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Abstract

Visualizing time series data over long periods of time in a concise way is a dif-
ficult problem. Time is linear and continuous, but displaying large amounts
of continuous data at a reasonable resolution is impossible or impractical
in most mediums. Traditional solutions employed in digital systems such
as panning and zooming tend to require very granular interactions, caus-
ing unnecessary friction and making the process of viewing the visualization
unwieldy:.

To address this problem, I propose a display of small multiples organized in
semantic groups (e.g. years, months, days). This provides a highly efficient
overview of high-level patterns in the data. Additionally, one of the small
multiples (e.g. one month) is shown in more detail at the bottom of the
screen. The element to be shown in detail can be selected from the grid of
small multiples interactively.

Another challenge associated with displaying time series data across long time
periods is allowing for comparisons between different time intervals. When
time series data is not displayed continously, there is no common coordinate
system which aids visual comparisons. Since not all of the data can be shown
at the same time, comparisions across space are impossible for many of the
items.

My solution allows for the user to select one of the small multiples as the
basis of comparison. This element’s data is then overlayed onto all other
elements, enabling efficient visual comparisons of elements across the entire
dataset.

To show the viability of my solution, I have implemented it as a client-side
web application.



Abstract (Italiano)

Visualizzare serie temporali lungo un periodo di tempo prolungato in maniera
concisa € un problema complicato. Il tempo € lineare e continuo, ma mostrare
un flusso costante e consistente di informazioni ad una risoluzione ragionevole
e impossibile o comunque poco pratico nella maggior parte dei casi. Panning
e zooming, soluzioni adottate tradizionalmente in sistemi digitali, causano
delle difficolta nell’utilizzo e richiedono interazioni molto granulari, rendendo
il processo di visualizzazione complicato.

Per risolvere questo problema, propongo un’interfaccia costituito da piccoli
multipli organizzati in gruppi semantici (per esempio anni, mesi, giorni). In
questo modo e possibile ottenere una rappresentazione nei dati ad alto liv-
ello e molto efficiente. Inoltre, uno dei piccoli multipli (per esempio un mese)
viene mostrato in maniera piu dettagliata in basso nello schermo. L’elemento
che si vuole mostrare in dettaglio puo’ essere selezionato in maniera interat-
tiva dalla griglia dei piccoli multipli.

Un’altra difficolta associata allo illustrare serie temporali lungo periodi di
tempo prolungati riguarda come permettere di confrontare diversi intervalli
di tempo. Quando una serie temporale non viene disegnata in maniera con-
tinuativa, viene a mancare un sistema di coordinate che aiuta il confronto
visivo. Poiche e impossibile mostrare tutti i dati allo stesso tempo, il con-
fronto spaziale € impossible in molti casi.

La mia soluzione permette all’'utente di selezionare uno di questi piccoli mul-
tipli come elemento base per il confronto. I dettagli dell’elemento sono suc-
cessivamente sovrapposti a tutti gli altri, permettendo in questo modo un
confronto efficace di elementi in tutto il dataset.

Per dimostrare la fattibilita della mia soluzione, e stata implementata una
applicazione web client-side.
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Abstract (Deutsch)

Zeitreihendaten iiber lange Zeitraume zu visualisieren ist ein schwieriges
Problem. Zeit ist linear, aber eine ununterbrochene Visualisierung linearer
Daten bei erfordert ein Medium von variabler Grole. Dieses Problem wird
in digitalen Visualisierungen traditionell durch sehr granulare Navigation
durch den Benutzer, z.B. Zoomen und Scrollen, gelost. Dies hat allerd-
ings den Nachteil, dass dabei fiir das blofle Betrachten der Visualisierung
betrachtlicher kognitiver und physischer Aufwand notig ist.

Um dieses Problem zu losen, schlage ich ein Layout, welches aus einem
Raster von Small Multiples besteht vor, welche die Zeit in semantische Ab-
schnitte (z.B. Tage, Monate, Jahre) aufteilen. Dies gibt dem Betrachter
einen schnellen und effizienten Uberblick iiber groBe Teile des Datensets.
Zusétzlich wird eines der Small Multiples (z.B. ein Monat) im unteren Teil
der Oberfliche grofler angezeigt. Das grofler anzuzeigende Element kann
interaktiv aus dem Raster ausgewahlt werden.

Eine weitere Herausforderung bei der Darstellung von Zeitreihendaten iiber
lange Zeitraume ist es, Vergleiche zwischen verschiedenene Zeitbereichen zu
ermoglichen. Dies ist insbesondere schwierig wenn Zeitreihendaten nicht
durchgehend dargestellt werden, weil es dabei kein durchgehendes Koordi-
natensystem gibt, welches visuelle Vergleiche einfach moglich macht.

Meine Losung erlaubt es dem Betrachter, eines der Small Multiples aus dem
Raster als ”Vergleichsbasis” zu setzen. Die Daten fiir diesen Monat wer-
den dann tber die Daten aller Monate gelegt. Damit sind schnelle visuelle
Vergleiche tiber das gesamte Datenset moglich.

Um die Praktizitat meiner Losung zu zeigen, habe ich eine Client-side We-
bapplikation entwickelt, die sie implementiert.

il
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Chapter 1

Introduction

1.1 Motivation

Information design is similar to writing in many ways. It is about com-
municating information to people in an understandable way. Just like with
writing, there are several factors involved: The accuracy and granularity of
the information, the density and efficiency with which it is conveyed, the
medium used to convey it, the reader’s knowledge of the subject, and the
context in which it will be read.

But unlike writing, Information Design is visual. While a written text has
to be more or less read linearly, a visualization can communicate complex
ideas in a much more condensed form. This is especially true when working
with datasets so large that it is impossible to make sense of them by going
through them in a linear fashion.

Today, most professions require people to make sense of data in one way or
another. Unfortunately, the tools for doing so are not very good in many
cases [?]. This thesis explores new approaches for designing these tools.
In particular, I focused on interfaces for displaying time series data over
long periods of time. The data I worked with is temperature data between
2007 and 2014, measured with a frequency of a few minutes at agricultural
weather stations across the province of Bolzano. It was provided by Stidtiroler
Beratungsring fur Obst- und Weinbau, an agricultural consultancy, who use
this data to help local farmers with things like irrigation and pest control.

In this industry, making sense of the large volumes of data provided by the
weather stations is crucial, because it is what drives the consulting activities.
If the data analysis tools the consultancy has at their disposal makes this
easier, the quality of their entire service improves.



1.2 Problem

One of the hardest problems in visualizing these kinds of datasets is enabling
viewers to see patterns and make comparisons across long periods of time.
Since time is linear and continous, the most intuitive method of displaying it
is as a single, continous timeline. However, this is possible only if the dataset
is small enough to allow for displaying the entire dataset at a reasonable
resolution on the given medium, or if the medium can dynamically expand to
match the size of the dataset. In the case of visualizations of large datasets on
screens, neither is the case. Thus, it is not possible to show all of the data at
once, and some kind of navigation is necessary. The most common approach
to this is to allow users to interactively zoom and scroll a continuois timeline.
However, this type of interface has the disadvantage that the simple task of
viewing the data requires a large amount of very granular interactions, and
therefore considerable effort, on the part of the users.

My thesis explores new approaches to the design and implementation of
interfaces for time series data that facilitate comparisons while minimizing
user interaction. Specifically, the two issues I addressed are making time
tangible, and enabling visual comparisons across large datasets.

1.3 Solution

To address the issue of making time tangible, my interface employs a grid
of small multiples representing discrete, semantic time intervals (years in
my specific case, though the solution works just as well for other interval
lengths, like days or weeks). Splitting up the continuous flow of time has the
advantage that individual elements are easy to distinguish, thus facilitating
comparisons across space. More importantly, however, it gives users a very
clear sense of the structure of time.

This also helps with the second goal, enabling comparisons. Since time is al-
ready split up into discrete intervals, these intervals can be leveraged to allow
for powerful visual comparisons across the entire dataset. This is achieved by
overlaying the month that needs to be compared on every other month, and
visualizing the difference between them with colored areas. Complementing
this high-level overview of the entire dataset, there is a second view which
enables users to see specific parts of the dataset in great detail, as Figure 1.1
shows.
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Figure 1.1: Screenshot of the user interface, a grid of small multiples and a
detail view which shows a single month in more detail.

1.4 Organization

Chapter 2 outlines some of the theoretical ideas that inpsired the design of
my solution, along with some general information on basic information design
concepts. Chapter 3 explains the domain and context of the problems my
research aims to address. Chapter 4 illustrates the design process in detail,
showing ideas and prototypes at different stages, as well as how they informed
the final design. Chapter 5 is concerned with the implementation of both
the prototypes and final design. It explains different technical choices and
considerations. Chapter 6 sums up the the feedback I got from the experts
at the Beratungsring meeting. Chapter 7 concludes the thesis with some
general considerations and ideas for possible future work on the project.



Chapter 2

Background

In this chapter I will outline some of the concepts and ideas that have influ-
enced the design and implementation of the project.

2.1 Information Design Concepts

2.1.1 Time Series

A time series [?] is a set of data points laid out across a period of time,
mapping the changes in a variable across said period. A time series plot
is an information graphic mapping these values to visual variables, usually
the horizontal and vertical position of points or lines on a 2-dimensional
display. Time series plots are among the most frequently used type of data
graphics|?], likely because of the simplicity and clarity of time as a single,
linear dimension. Edward Tufte describes their appeal in The Visual Display
of Quantitative Information [?]:

“With one dimension marching along to the regular rhythm of
seconds, minutes, hours, days, weeks, months, years, centuries, or
millennia, the natural ordering of the time scale gives this design a
strength and efficiency of interpretation found in no other graphic
arrangement,.”



Time series plots can take various different forms and are used across vari-
ety of different fields and mediums. For example, William Playfair’s trade-
balance chart (Figure 2.1 [?]), published in The Commercial Political Atlas
in 1786 shows the difference in England’s imports and exports from and to
Denmark and Norway over 80 years. As is immediately visible, the exports
surpassed the imports around 1755, and went on to increase steadily in the
following 25 years. This display, along with Playfair’s other work is renowned
because it was one of the first examples of statistical graphics being used in
such an elegant way to explain complex relationships in a large dataset.
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Figure 2.1: Trade-balance time-series chart by William Playfair (1786)

2.1.2 Small Multiples

Small Multiples [?] are series of graphs row or grid, which use the same
system of coordinates and show different aspects of a signgle variable. This
kind of layout enables powerful comparisons across space, which are almost
always preferable to comparisons across time because they are faster and
require no user interaction [?].



This data graphic from the New York Times How the Recession Reshaped
the Economy, in 255 Charts [?], comparing the development of different
industries after the financial crisis, is an example of the flexibility and wide
applicability of the format.

Buying & Selling

Electronic trade markets and Wholesale groceries Wholesale machinery and Wholesale commercial Wholesale motor vehicles and Miscellaneous wholesale
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Aver

atinatill |
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- — —_—
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jewelry, toys, other goods plumbing construction supplies
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Current Jobs: 334,000 Current J
Average Salary: $63,066 Average Salary: $49,358

T— - "—-‘-‘—‘

Has not recovered Recession accelerated dedline Relatively unaffected
Current Jobs: 194,100 Current Jobs: 185,800 Current Job 0
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Figure 2.2: Interactive small multiples visualization on the New York Times
website.

The term and concept of small multiples was popularized by Edward Tufte.
They are a direct application of his Shrink Principle [?], which states

“Graphics can be shrunk way down.”

Tufte criticizes the fact that most data graphics are not taking full advan-
tange of the resolution at which the human eye can distinguish visible data
points. He argues that graphics should be as dense as possible, within the
limits of human vision, in order to give viewers as clear a picture of the data
as possible.

2.2 User Interaction

User interaction can be an essential part of digital visualizations allowing the
a graphic to show more data than the medium can display at a time, and
giving the user the option to explore the dataset in more detail. However,
interaction can also be harmful, as it can be used to mask bad design decisions
in other areas, like the layout of the graphic.
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For example, an interactive visualization might hide information about the
items of a list in popups and require a user to click each one to make compar-
isons between the elements. However, if the layout of the list were to already
show this information for all elements, comparisons could be made without
any interaction.

In Magic Ink, Bret Victor divides software into three categories [?]: Informa-
tion software, manipulation software and communication software. Informa-
tion software gives users information and empowers them to “ask and answer
questions, make comparisons, and draw conclusions”, manipulation software
allows users to create things, while communication software enables them to
communicate with other users.

When it comes to interaction, he argues that these categories have to be
treated differently, because the use cases for them are very different.

“For manipulation software, interaction is perfectly suitable: the
user views a visual representation of the model, considers what to
manipulate next, and performs a manipulation.”

Information software, on the other hand, “mimics the experience of read-
ing, not working”, which is why with information software “all interaction
15 essentially navigation around a data space”. He goes on to explain the
considerable cognitive and physical effort [?] involved with navigation, ex-
plaining that it is really the task of actively recreating the user’s mental
model in the computer.

Because of this, interaction in information software should be avoided when-
ever possible. In other words, information software should show as much
information as possible without the user having to interact with it, allowing
them to focus on seeing, not doing.



Chapter 3

Problem Definition

Designing visualizations that are dynamically generated and work with dif-
ferent kinds of datasets, but are still easy to read and allow for efficient
reasoning and fast comparisons is a difficult balance to keep.

When it comes to time series data across long periods of time, the difficulty of
making a display scalable is further amplified. Time is linear and continuous,
but in most cases the medium it is displayed on has a fixed physical size that
cannot change with the data displayed. This means that if the graphic is to
retain a reasonable resolution, not all of the data can be visible all of the
time. This means that we can not avoid introducing some kind of interactive
navigation. However, the consequences go further than that: It also leads to a
series of problems related to the actual process of viewing. For example, how
can elements be compared visually if some of the elements are not currently in
view? When balancing all of these different constraints, it is very important
to keep in mind what the specific use cases and goals are, and to optimize
the display for these.

3.1 Problem Domain

The dataset I worked with is sensor data from agricultural weather stations
across the province of Bolzano. It was provided by Sidtiroler Beratungsring
fur Obst- und Weinbau, a local consultancy in the agricultural sector, who use
it to help their clients, mostly apple and wine farmers from the region. The
data consists of 24 metrics, which are measured every few minutes at each



of the 134 stations. These metrics include things like temperature, humidity,
precipitation and wind speed.

The data collected by the sensors at the weather stations is at the very core
of Beratungsring’s business, as all of their consulting activities rely on it
heavily. Using this data, they decide when to advise their clients to use
pest control, irrigate their plants or a number of other things. This makes it
crucial to have an interface to the data which makes it easy to understand
the underlying structure, find patterns and make comparisons.

Since Beratungsring is currently planning a redesign of their internal infor-
mation system, they asked me to explore some interesting concepts around
the display of time series in the context of their dataset. Because of the
very wide applicability and relevance to their specific use cases, we decided
that my research would focus on making time tangible and enabling visual
comparisons across large datasets.

3.2 Making Time Tangible

One of the problems with most interactive visualization tools for time series
data is that they display the data in a single, continuous chart with time on
the x-axis, which can be zoomed and scrolled horizontally. An example is
shown in Figure 3.1 '. This specific chart allows users to zoom by setting
the new time interval via click and drag. To zoom out, one needs to click a
button in the top right.

This type of interface requires a large amount of interaction on the user’s part
to explore, which makes it feel clumsy and complicated. Significant amounts
of physical and cognitive effort are necessary to simply view the display [?].
It also makes time feel arbitrary and immaterial, as elements change their
size and position with very little context.

The first major goal of my thesis was finding a way to avoid these kinds of
problems when displaying time series data.

1Source: fusioncharts.com
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Figure 3.1: Example of an interactive time series plot

3.3 Enabling Visual Comparisons

The other problem I investigated is comparing data between different time in-
tervals, especially in large datasets. In the case of temperatures, specifically,
there are very clear patterns in the data, (e.g. winter months are gener-
ally colder than summer months, nights are generally colder than days), but
comparing these intervals is a very tedious task with conventional visualiza-
tion methods. Viewers have to go back and forth between the different time
periods they want to compare, which is especially tedious in large datasets.

For example, if I wanted to find the differences between the January of 2012
and 2014 in a continous, zooming timeline, I would have to zoom in and out
on the graphic several times, remembering the values in certain positions,
and comparing them myself. Not only is this slow and inefficient, but the
comparison will probably not be very accurate.

Addressing use cases like this was the second area of focus in my research.

11



Chapter 4

Design

Since the research questions my project addresses are very open-ended, ex-
ploration and prototyping were a crucial part of the design process. I ended
up building 8 fully functioning prototypes, which explore different approaches
to solving the intial problems. By combining the best elements from these
experiments, I arrived at a solution which achieves the project’s goals in a
simple and efficient way.

4.1 Prototypes

4.1.1 “Time Blocks”

In order to address the problem of time feeling arbitrary and immaterial,
which is common in continuous zoomable timelines, I experimented with
splitting it up into discrete intervals. These 'time blocks’, a grid of small
multiples, break up the endless continuity of time into small, semantic blocks
(e.g. days, weeks, months).

An example with days as the base unit is shown in Figure 4.1. It is a simple
week calendar layout of small multiples, where each row corresponds to a
week, and each day corresponds to a chart visualizing the temperatures on
that day. The charts all use the same scale and coordinate system, making
it easy to visually compare the plots.

12



This approach has several advantages over displaying time continuoisly in a
timeline. First of all, it makes navigating time much easier, because rows can
be stacked vertically, thus allowing navigation to be as simple as scrolling a
website. More importantly, however, it also makes time tangible for the user
by splitting it into easily recognizable units of known size, using a common
coordinate system.

Montag Sept. 2 Dienstag Sept. 3 Mittwoch Sept. & Donnerstag Sept. § Freitag Sept. & Samstag Sept. 7 Sonntag Sept. §

Montag Sept. 8 Dienstag Sept. 10 Mittwoch Sept. 11 Donnerstag Sept. 12 Freitag Sept. 13 Samstag Sept. 14 Sonntag Sept. 15

Montag Sept. 16 Dienstag Sept. 17 Mittwoch Sept. 18 Donnerstag Sept. 19 Freitag Sept. 20 Samstag Sept. 21 Sonntag Sept. 22

Montag Sept. 23 Dienstag Sept. 24 Mittwoch Sept. 25 Donnerstag Sept. 26 Freitag Sept. 27 Samstag Sept. 28 Sonntag Sept. 29

\/\\//\ﬂjf\x\/”xwﬁm\_

Figure 4.1: One of the first prototypes implementing the "time blocks’ concept
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4.1.2 “Diff Areas”

To address the problem of enabling efficient comparisons across long time pe-
riods, I explored visualizing the difference in the temperature values between
periods of time on the actual graphic, thus making comparisons immediate.

This fit in perfectly with the ‘time blocks’ concepts, because with the data
already split into discrete intervals of equal size, it was easy to make them
comparable by just showing the diff between two graphs in the time blocks.
To visualize these diffs between the different periods the plot for the selected
interval is overlaid on every other interval, and colored areas are drawn be-
tween the two plots. If the temperature values in an area are lower than on
the selected day, it is drawn in blue, otherwise it is drawn in red. Figure 4.2
shows an example of this. Every individual chart can be clicked to set it as
the new comparison basis against which the diffs are calculated. Though the
lack of affordances makes it hard to see at a glance, the selected chart is the
one with no colored areas (September 26).

Montag Sept. 9 Dienstag Sept. 10 Mittwoch Sept. 11 Donnerstag Sept. 12 Freitag Sept. 13 Samstag Sept. 14 Sonntag Sept. 15

Montag Sept. 16 Dienstag Sept. 17 Mittwoch Sept. 18 Donnerstag Sept. 19 Freitag Sept. 20 Samstag Sept. 21 Sonntag Sept. 22
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Montag Sept. 23 Dienstag Sept. 24 Mittwoch Sept. 25 Donnerstag Sept. 26 Freitag Sept. 27 Samstag Sept. 28 Sonntag Sept. 20
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Montag Sept. 30 Dienstag Okt. 1 Mittwoch Okt. 2 Donnerstag Okt. 3 Freitag Okt. & Samstag Okt 5 Sonntag Okt. 6

Figure 4.2: Early prototype with 'diff areas’

The bigger the difference in temperature between the compared intervals,
the bigger and therefore more visible the colored areas. This makes outliers
or uncommon patterns in the data instantly stand out. Inversely, to find the
most similar intervals, one simply needs to look for the intervals with the
smallest colored areas.
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4.1.3 “Micro-Macro”

In trying to get the greatest possible information density from the display,
I experimented with different sizes of small multiples. I found that Tufte’s
Shrink Principle really works. The most important trends and patterns in
the data are still perfectly recognizable even at miniscule sizes.

For example, the design in Figure 4.3 shows almost the entire dataset at a
glance. The base unit of display and comparison are months, allowing the
viewer to compare entire years worth of data very efficiently. Since each
row is a single year, the vertical dimension allows for semantic comparisons
as well. Where other layouts which use weeks and months as rows do not
have an inherent periodicity to them (for example, it isn’t very meaningful
to compare the temperature on Mondays over time), this display enables the
viewer to compare the same month across different years vertically. Due to
the periodic nature of weather across the year, this can lead to interesting
insights on the seasons and large-scale changes in weather and climate over
the years.

gl et OO N I B DA D it
g oo el Y I A D
O Y Y A S O B 0 o
Mt o (g e il WM*\WW W\WW W“M L T S i

o ot s N N O e g o i

Figure 4.3: Prototype employing ’diff areas’, comparing months across the
entire dataset

Small multiples are highly effective in showing trends across large amounts
of data, as well as enabling comparisons between intervals. The high-level
overview this provides is very powerful for quickly searching the dataset for
specific patterns or finding extraordinary events.

However, when it comes to showing the exact numeric values of the data
at specific points in time, this type of display is not very useful, precisely
because of its high-level nature. Though this aspect was the main focus of
my research, the exploratory nature of my application made it necessary to
provide a way to see the data at this kind of level as well.
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In order to provide this high-detail view of the data as well, I experimented
with a second view, which shows one of the small multiples much larger and
in very fine detail. Figure 4.4 shows an example of this. On the left side,
there is a very small, high-level overview of several months of data, split up
into individual days. The day to be shown in detail can be interactively
selected from the grid of small multiples.

September 2014
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—
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Okt. 8 compared to Sept. 26

Figure 4.4: Prototype combining the micro-macro layout with ’diff areas’.
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4.2 Final Design

Of all my experiments, the combination of the micro-macro layout with the
"diff area’ technique is clearly the most compelling. It meets all of the initial
research goals, allowing viewers to efficiently compare data at a high level of
detail over extended periods of time, all while requiring very little interaction
on their part.
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Figure 4.5: Screenshot of the final layout

The final layout (Figure 4.5) uses months as the base unit of time, allowing
viewers to compare both months and years aross the entire dataset. The
data in the small multiples is aggregated to 24 hour intervals, which means
that the day-night fluctuations in the dataset do not distract the viewer from
seeing more long-term trends and patterns in the data.

The detail view on the bottom of the display is fixed, while the grid view of
small multiples can be scrolled vertically. Left-clicking the small multiples
opens them in the detail view, right-clicking them sets them as the new basis
for comparison. This works with the year labels as well, allowing comparisons
of all months on a year-by-year basis. Rather than comparing every month
to the same month of the same year, each month is compared is compared
to itself in a different year.
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4.2.1 Example Use Case

Let us assume a consultant at Sudtiroler Beratungsring fiur Obst- und Wein-
bau is using the application because he needs to find months with tempera-
tures similar to March of 2012. All they have to do is find March of 2012 in
the grid of small multiples, and right-click it. This will re-draw all the “diff
areas” across the interface to show how different the temperatures during
each month are from the selected month. To find the most similar months
our user just needs to find the months where the colored areas are smallest.
In this case it is apparent that there are no months that are highly similar,
because there are relatively large colored areas in all charts.

January February March April May June July August September  October November  December

2008 WWWWWMWWWWWM

2009 WWWW”WW‘WWWWW

2010 wmww‘wwwwwmwm
2011 w&wwwwwwwwww

2012 mewWWWWWMWW

2013 wwmwwﬂ*"”‘%www

rq 3 1,2 3 45|86 7 8 9 10 11|12 13 14 15 16 17 |18 19 20|21 22 |23 |24 25 26 | 27 28 29|30 31
30
25
20
15
10
5
0
-5
-10
-15

March 2010 compared to March 2012

Figure 4.6: Interface with March of 2012 as the comparison basis and March
of 2010 shown in the detail view.

What is also visible immediately is that March was much colder in other
years compared to 2012. Let us assume our consultant is interested in how
that difference is for March of 2010. All they have to do now is left-click the
chart for March of 2010 and it will be displayed in the detail view on the
bottom of the screen, as Figure 4.6 shows. This view shows the data at a
much finer level of detail, allowing the consultant to compare even individual
days.

As this example has shown, the application’s interface makes it fast and
efficient to see differences and patterns in large datasets and provides ample
opportunities for exploration.
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Chapter 5

Technology and
Implementation

For the implementation of both the prototypes and the final design, I used
web technologies, namely HTML and €ss for layout and interface elements,
SvG for the charts, and Javascript for the application logic. It was an easy
decision as no other development environment is so widely adopted and has
such a broad range of available technologies and tools so perfectly suitable
for data visualization.

5.1 Data

The data I worked with was stored in a CSV file where each row contains the
ID number of the station, a timestamp, and the temperature value in degree
Celsius, with an interval of 5 minutes between the measurements. Each row
corresponds to one measurement.

station id timestamp value
3 2007-01-01 00:05:00+01 -4.708
3 2007-01-01 00:10:004+01 -4.858
3 2007-01-01 00:15:00+01 -5.008

In order to use this data in the browser, I had to filter and aggregate the data,
and store it in a format the browser can read natively, namely JSON. To do
this, I used two scripts, a bash script which filters out only one specific station
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from the entire dataset (as only one will ever be displayed at a time), and a
node.js script which aggregates the data at different levels of granularity and
creates a nested object structure for use in the visualization.

This is the basic structure of the data in its JSON representation:

{

timestamps: |
"11676495007,°11677359007,71167822300 ",
I

values: |
~5.9,—4.1,-1.4,

As this example shows, the JSON data used in the browser is much more
condensed than its initial representation. In order to minimize the memory
footprint, the timestamps are represented in the Unix timestamp format.
Temperature values are rounded to one decimal point for the same reason.

For the small multiples, the data is aggregated to a single value per day,
both in order to keep the amount of data to be displayed manageable for
the browser [?], filter out the day-to-day fluctuations of the data and show
high-level trends and patterns more clearly. This is done by calculating the
average temperature across the entire day (between 00:00 and 24:00), and
using the middle of the time interval (noon in this case) as the timestamp
for this value in the dataset.

For the detail view, the data is aggregated as well, but to a much smaller
degree and purely due to memory and performance considerations. Since the
display will only ever take up about 1000px horizontally, it makes no sense
to draw more than 1000 data points on standard pixel density monitors.
The original dataset contains 288 data points per day, which means the data
points per month are between 8064 for a month with 28 days and 8928 for a
month with 31 days. This means that on screens with standard pixel density,
the aggregation is only visible when the intervals are longer than 3 hours.
With this in mind, I set the aggregation interval to 2 hours in order to provide
some extra resolution for HiDPI displays.
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5.2 Prototypes

For the interface prototypes I built, I needed a process and architecture that
could be easily used to build many different kinds of visualizations and that
allowed for rapid iteration. This is why, even though view libraries like React
provide a much better workflow and produce cleaner code, I decided to use
vanilla HTML, €SS and Javascript. This means that I had to do templating,
event handling, and view updates manually, but it also meant more flexibility
in adding, changing and removing individual parts without affecting the rest
of the system.

All the various prototypes have a few things in common, most importantly
that the layout structure is completely defined in €ss, and every chart is a
self-contained svG element within the boM. This approach affords a lot more
flexibility in adapting layout to different concepts than, for example, making
the entire grid a single svG with absolutely positioned elements inside of
it. This allowed for quick iteration on the layout and made it easy to swap
out and change different parts of the interface. Most of the interface is
implemented in Flexbox, a cutting-edge €SS layout technology, which allows
Css to define rows or columns with and without wrapping.

Figure 5.1 shows one of the “year-diffs” prototypes, comparing both months
and years on a very high level, running in the browser.
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Figure 5.1: Prototype running in Chromium
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5.3 Final Design

For the implementation of the final design, I used React for rendering the
entire interface using a clean component structure. Since there was no need
for the architecture to be easily adaptible to different types of visualizations,
it made sense to use React, as its virtual DOM makes it possible to handle
rendering with a single view hierarchy using a one-directional data flow. This
is a much better paradigm for developing interfaces, because synchronizing
state between the DOM and data model, typically one of the hardest prob-
lems when doing this by hand, is not an issue with React. Every change
in the data automatically permeates to the DOM, but only the parts of the
DOM that actually need to be updated are changed, making updates very
performant. Figure 5.2 shows part of the DOM rendered by React in my
application.
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Figure 5.2: The final implementation, running in Firefox.

The view strucutre consists of a single hierarchy with a parent component
called App at the top. This component handles the initial data retrieval and
all consecutive view updates. App renders the three main areas of the inter-
face, LabelRow (the row of month labels at the top), Grid View (the scrollable
area containing the small multiples) and DetailArea, the view at the bottom
of the screen showing a single month in detail. The basic React component
structure is visible in the React Debugger in Figure 5.3. This browser exten-
sion makes it possible to inspect the React component structure, as well as
the properties and state of individual components at runtime.
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GridView then renders a list of GridRow components, one for each year.
Every GridRow, in turn, renders a list of GridChart components, which draw

an SVG chart with the data passed to them.

Every GridChart has its own event listeners for both left and right clicks,
which always trigger a complete re-render of the App component at the top of
the hierarchy with the data from the component the event came from. The
new data then cascades through the component hierarchy, updating every

part of the interface accordingly.
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Figure 5.3: The React Debugger extension in Chromium.
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Chapter 6

Feedback and FEvaluation

I presented my ideas and prototypes at a meeting attended by Stdtiroler
Beratungsring fiir Obst- und Weinbau consultants, as well as agricultural
experts from other institutions. Their response was highly positive, as there
are currently no tools available for their industry which enable comparisons
across time at the level that my proposed solution achieves. They explained
that their current process for doing comparisons of this kind involves going
through the data and comparing values manually. A more comprehensive
tool employing the techniques used in my design (using all variables, not just
temperature) could massively improve their workflow in many areas.

They also had some suggestions and ideas for future iterations of the ap-
plication, some of which I was able to implement in the final version of the
project. For example, they proposed aggregating the data more, as the day-
to-day variance in the dataset can make it harder to see larger trends in the
small multiple overview of the entire dataset. In the implementation of the
final design I aggregated values in intervals of 24 hours, cutting down on the
noise and making the resulting display more useful in the process.

Another interesting proposal from one of the experts at the meeting was an
interface where different years are compared, but where the display is aligned
by specific events during the year (e.g. the first day with temperatures below
0 degrees Celsius). This would be useful because for certain kinds of analysis
the exact dates are not as important as the time relative to a specific event
that year. Though it is too specific for the purposes of my project, this kind
of interface taylored to a specific use case would be an interesting starting
point for further research.
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Chapter 7

Conclusion and Future Work

Because of the inherent limits in human vision and display technology, a
visualization is never perfect. However, given a specific set of goals and use
cases, some visualizations can be vastly more efficient than others.

Starting from my problem definition, I have designed and developed a display
which does exactly this. By employing a grid of small multiples showing high-
level patterns in large datasets, combined with a detail view showing parts of
this data at a macro perspective, my solution gives both an efficient overview
and allows for detailed study of the underlying data.

Making accurate comparisons between individual time intervals in time se-
ries, an otherwise notoriously hard task, is reduced to a single click for the
user. By combining traditional information design concepts with the inter-
active capabilities of the web as a medium, this approach provides a a simple
and efficient solution to a complex problem.

Though the intial research questions are thoroughly addressed, there are a
lot interesting ideas related to the display and comparison of time series
data over long time periods that could be explored. In our meeting with the
agricultural experts at Beratungsring we discussed a number of other areas
in which a visualization format specifically optimized for a certain use case
could massively improve the workflow currently used by their consultants.

This is a clear signal that domain-specific visualization tools have a lot of
potential in improving the everyday jobs and lives of people everywhere. My
experiments have shown that even in areas as traditional and conceptually
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simple as time series plots, there is always room for improvement over the
standard way of doing things.

With the ever-increasing number of sensors and metrics in every area of
our lives, making sense of large amounts of data quickly and efficiently will
continue to become more important in the future. Custom, domain-spcific
visulizations will play a crucial role in making this possible.
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