/ORG-ST: stores organizations, as well as shops and trademarks
PER/PER-ST: holds first, last or complete person names.

While in the previous definition of the Schema it was not possible to hold
different variables than text lines, the new standard together with linguistic
and historical researches has made 1000 newspaper issues with Named
Entites available. More than one million pages will be added in the next
future.
My work will be focused on collecting these data arrays, extracting the
related terms and display them in a meaningful way for the end user, taking
into account performances, the existent project architecture and the
technology used.

7

III The Architecture

3.1 Overview

The following diagram illustrates the existent Teßmann Portal architecture.

Figure 3.1 – overall architecture

In figure 3.1, it is possible to see the main components of the project
architecture. I focused the major changes in the loader and the Solr server
when it came to index and retrieve the Named Entities, while I made
modifications on the presentation layer of the Tessmann portal in order to
display the results.

3.2 Loader

The Loader is the Java Application client responsible for parsing and
committing the xml Alto file into the metadata Database and in the Solr
index. It reads each single xml page using the Schema Definition, then it
queries the metadata database for extra information or it updates previous
entries and, finally, it commits the full text of the documents to the Solr
Server, where they are indexed and stored. As one can imagine, this
operation possess high performance costs and it is executed only when large
batch of documents have been converted into ALTO.

8

3.3 Solr Server

Solr is a well-established standalone server application, which is responsible
for indexing and rapidly search through the full text of the documents.
(http://lucene.apache.org/solr/)
When the data have been committed is possible to query the server with
standard RESTful methods and obtain either XML or JSON in return.
In this architecture, Solr is queried by the Tomcat server and returns an
XML formatted answer.

Solr demonstrated to be a versatile and customizable tool: it is possible to
define multivalued field type, search handlers and query facets for filtering,
features that came in handy for the main task. Furthermore, it has been
possible to integrate different clustering algorithm through the Carrot2
library (http://project.carrot2.org/).
Note that the version used in this architecture is 4.2.1, updates might have
been pushed on the current 5.x, but the following chapter will be based
entirely on the older configuration.

3.4 Hardware

Being the application almost completely server based, it is worth mentioning
the hardware used. Especially with clustering analysis, hardware specifics
have a great impact on performances and thus can better explain the test
results and limitations in the tuning of the clustering algorithm.
The Tomcat application and the Solr server run on the same virtualized
server with the following specifics:

RAM: 6 GB
CPU: 1 virtual CPU
3 Hard drives: 25 GB, 500 GB, 250 GB

The index is stored on a fast solid drive for higher reading performance,
when tested it scored 251.00 MB per second in reading.

9

http://lucene.apache.org/solr/
http://project.carrot2.org/

IV Implementation

When I was facing the overall problem and I was given the use cases
(Paragraph 1.3 – The Problem), I divided it in three minor subtasks:

1. Making the Named Entites available to Solr
2. Use the best performing Solr functionality to retrieve the correct data
3. Display the data in a meaningful way

In the following chapter I will explain in detail how to achieve the tasks
mentioned, reporting the implementation possibilities. In Chapter 5 I will
instead narrow down to the most suited solution.

4.1 Making the Named Entities Available

The first task was easily achievable due to Solr versatility. I simply enhanced
the Loader in order to read the XML files of the document, looping over the
Named Entities tags and extracting the base String content. After that, it
was sufficient to commit the data into the server with the ad-hoc Solr java
API (Sorlj, 2013).

As shown above, by defining a multivalued field in the Solr configuration
file, it is possible to store arrays of data. This allows Solr internal
mechanism to select the elements into the array and address specific fields
in a search request.
Now the Named Entites are stored by the server application, together with
the full text of the document and other metadata such as author, publishing
year etc. Additionally, each document has one unique id assigned by Solr.

<field name="location" type="text" indexed="true" stored="true"
multiValued="true"/>

<field name="person" type="text" indexed="true" stored="true"
multiValued="true"/>

<field name="organization" type="text" indexed="true" stored="true"
multiValued="true"/>

10

4.2 Retrieving Data from Solr

In general, it is the possible to query Solr with the /clustering search
parameter, or by any of the SearchComponent defined, for example a /select
or /tvrh for Term Vector retrieval. A simple search request might be:

http://localhost:8983/solr/tessmann/select?q=Hofer&start=0&ro

ws=10&fl=fulltext+mediaName

Different parameters can produce specific filters in the JSON response. In
this case, it asked Solr to return a list of terms in the fulltext and
mediaName field, containing the term Hofer and returning the first ten
match.
After a study of the Solr architecture and features, I came out with two
possible solutions, which I will proceed to evaluate in the next chapter: the
use of clustering algorithms or term vectors.

4.3 Term Vectors

The TermVectorComponent is a search component in Solr designed to
return additional information about documents matching a query term.
The term vector must be enabled before committing the data, because
information are permanently stored at commit time.

For each document in the response, the TermVectorComponent can return
the term vector, the term frequency, inverse document frequency, position,
and offset information.
When properly interrogated from the Tomcat server by means of ad-hoc
classes, the server will output a XML structured response with the selected
document to which is appended a list of the desired Named Entities and
frequency scores.

<field name="location" type="text" indexed="true" stored="true"
multiValued="true"
termVectors="true"
termPositions="true"
termOffsets="true"/>

11

http://localhost:8983/solr/tessmann/select?q=Hofer&start=0&rows=10&fl=fulltext
http://localhost:8983/solr/tessmann/select?q=Hofer&start=0&rows=10&fl=fulltext

For example, the mediaPerson Entity of this particular document has “alois”
appearing 2 times (tf – term frequency) with an overall document frequency
(DF) of 3152 and inverse document frequency of 6.345 (tf-idf).
The function term frequency - inverse term frequency reflects how
important a word is to a document in a collection or corpus, that is, whether
the term is common or rare across all documents (Rajaraman & Ullman,
2011). The idf is the logarithmically scaled fraction of the documents that
contain the word, obtained by dividing the total number of documents by
the number of documents containing the term, and then taking the
logarithm of that quotient.

Idf(t, D) = log(N/df)

The final weight of the word is calculated as the tf–idf, by multiplying the
term frequency with the inverse document frequency.

Tf-idf(t, d, D) = tf(t, d) * idf(t, D)

where t is term, d is the number of document and D the document result set.

<lst name="37-128387-1212644">
 <str name="uniqueKey">37-128387-1212644</str>
 <lst name="mediaPerson">
 <lst name="alois">
 <int name="tf">2</int>
 <int name="df">3152</int>
 <double name="tf-idf">6.345177664974619E-4</double>
 </lst>
 <lst name="august">
 <int name="tf">1</int>
 <int name="df">4727</int>
 <double name="tf-idf">2.115506663845991E-4</double>
 </lst>
 <lst name="benjamin">
 <int name="tf">1</int>
 <int name="df">92</int>
 <double name="tf-idf">0.010869565217391304</double>
 </lst>
 <lst name="borgo">
 <int name="tf">1</int>
 <int name="df">164</int>
 <double name="tf-idf">0.006097560975609756</double>
 </lst>

...

12

https://en.wikipedia.org/wiki/Document
https://en.wikipedia.org/wiki/Text_corpus
https://en.wikipedia.org/wiki/Documents
https://en.wikipedia.org/wiki/Quotient

The tf-idf value increases proportionally to the number of times a word
appears in the document, but is offset by the frequency of the word in the
corpus, which helps to adjust for the fact that some words appear more
frequently in general. In our case, it is appropriate when it comes to weight
locations and first names frequency, which are common Named Entites and
not necessarily related.

The idea is to use a class defined in the Portal business layer, in order to
retrieve the inverse document frequency of each Named Entities for each
document in the result set, and compare the resulting lists. Since Solr
returns only the tf-idf repeated for each term of each document of the
resulting set, it necessary to merge all tf-idf labels, resulting in all Named
Entities statistically more important and closer to the term query.
This solution will be compared with my second proposition, that is, the use
of clustering algorithms.

4.4 Clustering in Solr

The second solution I have considered is the integration of clustering
algorithm in order to retrieve the related Named Entities. In this section, I
will limit the report to the implementation and behavior of the algorithms
available for a Solr instance, while in the next Chapter I will provide the
evaluation and comparison of the clustering options.
Let’s start with a quick introduction on the subject:

The definitions in the literature of what constitutes clustering reflect the
different philosophical points on the matter. The top-down view regards
clustering as the segmentation of a heterogeneous population into a
number of more homogeneous subgroups. A bottom-up view defines
clustering as finding groups in a data set “by some natural criterion of
similarity” (Estivill-Castro, 2002) .

In this particular case, clusters analysis will serve the purpose of grouping
the Named Entities by frequency, which will be the criterion of similarity
used to distinguish the clusters.
This is exactly what two of the main algorithms contained in the Carrot2
open source framework are able to compute, making it the natural candidate
for this task. Currently available in the framework are STC (Suffix Tree
Clustering) and Lingo algorithms, which main functions are exposed in the

13

https://en.wikipedia.org/wiki/Proportionality_(mathematics)

following subchapters.

4.4.1 Suffix Tree Clustering

The Suffix Tree Clustering (STC) algorithm groups the input texts according
to the identical phrases they share. The rationale behind such approach is
that phrases, compared to single keywords, have greater descriptive power.
This results from their ability to retain the relationships of proximity and
order between words. A great advantage of STC is that phrases are used both
to discover and to describe the resulting groups. The pseudo-code of the
Suffix tree algorithm (Osinski, 2003) is reported below.

/** * Suffix Tree Clustering algorithm */

split text into sentences consisting of words;
/* Phase 1a. Creation of a Generalized Suffix Tree of all sentences
*/
for each document {
 for each sentence {
 if (sentence length > 0) {

insert sentence and all its substrings into generalised suffix
tree and update internal nodes with the index to current
document while rearranging the tree;

}
}

}
/* Phase 1b. Build a list of base clusters */
for each node in the tree {
 if (number of documents in node's subtree > 2) {

if (candidateBaseClusterScore > Minimal_Base_Cluster_Score) {
 add a base cluster to the list of base clusters;
}

 }
}
/* Phase 2. Merge base clusters */

build a graph where nodes are base clusters and there is a
link between node A and B if and only if the number of common
documents indexed by A and B is greater than the
Merge_Threshold;
clusters are coherent subgraphs of that graph;

Figure 4.1 - STC pseudo-code

Taking into account that in this case it is operating on multivalued lists,
containing only cleaned text such as the Named Entities, the algorithm will
actually proceed as follow:

1. Create a tree for each document;
2. Create a node in the document Suffix Tree for each instance of them,

14

thus, each unique Named entity will count as cluster;
3. Based on a Merge Threshold value, it will try to merge the lower

nodes, thus, the Named Entities in the different documents sub-trees.

The algorithm will then output a list of clusters sorted by score, that is, the
frequency of each Named Entity.

4.4.2 Lingo

Figure 4.2 – Lingo pseudo-code

In Figure 4.2 the main phases of Lingo, as for STC, will operate on
multivalued lists instead of full text sentences. Once it is run on the
Teßmann database, it will:

1. Calculate the term frequency - inverse term frequency of each
Named Entity;

2. Use Latent Semantic Indexing (LSI) to establish candidate labels
first, thus establishing the name of all the clusters before determining

/** Lingo algorithm */

/** Phase 1: Preprocessing */
for each document
{
do text filtering;
identify the document's language;
apply stemming;
mark stop words;
}
/** Phase 2: Feature extraction */
discover frequent terms and phrases;
/** Phase 3: Cluster label induction */
use LSI to discover abstract concepts;
for each abstract concept
{
find best-matching phrase;
}
prune similar cluster labels;
/** Phase 4: Cluster content discovery */
for each cluster label
{
use VSM to determine the cluster contents;
}
/** Phase 5: Final cluster formation */
calculate cluster scores;
apply cluster merging;

15

the content;
3. For each candidate cluster label, that represent the abstract concept

of the cluster, applies VSM (Vector Space Modelling) in order to
discover the content of the cluster and assign the documents;

4. Merge similar clusters.

As reported from Osinski in An Algorithm for clustering of web search
results, LSI plays a major role in defining better clusters, compared to
Vector Space Model:

LSI tries to overcome the problems of lexical matching by using
statistically derived conceptual indices instead of individual words for
retrieval. LSI assumes that there is some underlying or latent structure in
word usage that is partially obscured by variability in word choice. A
truncated Singular Value Decomposition (SVD) is used to estimate the
structure in word usage across documents. Retrieval is then performed
using a database of singular values and vectors obtained from the
truncated SVD. Performance data shows that these statistically derived
vectors are more robust indicators of meaning than individual terms.
(Michael W. Berry, 1995)

While LSI and VSM are not, unfortunately, object of this paper, it sufficient
for the reader to know that LSI is a better information retrieval system when
facing similar words, especially synonyms and overlapping words, and
refines the search for most frequent documents more than VSM. Successful
though the classic Vector Space Model is, it does not address many of the
problems of modern Information Retrieval. First of all, the model is based
on literal matching between terms from a document and those of a query.
Due to the phenomenon of synonymy however, there are usually many ways
in which the same idea can be expressed– the terms found in the user's
query may not match those of a relevant document. In this way, some of the
documents will not appear in the search results even though they should.
Second of all, the Vector Space Model makes an assumption that the
keywords used to index the document collection are mutually independent
(Osinski, 2003).
Nevertheless, considering multivalued lists as data input instead of a full-
sentences text, as expected by the algorithm creators, it is interesting to see
the merging of synonyms in Named Entities retrieval. As we will see in
following Chapter, the added value of a similar word merging technique

16

should be taken into consideration, for example, in case of unifying words
such as “Stadt Bozen” and “Bozen” under the same cluster, or better, in the
composition of new related terms which could enrich the information
retrieval experience for the final user.

4.4.3 Clustering Data Retrieval

Retrieving data from the server application is then achievable by using the
previously mentioned Search Component:

 Figure 4.3 – Search Component configuration for clustering

As shown in Figure 4.3 it is necessary to import the necessary algorithms

<searchComponent name="clustering"
 enable="${solr.clustering.enabled:true}"
 class="solr.clustering.ClusteringComponent" >
 <!-- Declare an engine -->

 <lst name="engine">
 <!-- The name, only one can be named "default" -->
 <str name="name">default</str>

 <!-- Class name of Carrot2 clustering algorithm.-->

<str name="carrot.algorithm">
org.carrot2.clustering.lingo.LingoClusteringAlgorithm
</str>

 <!-- Overriding values for Carrot2 default algorithm attributes.
 http://download.carrot2.org/stable/manual/#chapter.components.-->
 <str name="LingoClusteringAlgorithm.desiredClusterCountBase">20</str>

 <!-- Location of Carrot2 lexical resources.
 http://download.carrot2.org/head/manual/#chapter.lexical-resources-->
 <str name="carrot.lexicalResourcesDir">clustering/carrot2</str>

 <!-- The language to assume for the documents.

http://download.carrot2.org/stable/manual/#section.attribute.lingo.Multi
lingualClustering.defaultLanguage

 -->
 <str name="MultilingualClustering.defaultLanguage">GERMAN</str>
 </lst>

 <!--STC engine definition -->
 <lst name="engine">
 <str name="name">stc</str>

<str name="carrot.algorithm">
org.carrot2.clustering.stc.STCClusteringAlgorithm
</str>

 </lst>
</searchComponent>

17

classes on Solr, as well as enabling it as a select-first component. By
querying the Solr instance, it will output an xml formatted document
(Figure 4.4).
Each labels, represent the name given by the algorithm to a certain cluster.
Each clusters possess a score, which determines the label overall
importance, and an array of attached documents IDs where the label has
scored a match. Of course, the same document could be contained in
different clusters.

Figure 4.4 – XML response form clustering algorithms in Solr

4.4.4 Clustering Optimization

Clustering is the most demanding resource solution compared to Term
Vectors. In order to make it more suitable to a given database there are
different tuning strategies I have applied:

• Caching of results array is stored at level of the business layer and

<lst>
 <arr name="labels">
 <str>Bozen</str>
 </arr>
 <double name="score">23.0</double>
 <arr name="docs">
 <str>37-128491-1214326</str>
 <str>37-127454-1197446</str>
 <str>37-128199-1209707</str>
 <str>37-128798-1217945</str>
</lst>
<lst>
 <arr name="labels">
 <str>Wien</str>
 </arr>
 <double name="score">21.0</double>
 <arr name="docs">
 <str>37-128491-1214326</str>
 <str>37-127454-1197446</str>
 <str>37-129640-1223858</str>
 </arr>
</lst>
<lst>
 <arr name="labels">
 <str>Bayern</str>
 </arr>
 <double name="score">19.794981002807617</double>
 <arr name="docs">
 <str>37-129228-1220820</str>
 </arr>
</lst>

18

Solr server itself. This brings response time sensible down in case of
consequent requests.

• Maximum cluster limits have been passed as parameters to the
clustering requests. In case of STC and Lingo, both algorithms will
stop discovering clusters at the desired limit. While computing 1000
pages, for example, it is sufficient to return no more than 100 from
the top scoring clusters. This reduced sensibly the algorithm running
time and untimely filters the amount of data to display.

• Prioritization of search fields: due to Solr Search Component
capabilities, it is possible to give priority to certain search fields by a
value of 0.0 to 1.0. This option revealed to be useful when directing
the algorithm, and accordingly to the requirements it has been given
priority to the Named Entity Solr internal fields (see Paragraph 4.1 -
Making the Named Entities Available).

• Disabling word filtering: in this particular case, techniques such as
stemming, word filtering and stops words, applied by default by Solr
Clustering components, are not necessary. Those functions can be
disabled because we are working on a sufficiently cleaned text.

4.5 Visualization

The role of the search results presentation interface is to display the results
in a way that helps the users to identify the specific documents they
searched for. Thus, an ideal interface should not make the users stumble
upon the documents that they would judge as irrelevant.
The presentation should take into account the two following principles:

• Relevance: The algorithm ought to produce clusters that group
documents relevant to the user's query separately from irrelevant
ones. The user shall be able to determine at a glance which elements
are more related to the query term provided, in comparison to the
other results.

• Browsable results: The user needs to continue the research easily
and intuitively by starting another query from the results given.

The choice of implementation felt upon the use of a Word Cloud (Figure
4.5), which provides the user an instant and intuitive view of the more
relevant results. Furthermore, the user can issue another search query by
clicking on an element of the cloud.In practice, data presentation on the
Webpage has been achieved by feeding either the results of TermVectors or

19

Clustering, through a class I have implemented, to a simple JavaScript
based tool.
https://github.com/lucaong/jQCloud
This particular plugin accepts a JSON array as input and displays a cloud
shaped block of texts highlighted by the score of the clusters/termVectors.

By using a combination of HTML, CSS and Velocity expressions on the
presentation layer of the Portal, I have styled the cloud to display results
colors and size accordingly to a scale of 1 to 10. The java script library
provided by jQCloud will then group by this scale all the clusters,
proportionally to the weight of each label.

Figure 4.5 - The final related term visualization on the Portal

20

https://github.com/lucaong/jQCloud

V Evaluation

5.1 Data Set

I have proceeded to test the three solutions on the real Teßmann corpus
database using an actual block of newspapers with aggregated Named
Entities provided by Teßmann.
The test database is composed as follow:

24.786 pages from the “Bozner Nachrichten” (1910-1920)
898 pages from the “Pustertaler Bote” (1917 -1920)
1 gigabyte index
25.684 total pages

The running time comparison will be executed by querying the Solr instance
from a local client application of the Portal. It will be first issued a “select by
term” request, that is a simple search query, and then the resulting
document set will be feed to the three algorithms.
All three operations will be executed on the first 10, 100 and 1000
documents of the reduced set. As it will be clear from the running time
comparison, executing those three techniques on a larger or the exact set of
documents would be unthinkable: the size of the select returning set is not
know in advance and the running time will be far too long for the final user
performance requirements. Besides, the first 1000 pages represent usually a
good subset of analysis compared to the total size of documents possibly
found.
For the purpose of testing, I have chosen terms such as “Bozen”, “Hofer” or
“Meran” as main query terms for all the tests because they returned a
sufficient number of documents, more than one thousand.
The running time of the query is returned by the Solr application itself,
expressed in millisecond, and represents the effective time needed to
execute the algorithms on Solr, while response time of the REST request is
left out. The query times are computed from the average of 10 different
requests.

21

5.2 Running Time Comparison Table

Documents 10 100 1000

Term Vectors 71 568 1151*

STC 58 432 1701

Lingo 31 517 3940

*It is important to notice that the application issuing the requests crashed several
times due to long response received by the test queries. In fact, data transmitted
through the servers revealed to be far more compact in case of clustering,
contrarily to Term Vectors, which are not merged in place but on the Tomcat
server. This issue is to be considered for the final evaluation.

In general, Lingo revealed to be the less scalable solution, while Terms
Vectors scored the best performing results.

5.3 Correctness and Expressivity of the Results

In order to test the algorithm for correctness I have run further analysis
tests resulting in the following statistics divided per field. In order to make
sense of the algorithm, the statistics were executed based on a subset of the
overall document database, which is reduced by the same query term q for
which we want to find the related terms. In this test report, five different
sufficiently common terms were selected as q.
As one can notice, some entities do not always belong to the category in
which they are assigned to. The reader must consider that the data provided
by Eurac is still object of continuous research and improvements at the time
this paper was written.

5.3.1 Top 10 Terms by Frequency

Here is reported the most frequent words together with the inverse
document frequency score founded manually when reducing the document
set by the word Bozen. As the reader can imagine, reducing the set by

22

different words rarely change the output of this table, especially if it is a
common word.

Location Organization Person

15,473 bozen
12,343 bozner
8,303 wien
6,990 franz
6,732 gries
6,182 josef
6,017 lage
5,991 innsbruck
5,333 wältherplatz
5,283 kaiser

3,442 bozen
3,267 nachrichten
2,282 hotel
1,625 armee
1,507 gries
1,472 bozner
1,434 firma
1,239 deutschen
1,232 roten
1,141 kreuz

6,848 frau
6,662 franz
6,297 josef
4,882 august
4,251 karl
4,071 johann
3,389 grund
3,340 anton
3,226 alois
2,698 maria

5.3.2 Outputs

For each of the five initial query term, this is the percentage of correctness
and variation of results with the table above. Correctness has been
established by simply confronting the most frequent word found in each
subset with the algorithm output. One cluster label is considered correct if it
contains at least one of the most inversely frequent word. On the other side,
the variation value establishes the differences between the five requests
themselves and is represented by a value ranging from 0.0 to 1.0. As
explained later, variation of the responses revealed to be a key factor in the
choice of implementation.

q Term Vectors STC Lingo

Bozen 100% 90% 65%

Meran 100% 82% 70%

Tirol 100% 86% 65%

Franz 100% 89% 75%

Gries 100% 81% 70%

Variation 0.1 0.2 0.6

23

Here is reported one actual output of ten main clusters, when searching for
Bozen:

Term Vectors STC Lingo

Bozen
Bozner
Wien
Franz
Frau
Gries
Josef
Innsbruck
Freitag
Kaiser

Kaiser
Bozen
Gries
Josef
Wien
Innsbruck
Freitag
Bozner
Kaltern
Franz

Bozen Wältherplatz
Meraner
Gotthard Ferrari
Bozen Gries
Laubengasse
Oberau
Museumstraße
Eppan
St Josef
Franz Hofer

From the Term Vectors output it can be evinced that the terms found are the
one expected, that is, the most inversely frequent words. What also stands
out from this solution, even if correct, is that it has no actual value for the
user. Term Vectors will, in fact, be more or less the same for each query
term q, because they are bound to the subset of documents by the tf-idf (see
Paragraph 4.3 – Term Vectors).

STC revealed to produce a more various result set, due to the merging at the
lowest level of the Suffix Tree structure. However, the variation of the
output is still pretty low, thus, it will remain more or less homogeneous in
any combination of the query term. This is because the algorithm is
operating on a multivalued list of disconnected words instead of full text
sentences. It would be far more accurate when parsing sentences, instead of
single words, close to q (see Paragraph 4.4.1 – STC), as suggested also from
the algorithm’s creators (Osinski, 2003).

More surprising is the output of Lingo: due to the Latent Semantic Index
technique it is able to abstract new possible search results, still strictly
related to the query term, but not only by frequency, but also by meaning.
While it agglomerates similar clusters, it also creates new ones from related
words such as Bozen Wältherplatz or Bozen Gries.

24

Conclusions and Future Work

Tests proved the superior performance of Terms Vectors merging over
clustering algorithms, given the particular input and architecture. What is
not taken into consideration in the tests though is the data transmission
time and computational memory necessary on the Tessmann server
instance, required to merge the tf-idf of each document Entity. This
necessary operation cannot be avoided, neither computed by the Solr
instance. For this reason, together with the repetitiveness of the results seen
previously, TV will not be the solution deployed.

As for STC, the same reasoning may be applied. Even though the algorithm
proven high scalability, I suggest the use of Suffix Tree Clustering only when
parsing small but full-text sentences in a large database.
The only appropriate candidate for this task remains Lingo: even if this
solution is not the most performant, it remains sufficient to meet the user
non-functional requirements. Additionally, it has revealed to be more useful
to the user, when providing new related terms. It does not only find
associated terms, but gives the user new search starting point and
suggestions, which can be considered an added feature for the user of a
virtual library and the main goal of this paper.

At this point, the reader might still question the relevance of the results
given by cluster analysis on full pages. Even though terms outputted by
Lingo stimulate a further and more advanced research, it remains bounded
to the content and analysis of an entire page of a newspaper and still
approximates the relation with the query term. What the user might want to
find out are terms located at the level of single articles, instead of the entire
page.
At the moment, this is not achievable due to the current level of ALTO files
layout and content analysis, but in a later stage of development this will
possible thanks to a new tagging system, which will provide ALTO files with
distinguished tags per article. The same implementation of Lingo could be
used then to focus the related terms retrieval to single articles and titles, for
a better user experience and more accurate results.

25

References

Alto - Technical Metadata for Optical Character Recognition. (2014).

Retrieved from The Library of Congress:

http://www.loc.gov/standards/alto/

Estivill-Castro, V. (2002). Why so many clustering algorithms - a Position

Paper. Callaghan: University of Newcastle.

Michael W. Berry, S. T. (1995). Using Linear Algebra for Intelligent

Information Retrieval. SIAM Rev.

OPATCH. (n.d.). Retrieved from Eurac Research:

http://www.eurac.edu/en/research/projects/Pages/projectdetails.aspx?pid

=11263

Osinski, S. (2003). An Algorithm for clustering of web search results.

Poland: Poznań University of Technology.

Rajaraman, A., & Ullman, J. D. (2011). Mining of Massive Datasets.

Cambridge University Press.

Selberg, E. W. (1999). Towards Comprehensive Web Search. Doctoral

Dissertation. University of Washington.

Sorlj. (2013). Retrieved from Apache Solr Wiki:

https://wiki.apache.org/solr/Solrj

26

	Abstract
	Abstract (Italiano)
	Abstract (Deutsch)
	I Introduction
	1.1 Motivation
	1.2 The Problem
	1.3 The Solution
	1.4 Related Work
	1.5 Organization

	II Background
	2.1 The OPATCH Project
	2.2 The Teßmann Digital Library
	2.3 Analyzed Layout and Text Object

	III The Architecture
	3.1 Overview
	3.2 Loader
	3.3 Solr Server
	3.4 Hardware

	IV Implementation
	4.1 Making the Named Entities Available
	4.2 Retrieving Data from Solr
	4.3 Term Vectors
	4.4 Clustering in Solr
	4.4.1 Suffix Tree Clustering
	4.4.2 Lingo
	4.4.3 Clustering Data Retrieval
	4.4.4 Clustering Optimization

	4.5 Visualization

	V Evaluation
	5.1 Data Set
	5.2 Running Time Comparison Table
	5.3 Correctness and Expressivity of the Results
	5.3.1 Top 10 Terms by Frequency
	5.3.2 Outputs

	Conclusions and Future Work
	References

