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Abstract

Route planning services have become very popular over the past decade. The increased
availability of road network data has triggered the development of a variety of new applications.
In this spirit, the overall goal of this thesis is to propose efficient algorithms for tackling route
planning problems on road networks. In particular, we study the following two problems:
(a) the efficient processing of distance and shortest path queries and (b) the computation of
dissimilar yet short alternative paths.

Distance and shortest path queries can be used as building blocks for more complex queries
on road networks. Therefore, the efficient processing of both types of queries is of great im-
portance. However, most state-of-the-art methods focus solely on one type of query and do
not efficiently support the other. To address this shortcoming, we propose the Partition-based
framework for Distance and Shortest Path queries (ParDiSP), which combines ideas from state-
of-the-art approaches in a novel way and provides exceptional query times for both distance
and shortest path queries. Our framework first partitions the road network into components.
Then exploits the properties of the partitioning for precomputations to boost query process-
ing. ParDiSP answers distance queries solely by accessing precomputed distance tables and
significantly limits the part of the road network that has to be accessed to process shortest path
queries. A detailed experimental evaluation shows that: ParDiSP outperforms the state-of-
the-art for shortest path queries, is comparable to the state-of-the-art for distance queries, and,
for mixed query loads containing both distance and shortest path queries, outperforms even a
combination of the best methods for each query type.

In many real-world scenarios though, returning only the shortest path is not enough. Most
commercial navigation systems recommend, apart from the shortest path, a number of alterna-
tive paths with different characteristics, leaving the final decision to the user. In this context,
we formally introduce the k-Shortest Paths with Limited Overlap (k-SPwLO) problem seeking
to compute k alternative paths which are as short as possible and sufficiently dissimilar based
on a user-controlled similarity threshold. We present three algorithms that examine the paths
from a source s to a target t in increasing order of their length and progressively construct the
result set. First, the baseline algorithm BSL builds upon the computation of K-shortest paths.
Second, OnePass traverses the network to expand every path from the source that qualifies
the similarity constraint. Third, MultiPass traverses the network k�1 times and employs two
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pruning criteria to reduce the number of paths that have to be examined. In an extensive ex-
perimental evaluation we show that MultiPass is the fastest algorithm for processing k-SPwLO
queries as it outperforms both BSL and OnePass and, in most cases, by a large margin.

To achieve scalability, we also propose two heuristic algorithms that trade accuracy for
efficiency. OnePass+ employs the same pruning criteria as MultiPass, but traverses the network
only once. Therefore, some paths might be lost that otherwise would be part of the solution.
ESX computes alternative paths by incrementally removing edges from the road network and
running shortest path queries on the updated network. An extensive experimental analysis
on real road networks shows that OnePass+ runs significantly faster than MultiPass with its
result being close to the exact solution, and ESX is faster than OnePass+ (though slightly less
accurate) and scales for large road networks and large values of k.

Finally, we present MoTrIS, a service-oriented Multimodal Transport Information System
for routing services on road and transportation networks. We have implemented and integrated
two of the algorithms presented in this thesis into MoTrIS: ParDiSP for processing distance
and shortest path queries, and ESX to recommend alternative paths. In addition, we have
implemented an algorithm for processing distance and shortest path queries on multimodal
transportation networks. MoTrIS enables developers to create customized routing services
and submit queries via a public API. We also show that MoTrIS is highly extensible. New
algorithms can be easily integrated to support the processing of more types of routing queries.
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CHAPTER 1

Introduction

1.1 Motivation and Problem Setting

The increasing popularity of online mapping services such as Google Maps, Bing Maps
and OpenStreetMap, has motivated research on the efficient processing of various types of
queries on (spatial) road networks. Route planning queries are frequently employed by users to
plan trips by foot, car or public transportation. Apart from being widely used by mapping and
navigation services, route planning queries are often used as building blocks for more complex
queries and, hence, are an integral part of systems and applications in various fields, e.g.,
transport services and crisis management systems. For these reasons, the efficient processing
of such queries has recently attracted a considerable interest from both research and industry.

1.1.1 Modelling and Querying Road Networks

The most common way to represent a road network is as an undirected (or directed)
weighted graph. Let G = (N,E) be a weighted graph representing a road network with
nodes N and edges E ✓ N ⇥N , where nodes represent road intersections and edges represent
road segments. Each edge e = (n

i

, n
j

), e 2 E, has an assigned weight `(e), which captures
the cost of moving from node n

i

to node n
j

, e.g., distance or travel time. A (simple) path
p(s!t) from a source node s to a target node t is a connected and cycle-free sequence of edges
he1=(s, n

i

), . . . , e
m

=(n
j

, t)i. The length `(p) of a path p equals the sum of the weights of all
contained edges, i.e.,

`(p) =
X

8e2p
`(e).

The shortest path p
s

(s!t) between two nodes s and t is the path that has the shortest length
among all paths that connect s and t. The length of the shortest path is also termed the (network)
distance between s and t, i.e., d(s, t) = `(p

s

(s!t)).
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2 Chapter 1. Introduction

1.1.2 Distance and Shortest Path Queries

Given two locations s and t in a road network, a distance query returns the network distance
from s to t, while a shortest path query computes the shortest actual route the user has to follow
to reach t starting from s. These two queries find applications in various fields. For example,
Figure 1.1a illustrates GoogleMaps1, the most popular web mapping service, while Figure 1.1b
shows a GPS navigator for cars developed by TomTom2. Distance and shortest path queries are
an integral part of both applications.

(a) GoogleMaps (b) TomTom navigator for cars

Figure 1.1: Two applications offering routing services

The classic solution for distance and shortest path queries is Dijkstra’s algorithm [32].
Given a road network G, a starting node s and a target node t, Dijkstra’s algorithm traverses
the vertices in G in ascending order of their distance from s. Despite its simplicity, Dijkstra’s
algorithm is, however, inefficient for large road networks. To achieve better performance, a
variety of preprocessing methods have been proposed, e.g., [11, 80, 86]. In particular, for
distance queries the state-of-the-art methods are Bounded-hop Methods [2, 7, 20], which reduce
the processing of distance queries to a number of lookups on precomputed distance tables. For
shortest path queries, the most efficient methods are Hierarchical Methods [36, 73, 94], which
precompute a hierarchy of shortcuts and employ it to process queries.

The aforementioned state-of-the-art methods come with a particular shortcoming. All ap-
proaches focus on a single type of query, either distance or shortest path queries, and do not
efficiently support the other. For instance, to compute a shortest path query, bounded-hop
methods execute an A⇤-search using the real distance to the target as a lower bound. Such
an operation requires the processing of a (usually very large) set of distance queries, making
the processing of shortest path queries orders of magnitude slower than the processing of dis-
tance queries. On the other hand, despite offering superior query performance for shortest path
queries, hierarchical methods are not as efficient as bounded-hop methods for distance queries
as they require a sort of scan on the hierarchy. It has been shown in [11] that the state-of-the-
art hierarchical methods are orders of magnitude slower than the state-of-the-art bounded-hop
methods for distance queries.

However, various applications require efficient query processing for both types of queries.
A representative example is itinerary planning [14]. Given a set of points of interest and a

1https://maps.google.com/
2https://www.tomtom.com/



1.1. Motivation and Problem Setting 3

time budget, itinerary planning computes one or more itineraries that visit as many points of
interest as possible within the given time budget. During the planning phase, many distance
queries need to be answered between points of interest, and once valid combinations of points
are found, the distinct paths connecting those points must be determined. In such scenarios,
to achieve optimal performance, the maintenance of two separate structures is necessary. This
leads to the first problem addressed in this thesis:

Problem 1. Existing solutions focus on one query type, either distance or shortest path
queries, and do not efficiently support the other.

1.1.3 Alternative Routing

In many real-world scenarios, determining solely the shortest path is not enough. Most
commercial route planning applications and navigation systems recommend alternative paths
that might be longer than the shortest path but have other desirable properties (e.g., lower fuel
consumption), leaving the final decision to the user. Alternative routing is also very useful for
the transportation of goods using a fleet of vehicles, i.e., transportation of humanitarian aid
through unsafe regions. By distributing the load into vehicles that follow different routes, the
probability that at least some of the goods will arrive at the destination safely can be increased.
Another interesting scenario arises in emergency situations such as natural disasters and terror-
ist attacks. To avoid panic and potential catastrophic collisions while dealing with the aftermath
of such events, evacuation plans should include, apart from the shortest, alternative paths which
overlap as little as possible.

Consider the scenario illustrated in Figure 1.2, which shows three distinct paths from loca-
tion s to t in the city center of Bolzano. The solid/black line indicates the shortest path from
s to t, whereas the dotted/red line indicates the next path in length order. Notice how similar
these two paths are. On the other hand, the green/dashed line indicates a third path which is
clearly the longest but is significantly different from the shortest path. In practice, the paths
cover very distant parts of the city’s road network. In applications like the ones discussed in
the previous paragraph, only the green/dashed path can be considered as a good and useful
alternative to the shortest path.

Figure 1.2: Illustration of alternative paths

Existing works for recommending alternative paths come with two important shortcomings.
First, many approaches define alternative paths based on their similarity to the shortest path,
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which may result in alternative paths being very similar to each other and, hence, of limited
interest to the user. Second, most existing methods typically give no guarantees regarding the
length of the alternative paths. Naturally, the users have more interest in paths that are as short
as possible. This leads to the second problem addressed in this thesis:

Problem 2. There exist no solutions that compute k alternative paths that are as short as
possible and at the same time sufficiently dissimilar to each other.

1.2 Objectives and Contributions

The overall goal of this thesis is to propose efficient algorithms for route planning on road
networks. In particular, we study two different problems related to route planning: the efficient
processing of distance and shortest path queries, and the computation of dissimilar yet short
alternative paths. In what follows, we summarize the technical contributions of this thesis.

1.2.1 ParDiSP Framework

We propose a Partition-based framework for Distance and Shortest Path queries (ParDiSP)
that efficiently computes both types of queries. ParDiSP combines ideas from state-of-the-art
approaches in a novel way, thereby providing exceptional query times for both distance and
shortest path queries. More specifically, ParDiSP partitions the road network into k components
and precomputes auxiliary information. The precomputed information enables ParDiSP to
processes distance queries as a bounded-hop method, i.e., by executing a number of table look-
ups. For processing shortest path queries, ParDiSP utilizes the result of a distance query to
identify the subset of the road network that needs to be accessed to process the given query.
Furthermore, in contrast to most existing methods, ParDiSP provides flexibility, i.e, the number
k of components can be used to adjust the trade-off between performance and space overhead.

In practice, ParDiSP exploits the properties of the road network partitioning to precompute
both distance tables and graph structures. ParDiSP answers distance queries by combining
distances from exactly three precomputed distance tables. Shortest path queries are decom-
posed into three segments, which can be computed in parallel by accessing only a small part of
the original road network. To compute the longest of the three segments, ParDiSP employs a
state-of-the-art hierarchical method over a precomputed part of the road network. We evaluate
ParDiSP in terms of performance and preprocessing cost and show that: ParDiSP outperforms
two state-of-the-art solutions for shortest path queries; it is comparable to the state-of-the-art
for distance queries; and, for mixed query loads containing both distance and shortest path
queries, ParDiSP outperforms a combination of the best methods for each query type, while its
space requirements are significantly smaller.

1.2.2 k-SPwLO Queries

We propose a novel definition of alternative paths. More specifically, we recommend a
set of k paths (including the shortest path) such that every path in the result is (a) sufficiently
dissimilar to all shorter paths in the set and (b) as short as possible. We formalize this form
of alternative routing as the k-Shortest Paths with Limited Overlap (k-SPwLO) problem. We
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also present three algorithms to evaluate k-SPwLO queries. First, the baseline algorithm BSL
builds upon the computation of the K-shortest paths. Second, OnePass traverses the road
network once expanding every path from the source that qualifies the similarity constraint.
Third, MultiPass extends and improves OnePass by employing an additional pruning criterion
and processes queries by traversing the network k�1 times. In an extensive experimental
evaluation we show that MultiPass is the fastest algorithm for processing k-SPwLO queries
outperforming both BSL and OnePass.

Despite MultiPass being the fastest exact solution for processing k-SPwLO queries, the
algorithm is not practical for large road networks. Therefore, we also propose two heuristic
algorithms3 that trade result quality for efficiency. Our first heuristic algorithm, OnePass+,
employs the pruning power of MultiPass, but, similar to OnePass, traverses the road network
only once. The second heuristic algorithm, ESX, reduces the search for alternative paths to
a set of shortest path queries by incrementally removing edges from the road network. In the
experimental evaluation, we compare the heuristic algorithms with MultiPass, the most efficient
exact solution, in terms of performance and result quality. OnePass+ runs significantly faster
than MultiPass and its result is close to the exact solution, while ESX is faster than OnePass+

(though slightly less accurate) and it scales for large road networks and large values of k.

1.2.3 MoTrIS Framework

Finally, we present MoTrIS, a Multimodal Transport Information System, which integrates
two of the algorithm presented in this thesis: ParDiSP for processing distance and shortest path
queries and ESX to recommend alternative routes. Apart from route planning on road net-
works, MoTrIS tackles the challenge of combining different types of networks, i.e., road and
transportation networks, into a single multimodal network. Developers can create customized
routing services over specific regions and with specific transportation modes. MoTrIS also pro-
vides a public API which enables developers to submit queries and integrate the functionality
directly into their applications. We also show that MoTrIS is highly extensible. New algorithms
can be easily integrated to support the processing of more types of routing queries on road and
multimodal transportation networks.

1.3 Publications

The results presented in this thesis have been published at the following conferences:

- T. Chondrogiannis and J. Gamper, Exploring Graph Partitioning for Shortest Path Queries
on Road Networks, In Proceedings of the 26th Grundlagen von Datenbanken (GvDB’14),
pages 71-76, 2014

- T. Chondrogiannis, P. Bouros, J. Gamper and U. Leser, Alternative Routing: k-Shortest Paths
with Limited Overlap, In Proceedings of the 23rd ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems (GIS’15), pages 68:1-68:4, 2015

3In [18] the term ”approximate algorithms” was used instead of ”heuristic algorithms”. Since our algorithms
come with no error guarantees, we changed the terminology as the term ”heuristic” is more accurate.
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- T. Chondrogiannis and J. Gamper, ParDiSP: A Partition-based Framework for Distance and
Shortest Path Queries on Road Networks, In Proceedings of the 17th IEEE International
Conference on Mobile Data Management (MDM’16), pages 242-251, 2016

- T. Chondrogiannis, J. Gamper, R. Cavaliere and P. Ohnewein, MoTrIS: A Framework for
Route Planning on Multimodal Transportation Networks, In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems
(GIS’16), pages 82:1-82:4, 2016

- T. Chondrogiannis, P. Bouros, J. Gamper and U. Leser, Exact and Approximate Algorithms
for Finding k-Shortest Paths with Limited Overlap, In Proceedings of the 20th International
Conference on Extending Database Technology (EDBT’17), pages 414-425, 2017

1.4 Thesis Organization

Chapter 2. This chapter discusses related research work in the areas of distance and shortest
path query processing as well as alternative routing. In addition, since our prototype system is
part of the thesis, we review state-of-the-art implementations with similar functionalities.

Chapter 3. This chapter presents the Partition-based Framework for Distance and Short-
est Path Queries (ParDiSP) on road networks, which combines ideas from state-of-the-art ap-
proaches for distance and shortest path processing in a novel way.

Chapter 4. In this chapter, we first introduce the k-SPwLO query for alternative routing
on road networks. We also propose and evaluate three algorithms for processing k-SPwLO
queries which examine the paths from the source node in increasing order of their length and
progressively construct the result set.

Chapter 5. In this chapter, we study heuristics to compute k-SPwLO queries and we propose
two heuristic algorithms which trade accuracy for efficiency. We also present the results of an
extensive experimental evaluation, comparing the heuristic algorithms with the most efficient
exact solution, both in terms of performance and result quality.

Chapter 6. This chapter presents MoTrIS, our service-oriented platform which integrates our
algorithms. We describe the system architecture and we present use-cases which demonstrate
the main functionalities of the platform.

Chapter 7. This chapter summarizes the achieved results and points out some interesting
directions for future research work.



CHAPTER 2

Related Work

In this chapter, we discuss related research work, which we divide in four parts. The first
part in Section 2.1 focuses on state-of-the-art preprocessing-based methods for distance and
shortest path query processing on static road networks. The second part in Section 2.2 reviews
algorithms for computing alternative routes on road networks. The third part in Section 2.3
discusses the problem of route planning on multimodal transportation networks, i.e., using
different transportation modes. Finally, Section 2.4 provides an overview of popular open
source and commercial routing applications and systems.

7
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2.1 Distance and Shortest Path Queries on Road Networks

In the last twenty years, the processing of spatial network queries has attracted consider-
able interest and a variety of methods to process such queries have been proposed. In [65], a
storage model for spatial network databases has been proposed along with algorithms for var-
ious spatial network queries, i.e., k-nearest neighbor (kNN) queries, range queries and closest
pair queries. For nearest neighbor and kNN queries in particular, various approaches have been
proposed [23, 30, 49, 65, 72]. Many algorithms have also been proposed for processing vari-
ants of nearest neighbor queries, i.e., aggregate nearest neighbor queries [64, 90], group nearest
neighbor queries [63] and reverse nearest neighbor queries [91].

Among spatial network queries, distance and shortest path queries are the most fundamental
and among the most popular queries. The classical solution for processing such queries is
Dijkstra’s algorithm [32]. Given a road network G = (N,E), a starting node s and a target
node t, Dijkstra’s algorithm traverses the nodes in G in ascending order of their distances
from s. In practice, Dijkstra’s algorithm works as follows: each node is associated with a
tentative distance which is initially set to +1 for all nodes, apart from s for which the tentative
distance is set to 0. Starting from s, the algorithm expands all outgoing edges of s, checks
whether by traversing the current edge the distance to the adjacent node is lower than the current
tentative distance and, if necessary, updates the tentative distances of the adjacent nodes. Once
all outgoing edges are visited, the node is called expanded. At each iteration, the node with
the smallest tentative distance that has not yet been expanded is examined. The expansion
terminates either when the target node t is encountered or there are no more nodes to expand,
in which case there is no path connecting nodes s and t.

A simple improvement to Dijkstra’s algorithm is to perform a bidirectional search [67], i.e.,
to execute Dijkstra’s algorithm simultaneously from the source s and backwards from the target
t. The search stops when a valid meeting point of the two shortest path trees is determined.
Bidirectional search can improve the execution time of Dijkstra’s algorithm by a factor of two.
However the improvement is not sufficient; like Dijkstra’s algorithm, bidirectional search is
also impractical for large road networks.

In order to make distance and shortest path queries scalable for large road networks, a
variety of preprocessing based methods have been proposed [11, 80]. Such methods aim at
precomputing auxiliary information offline, inflicting a relatively high one time cost, and em-
ploy the precomputed information in order to reduce the query processing time. Depending
on the precomputed information and the way each method utilizes it, we can classify exist-
ing methods into five main categories: Speed-up methods, Spatial Coherence-based methods,
Bounded-hop methods, Hierarchical methods, and Partition-based methods. In what follows,
we present the most important methods in each category.

2.1.1 Speed-up Methods

Speed-up or goal-directed methods employ a modified version of Dijkstra’s algorithm along
with heuristics to prioritize the expansion of nodes that are closer to the target. As Dijkstra’s
algorithm has to visit a very large part of the road network, speed-up methods aim at reducing
the part of the network that the search algorithm has to expand.

A⇤-search [40] is a classic goal-directed algorithm which employs lower bounds to reduce
the search space and speed-up shortest path query processing. The lower bound is determined
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by employing a heuristic function h : N � < on the nodes of the input road network. The
algorithm then employs a modified version of Dijkstra’s algorithm setting the priority of each
node n to dist(s, n) + h(n, t) causing the nodes that are closer to the target to be visited
first. Naturally, the tighter the lower bound, the less the nodes that the search algorithm is
going to visit. For example, in the case where we have the tightest possible lower bounds,
hence h(n, t) = dist(n, t), then, for any shortest path query from s to t, A⇤-search visits only
nodes on the shortest path from s to t. Like Dijkstra’s algorithm, A⇤-search can also run in a
bidirectional fashion too [38].

Common heuristics employed by A⇤-search on road networks is the Euclidean distance
and the Manhattan distance. However, such heuristics fail to take into consideration the struc-
ture of the road network and, therefore, in many cases, the improvement is minimal. An al-
ternative way to obtain lower bounds is to employ landmarks. Landmark-based A⇤-search
(ALT) [38] precomputes distances from all nodes of the road network to a small subset of
nodes, called landmarks. During the execution of a shortest path query from a source node s
to a target node t, the lower bound of the distance from a node n visited by the algorithm to
t is computed by employing the triangle inequality. More precisely, for any landmark l, we
have dist(n, t) � dist(n, l)� dist(t, l) and dist(n, t) � dist(l, t)� dist(l, n). For each node
n the algorithm always picks the tightest possible lower bound among all bounds computed
using different landmarks. Apparently, the quality of the lower bounds depends heavily on the
selection of landmarks during preprocessing; several techniques for selecting lanmarks have
been proposed [68].

The ALT algorithm has been improved by incorporating reach labels [39] resulting in the
Reach-based ALT (REAL) [37] algorithm. The reach of a node n is defined as R

st

(n) =

min{dist(s, n), dist(n, t)}. The shortest path search can be pruned at nodes with a reach
too small to get to the source or the target. Although reach values are determined during the
preprocessing phase, computing exact reaches requires the computation of the all-pairs shortest
paths; such an operation is prohibitively expensive. The result of the query is correct even if
the reach of a node represents an upper bound. Such upper bounds can be obtained much faster
by computing partial shortest path trees.

Despite offering a significant improvement to Dijkstra’s algorithm, speed-up methods are
not efficient enough for large road networks. Speed-up methods are two to three orders of
magnitude slower than state-of-the-art methods for distance and shortest path queries [11]. In
contrast to state-of-the-art methods though, speed-up methods are usually space efficient, i.e.,
have much lower memory requirements.

2.1.2 Spatial Coherence-based Methods

Spatial coherence-based methods exploit the property of road networks that shortest paths
are often spatially coherent, i.e., many shortest paths between different pairs of nodes share
common parts. To illustrate the concept of spatial coherence, let us consider four locations s,
s0, t and t0 on a road network. If s is close to s0 and t is close to t0, the shortest path from s
to t is more likely to share nodes with the shortest path from s0 to t0. Spatial coherence-based
methods precompute the all-pair shortest paths and employ some data structure to index the
paths and answer queries.

Spatially Induced Linkage Cognizance (SILC) [72, 74] precomputes and indexes the short-
est paths between all pairs of nodes using a quad-tree [34]. For each node n of the input road
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network, SILC computes the shortest paths from n to all the other nodes of the road network.
Then SILC imposes a grid on the road network and splits the grid into areas such that: (i) every
area contains exactly one neighbor of n and (ii) the shortest path from n to any node inside
an area passes through the neighbor of n assigned in the same area. Hence, given a shortest
path query from a source node s to a target node t, starting from s, SILC can identify which of
the neighbors of the node examined at each iteration lies on the shortest path to t. It has been
shown that every lookup of SILC requires O(log n), while the number of lookups depends on
the number of nodes on the shortest path.

Path-Coherent Pairs Decomposition (PCPD) [77] imposes a grid over the road networks
and precomputes the shortest paths between all pairs of nodes, like SILC. Then, PCPD stores all
paths in a concise format called path coherent pairs. A path coherent pair is a triple hA,B, ni,
where A and B are two disjoint square regions of the grid and n is a node of the road network
such that all shortest paths p(s!t) from some node s located inside A to some node t located
inside B pass through node n. Similar to SILC, in order for PCPD to retrieve a shortest path,
it requires linear time to the size of the path, i.e., the same number of lookups as the number
of nodes on the path. Each lookup using the aforementioned path coherent pairs scheme costs
O(m) where m is the number of unique path coherent pairs computed during preprocessing.

Spatial coherence is also employed by distance oracles, an efficient approach for approxi-
mate distance query processing. In [82], the authors propose an (1+✏, 0)-approximate distance
oracle, a multi-level approach which answers approximate distance queries in almost constant
time while inflicting relatively low space overhead. Another method for approximate distance
query processing is the ✏-approximate distance oracle presented in [76]. The oracle requires
O(n/✏2) space and retrieves the approximate network distance in O(log n) time using a B-
tree. Although very efficient, methods based on distance oracles cannot answer exact distance
queries and approximate distance query processing is out of the scope of this thesis.

The main shortcoming of spatial coherence-based methods is that they incur significant pre-
processing time and space overhead. In particular, although SILC and PCDP offer exceptional
query times for both distance and shortest path queries, their space overhead is exponential to
the number of nodes [86]. Both methods have prohibitively high memory requirements even
when applied on road networks with less than a million nodes. Hence, spatial coherence-based
methods are clearly not practical for large road networks with several millions of nodes.

2.1.3 Bounded-hop Methods

Bounded-hop methods precompute and store distances between selected pairs of nodes into
a set of distance tables. The distance between any pair of nodes is computed by accessing only
the precomputed distance tables, and then the shortest path is retrieved by running an A⇤-search
from the source to the target using the exact distance as a lower bound; hence, the retrieval of
the shortest path is linear to the size (number of nodes) of the path.

The 2-hop cover [20] is an early theoretical distance labeling scheme which works as fol-
lows. During preprocessing, every node n of the road network is assigned with a set of labels
L(n) containing distances to selected nodes such that for any pair of nodes s and t, L(s)\L(t)
contains at least one node on the shortest path from s to t. This method ensures that the shortest
path from s to t is covered by a node in L(s) \ L(t), i.e., the distance from s to t can be found
by combining only distances in L(s) and L(t). The 2-hop cover is the the minimum set of
nodes that can be used as labels to compute the shortest paths between any pair of nodes on the
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road network. However, the computation of the 2-hop cover requires the computation of the
all-pair shortest paths, thus is prohibitively expensive.

Hub Labeling (HL) [2, 3], is a labeling technique for distance queries on road networks
based on the theory of 2-hop cover. Each node is associated with a label L(n) which contains
distances to a set of nodes, i.e., the hubs of n. HL guarantees that the cover property of the
2-hop cover is obeyed; hence, any distance dist(s, t) can be determined in linear time by
combining exactly two distance tables, i.e., L(s) and L(t). Apparently, the performance of
distance queries depends on the size of the distance tables. Even though HL does not guarantee
that the size of the distance tables is minimum, the proposed label selection strategy leads to
small distance tables and, therefore, exceptional query times.

Another popular bounded-hop technique is Transit Node Routing [12, 8]. In contrast to HL,
TNR combines three distance tables to compute the distance between two nodes. Given a road
network G = (N,E), during preprocessing TNR selects a small set T ✓ N of transit nodes
and computes all pairwise distances between them. Then, the algorithm assigns to each node
n 2 N a set of access nodes A(n) ✓ T and precomputes the distances from and to every access
node in the assigned set. To determine the access nodes, the algorithm imposes a grid on the
road networks such that each grid cell contains at most one node. TNR chooses as access nodes
of a given node, the nodes that are located inside neighboring grid cells. The result for a given
distance query q(s, t) is dist(s, t) = min{d(s, a

s

) + d(a
s

, a
t

) + d(a
t

, t)}, where a
s

2 A(s)
and a

t

2 A(t).

Pruned Highway Labeling (PHL) [7] introduces a cost efficient preprocessing method to
select labels. Although a pure bounded-hop technique, PHL combines features from differ-
ent aspects in the literature. In particular, PHL repeatedly separates input road networks by
shortest paths, and then stores distances from nodes to the shortest paths. This is an idea also
employed by distance oracles for approximate distance query procesing [82]. PHL also utilizes
the concept of highways [73, 78] in order to compute the set of labels assigned to each node.
During preprocessing, PHL computes labels such that any shortest path from a node s to a node
t can be expressed as a sequence of three paths hp(s, u), p(u, v), p(v, t)i, where path p(u, v)
is a highway; distance dist(u, v) is precomputed while u and v are stored as labels of s and t
along with their respective distances from s and t.

Bounded-hop methods and, in particular, HL [3], are the most efficient approaches for pro-
cessing distance queries. Experiments presented in [11] have shown that HL requires less than
a microsecond to process distance queries even on continental road networks. In comparison
to other approaches, HL is eight orders of magnitude faster than Dijkstra’s algorithm and five
times faster than TNR. However, HL requires a lot of preprocessing time and memory. In
terms of performance, the method closest to HL is PHL [7]. PHL answers distance queries
approximately in one microsecond, i.e., it is slightly slower than HL. However, PHL requires
significantly less memory and preprocessing time than HL.

Although very efficient for distance queries, bounded-hop methods are not as efficient for
shortest path queries. As we mentioned before, to retrieve the shortest path, bounded-hop
methods execute an A⇤-search from the source to the target using the real distance to the target
as a lower bound. Processing a shortest path query is essentially equivalent to processing a
(large) set of distance queries, which depends heavily on the network structure and the length
of the shortest path.
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2.1.4 Hierarchical Methods

Hierarchical methods impose a hierarchical structure on the road network and process
queries by running a bidirectional search over the precomputed structure. The hierarchical
structure usually consists of shortcuts which aim at abstracting the main arteries of the road
network. By traversing the hierarchy instead of the original road network, the search space for
computing shortest path queries is significantly reduced.

Highway Hierarchies (HH) [73] are based on the following observation. Certain edges of
the road network, i.e., the highway edges, tend to be on many shortest paths where the source
and the target are far apart. HH employs two sub-routines to build a hierarchy of shortcuts on
the road network. Node reduction introduces shortcuts to bypass nodes of low degree, i.e., one
or two. Edge reduction adds shortcuts to bypass non-highway edges. To identify non-highway
edges, HH performs a local check for each edge of the road network. To process queries, HH
employs a modified version of bidirectional search [67], which avoids expanding most of the
non-highway edges.

Contraction Hierarchies (CH) [36] is a direct successor of HH, which organizes the nodes
on a road network into a hierarchy, based on their relative importance. During preprocessing,
CH determines the importance of each node by employing a set of heuristics, generates a node
order and contracts each node on the road network following the precomputed order. The result
of the contraction process is the construction of a multi-level hierarchical structure of shortcuts.
Like HH, to process shortest path queries a modified bidirectional search is executed over the
hierarchical structure. At each step, the search algorithm visits nodes that are on the same or a
higher level than the last expanded node.

Arterial Hierarchy (AH) [94] is a method inspired by CH, which precomputes shortcuts
by imposing a grid on the road network. AH organizes the nodes of the road network into
levels such that during query processing the network traversal will always visit a node from
a higher level than the current one. AH is the only hierarchical method which comes with
theoretical guarantees regarding the space overhead and the query processing time. AH builds
the shortcut hierarchy in a way that it guarantees the levels of the hierarchy will be O(log n).
As a consequence, AH provides a time complexity of O(log n) for processing queries.

Hierarchical methods and, in particular, AH and CH are the most efficient methods for
shortest path queries. In [94] it is shown that AH outperforms CH in both distance and short-
est path queries at the cost of extra space and preprocessing time. Despite offering superior
query performance for shortest path queries though, hierarchical methods are not as efficient
as bounded-hop methods for distance queries as they require a sort of scan on the hierarchy. It
has been shown in [11] that CH is approximately three orders of magnitude slower than HL for
distance queries.

2.1.5 Partition-based Methods

Partition-based methods first partition the input road network into a number of components.
For this purpose, a third-party partitioning method is usually employed, which splits the nodes
into balanced components while attempting to minimize the number of connecting edges, i.e.,
edges between border nodes of neighboring components. By employing the inherent properties
of the partition, shortcuts and/or distance tables are precomputed to boost query processing.
Most partition-based methods share some characteristics with methods from other categories,
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i.e., speed-up, bounded-hop or hierarchical methods.
Precomputed Cluster Distances (PCD) [60] is a speed-up technique which partitions the

input road network into components, precomputes the distances between all pairs of compo-
nents and uses these distances to compute lower bounds. More specifically, PCD first partitions
the road network into k components {C1 . . . C

k

}. During the preprocessing phase, the algo-
rithm computes the distances between all pairs of components. The distance between two
components C
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and C
j

is defined as the minimum distance between two nodes n
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. For computing a shortest path query from a source node s 2 C
S

to a target node
t 2 C

t

, PCD executes an A⇤-search employing the distance between components to com-
pute lower bounds. For any visited node n 2 C
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, a valid lower bound on its distance to t is
dist(s, n) + dist(C
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) + dist(b
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, t), where b
t

is the border node of C
t

that is closest to t.
Arc Flags [48] partitions the road network into k components and assigns to each edge of

the road network a vector of k bits (arc flags). The ith bit of the vector is set if the edge lies on
a shortest path to some node of component i. While processing a shortest path query from s to
t, the search algorithm prunes edges which do not have the bit set for the component containing
target t. The arc flags for a component i are computed by growing a backward shortest path
tree from each border node (of component i), setting the ith flag for all edges on the tree.

Hierarchical Encoded Path Views (HEPV) [45] is a hierarchical partition-based method
which employs Spatial Partition Clustering (SPC) [42], a custom partitioning algorithm for road
networks. First, HEPV partitions the input road network into components using SPC. During
the preprocessing phase, the shortest path between every pair of border nodes is computed.
HEPV stores and maintains the entire shortest path between two border nodes instead of the
mere distance, in the form of a path view. Next, an auxiliary graph is created, which consists
of several partial graphs. Each partial graph keeps all the path views which store shortest paths
between the border nodes of its associated component. Next, HEPV partitions the resulting
auxiliary graph into subgraphs and computes shortest paths in the same fashion in order to
populate the next level of the hierarchy. The process continues until the top auxiliary graph
is sufficiently small. To retrieve the shortest path between two nodes, HEPV retrieves and
combines the partial paths from the appropriate components, usually from two different levels
of the hierarchy. HiTi Graphs [46] also employ a similar approach to HEPV.

Customizable Route Planning (CRP) [26] partitions the road network into components and
precomputes distances between border nodes in each component. To partition the input road
network, CRP employs PUNCH [27], another graph partitioning algorithm tailored to road
networks. To process queries, a modified bidirectional search algorithm is employed, which
expands only the shortcuts and the edges in the source and the target component. In contrast to
HEPV and HiTi, CRP stores only the distances between border nodes. Hence, for each shortcut
on the shortest path, CRP has to retrieve the path from the original road network. Since the
precomputed information is limited to one distance table per node, the memory requirements
of CRP are quite low. Hence, CRP is able to handle various arbitrary metrics by precomputing
more distance tables per node.

Finally, G-tree [93], PTree [84] and G⇤-tree [5] use the same hierarchical partition-based
structure for processing spatial network queries. All these methods partition the road network
recursively and construct a hierarchy of components. For components at the lowest-level the
distances between every node and all border nodes are stored, whereas for the other components
only the distances between pairs of border nodes are stored. All approaches handle distance
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queries using precomputed distance tables. In addition, G-Tree uses the structure to compute
nearest neighbor queries, PTree employs dynamic programming to retrieve shortest paths, and
G⇤-tree [93] employs a different partitioning strategy to process k-closest pairs queries.

2.2 Alternative Routing on Road Networks

A first take on providing alternative routes on road networks is to solve the K-shortest
(simple) paths problem. It has been shown that Yen’s algorithm, initially proposed in [89] and
further optimized in [41, 59], is the most efficient algorithm for computing the K�shortest
paths. The main idea behind Yen’s algorithm is that, given a source node s and a target node
t, in order to compute the Kth shortest path from s to t we must have already computed the
first K�1 shortest paths. Hence, the first step of Yen’s algorithm is to employ any traditional
algorithm to compute the shortest path from s to t, e.g., Dijkstra’s algorithm. By analyzing
the shortest path, a candidate path will be generated for each node of the shortest path, and
the shortest among the candidate paths will be chosen as the next shortest path. The process
continues until the Kth shortest path has been determined. In practice , the K�shortest paths
cannot be employed for alternative routing. In most cases the K�shortest paths share large
stretches and, therefore, they are of little practical value as alternative routes.

In [44], the authors propose an algorithm which directly extends Yen’s algorithm [89] to
compute k-dissimilar paths on road networks. Given a source node s and target node t, a length
limit x and a similarity threshold y, the goal is to incrementally compute k paths, the length
of which does not exceed x and their pairwise similarity does not exceed y. The similarity
between two paths is defined based on the length of their shared edges. The shortest path
from s to t is always included in the final result set. At each round, the algorithm computes a
set of candidates, selects the most dissimilar path to the previously computed ones as the top
candidate and, if the candidate path satisfies the x, y constraints, it is added to the result set.
The algorithm terminates when k valid paths have been found. Although pairwise dissimilarity
is guaranteed, the algorithm does not aim at minimizing the length of the recommended paths.

In what follows, we describe different approaches presented in the bibliography on how to
generate alternative paths.

2.2.1 Penalty-based Methods

Penalty-based methods focus on the process of generating a set of paths different from the
shortest path without, however, providing a formal definition of alternative routing. The main
idea of penalty-based methods is to compute the shortest path and then update the road network
by adding a penalty on the weights of the edges that lie on the shortest path. For example, in [6]
the authors propose a method which doubles the weight of each edge that lies on the shortest
path. The alternative paths are computed by repeatedly running a shortest path algorithm, such
as Dijkstra’s algorithm, on the input road network, each time with the updated weights. A
similar approach is adopted by [52] where the penalty is computed in terms of both the path
overlap and the total turning cost, i.e., how many times the user has to switch between roads
when following a path.

The main shortcoming of penalty-based methods is that there is no intuition behind the
value of the penalty applied before each iteration. In general, using a large penalty would
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result in dissimilar but possibly very long alternative paths. On the other hand, using a small
penalty would require the algorithm to perform more iterations in order to find the desired
result. Even so, penalty-based methods cannot provide a formal result set and, hence, their
efficiency depends upon the user’s choice of the penalty.

2.2.2 Candidate Set-based Methods

Another approach for alternative routing is to first compute a large set of candidate paths.
Then, during a post-processing step, we examine the candidates with respect to a number of
constraints (e.g., their length or the nodes they cross) and determine the final result set. For
example, the Plateaux method [1] aims at computing paths that cross different highways of the
road network. Since highways rarely overlap, the produced paths are dissimilar. The problem
and the proposed method in [1] were revisited and formally defined later in [9], which intro-
duces the concept of alternative graphs having the same functionality as the plateaus, and were
further improved in [66].

In [4], the authors use the set of single-via paths as their candidate set to compute alternative
paths. The proposed method first selects a subset of the network nodes called via-nodes, i.e.,
all nodes of the road network apart from s and t. Then, it computes a single-via path for each
via-node v by concatenating the shortest path from source s to v and the shortest path from v
to target t. Each single-via path is compared to the shortest path based on a set of objective
user-defined criteria, i.e., excess length, local optimality and stretch. The single-via paths that
satisfy all of the user-defined criteria are considered alternative paths. Optimizations for this
method were recently presented in [56].

The main shortcoming of methods based on candidate sets is that none of the proposed
methods tackles the problem of computing multiple alternative paths dissimilar to each other.
For example, the Plateaux method requires the existence of highways to recommend dissimilar
alternative paths. However, in many real-world scenarios, i.e., within cities, the presence of
highways is not always guaranteed. With regard to the method proposed in [4] where multiple
single-via paths may be selected as alternative paths, their similarity only to the shortest path
is considered. Hence, the recommended paths may be very similar to each other. In Chapter 5
we extend the method of [4] and propose the SVP+ algorithm, which builds upon the concept
of single-via paths and computes alternative paths dissimilar to each other.

2.2.3 Historical Data-based Methods

Historical data-based methods analyze historical information in order to extract informa-
tion about the road network and provide more robust route planning services. A common
approach is to analyze historical traffic information to compute traffic tolerant paths over time-
dependent road networks [29, 51, 70, 88]. For alternative routing in particular, the k traffic-
tolerant paths (TTP) problem [51] takes an s�t pair and historic traffic information as input,
and returns k paths that minimize the aggregate (historic) travel time. In contrast to our work
though, TTP computes alternative paths without taking into consideration the similarity of the
result paths. Furthermore, similar to all historical data-based methods, TTP relies on the avail-
ability of historical traffic information in order to compute alternative paths. In scenarios where
such information is not available, TPP cannot be applied.
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Other historical data-based methods analyze and mine trajectory data in order to extract
popular routes [16, 17, 54, 81, 85, 92]. The main idea backing these methods is that expe-
rienced drivers tend to follow routes based on their own preferences and/or their knowledge
about the traffic conditions in a particular area. By mining trajectory data, useful information
can be obtained and used by recommender systems in order to provide more reliable results.
However, trajectory-based methods compute routes based on trajectories collected over a pe-
riod of time under normal circumstances. Therefore, the number of routes that can be obtained
by using solely trajectory data is limited. Moreover, similar to historical traffic data for TPP,
the availability of quality trajectory data is not always guaranteed.

2.2.4 Other Methods

Apart from the methods we described above, which define alternative routes using path
similarity, there are also other methods that define alternative routes in a different way. In [87],
alternative shortest paths using edge avoidance are introduced. Given the shortest path p(s!t)
and an edge e on p, the alternative path is the shortest path from s to t which avoids edge e.
To compute alternative paths, the authors combine the concepts of distance oracles [75] and
distance sensitivity oracles [13] and propose iSPQF. The shortest path between every pair of
nodes avoiding each edge is precomputed and stored in a quadtree-based data structure inspired
by [72]. Given a road network G(N,E), iSPQF structure stores |N |2 quadtrees in total (|N |
quadtrees per node). Alternative path queries are computed in almost constant time. Also,
the authors show that by merging the quadtrees a worst case space complexity of O(n1.5

) is
achieved. Although very efficient, iSPQF is limited to computing only one alternative route
instead of a set.

Finally, the task of alternative routing can also be based on the pareto-optimal paths or the
route skyline query for multi-criteria networks [25, 50, 58, 61, 79]. A path p is part of the
pareto-optimal set or the route skyline P if p is not dominated by another path p0 2 P . Path p
dominates p0 iff p is no worse than p0 in all criteria/dimensions of the network (e.g., distance,
travel time, gas consumption) and strictly better than p0 in at least one of those criteria. The
pareto-optimal paths or the route skyline can be directly seen as alternative routes to move
from source node s to target node t or can be further examined in a post-processing phase to
provide the final alternative paths. Nevertheless, our definition of alternative routing is not a
multi-criteria problem and the recommended paths by k-SPwLO cannot be obtained by first
computing the pareto-optimal path set.

2.3 Multimodal Networks

The multimodal route planning problem seeks journeys combining schedule-based trans-
portation (e.g., buses and trains) with unrestricted modes (e.g., walking and driving). This
problem is significantly harder than its individual components as it involves the combination of
two or more networks, usually of different types, into a single multimodal network.

A general approach to construct a multimodal network requires to build an individual net-
work for each transportation mode. However, while a pedestrian network can be modeled using
a static graph, i.e., the weights of edges do not change over time, public transportation networks
are usually modeled as schedule-based networks, a special case of time-dependent networks. In
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time-dependent networks, the weight of an edge varies depending on the time of the day that it
is crossed. Each edge is associated with a time-dependent function which takes as an argument
a timestamp t and returns the weight of the edge on time t. For schedule-based networks in
particular, the function is used to query the schedule of the given transportation mode.

Pyrga et al. [69] summarize two different models for modeling timetable information. The
time-expanded model constructs the time-expanded digraph in which every node corresponds to
a specific time event (departure or arrival) at a station and edges between nodes represent either
elementary connections between the two events (i.e., served by a train that does not stop in-
between) or waiting within a station. The time-dependent model constructs the time-dependent
digraph in which every node represents a station and two nodes are connected by an edge if the
corresponding stations are connected by an elementary connection. The costs on the edges are
assigned ”on-the-fly”, i.e., the cost of an edge depends on the time in which the particular edge
will be expanded by the shortest-path algorithm to answer the query.

After each individual network graph is constructed, all individual networks are merged into
a single multimodal network by adding link edges between nodes of different networks. For
example, in order to combine a pedestrian network and a bus network, we add links so that
every node of the bus network is connected to some node of the pedestrian network. Typical
examples [28, 62] model walking as a static graph and public transportation networks using the
realistic time-dependent model.

Various approaches for route planning [28, 31] and alternative routing [10, 24] on multi-
modal networks have been proposed. A direct solution to compute the shortest path between
two nodes in a multimodal network though is to employ a modified version of Dijkstra’s al-
gorithm [32]. Since the multimodal network contains both edges with a fixed weight and
time-dependent edges, the weight of each edge is determined ”on-the-fly” based on its type.
Also, when the search algorithm switches from the road (static) network to a transportation
(time-dependent) network, the waiting time, i.e., the time between the arrival of the user at a
stop and the departure time of the vehicle from the stop, has to be considered.

2.4 Routing Applications and Systems

Numerous systems that offer route planning services have been proposed in the last decade.
OSRM/MoNav [55] obtains data from OpenStreetMap and allows the processing of distance
and shortest path queries on road networks. To optimize query processing OSRM/MoNav em-
ploys CH [36]. Graphhopper 1 is a similar service-oriented open-source system which also
employs CH. TransDec [29] is a real-world data-driven framework which obtains data from
sensors and analyzes the traffic conditions on the road network. In addition, it stores and an-
alyzes historical trajectory data to improve the quality of the results. In a similar context,
CrowdPlanner [81] also employs historical information and recommends routes by taking into
consideration the preferences of the users. For transportation networks, Graphast [57] is a
framework which enables processing time-dependent spatio-temporal network queries [22].
Finally, ISOGA [43] enables the computation of isochrones on multimodal networks for reach-
ability analysis.

1https://graphhopper.com
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2.5 Summary

To sum up, there has been a lot of research work in the area of route planning. In partic-
ular, a huge variety of preprocessing-based methods for computing distance and shortest path
queries on road networks have been proposed. State-of-the-art methods for distance queries
offer exceptional query times, but they do not provide any efficient retrieval mechanism for
the shortest path. In contrast, state-of-the-art methods for shortest path queries show relatively
poor performance for distance queries. However, many applications require efficient query
processing for both types of queries. Our ParDiSP approach (cf. Chapter 3) aims at filling this
gap in existing research as it provides exceptional query times for both distance and shortest
path queries.

In the area of alternative routing, existing literature has approached the computation of
alternative paths from different perspectives. Most current approaches either do not propose a
formal result set and, hence, provide no guarantees regarding the quality of the recommended
paths, or they propose alternative paths based solely on their individual similarity to the shortest
path, which results in alternative paths that are very similar to each other. In contrast to these
approaches, our k-SPwLO query (cf. Chapter 4) aims at computing paths that are sufficiently
dissimilar to each other and as short as possible.



CHAPTER 3

Partition-based Shortest Path Query Processing

Our preliminary investigation in [19] showed that in order to boost distance and shortest
path query processing using a single approach is not enough. Bounded-hop methods are ex-
ceptionally fast for distance queries. Reducing the evaluation of distance queries to a number
of lookups is clearly the best approach. For shortest path queries, we observed that in order to
optimize the evaluation, the utilization of some form of shortcuts is required. It has been shown
in [86] that the most efficient way to generate shortcuts is to follow a hierarchical approach.

In this chapter, we present the Partition-based framework for Distance and Shortest Path
queries (ParDiSP) on road networks. ParDiSP combines ideas from both bounded-hop and hi-
erarchical methods in a novel way, taking the best of both worlds, and efficiently supports both
distance and shortest path queries. During preprocessing, ParDiSP precomputes the distances
between any node in a component and the border nodes of the same component, the pairwise
distances between all border nodes, and the union of the shortest paths between all border
nodes. ParDiSP answers distance queries by combining distances from exactly three precom-
puted distance tables. For shortest path queries, the information in the distance tables allows
to identify two border nodes that are traversed by the shortest path, thereby decomposing the
path into three segments which can be computed in parallel. In a comprehensive experimental
evaluation, we demonstrate the efficiency of ParDiSP on distance queries, shortest path queries
and mixed workloads containing both types of queries.

19
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3.1 Preprocessing for ParDiSP

In the preprocessing phase, ParDiSP partitions the input road network into components and
computes the following data structures: the extended component of each component, which
extends the component with all shortest paths between its border nodes; the transit network,
which is composed of the shortest paths between the border nodes of each component together
with the connecting edges; in-component distance tables (IDT), which store for every node
in a component the distance from and to the border nodes of the component; and the compo-
nent distance matrix (CDM), where each entry stores the distance between any pair of border
nodes of any two components. Finally, both for the preprocessing of the aforementioned struc-
tures and to further improve the retrieval of shortest paths over the transit network, we employ
Contraction Hierarchies (CH) [36], a state-of-the art method for shortest path queries.

3.1.1 Road Network Partitioning

Partitioning the road network is the first step of the preprocessing phase of every partition-
based method. A node-based partition of a road network G = (N,E) is a set P (G) =

{C1, . . . , C
k

} of connected non-overlapping sub-networks G
i
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i
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), where n
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, we represent the set of border nodes as B(C
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).
Figure 3.1 illustrates a road network which is partitioned into four components, i.e.,

P (G) = {C1, C2, C3, C4}. The filled nodes are the border nodes. For instance,
B(C1) = {n2, n3, n4} and B(C3) = {n16, n19} are the border nodes of the com-
ponents C1 and C3, respectively. There is a total of five connecting edges E

con

=

{(n2, n6), (n3, n7), (n4, n8), (n12, n16), (n18, n19)}.
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Figure 3.1: Road network partitioned into four components.
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As the problem of road network partitioning is out of the scope of this thesis, we use
METIS [47] to partition the road network, which is a multilevel graph partitioning method.
Multilevel graph partitioning has been the most successful heuristic for partitioning large
graphs, and METIS has been described as the fastest and best known system that implements
this partitioning method [15]. METIS has also been adopted by other partition-based methods
for spatial-network query processing, e.g., the PTree [84].

There exist graph partitioning methods, such as PUNCH [27] and Spatial Partition Clus-
tering (SPC) [42], which take advantage of road network characteristics in order to provide
a more efficient partitioning, i.e., reduce the number of border nodes even further. However,
these algorithms do not provide much flexibility and produce partitions based on some objec-
tive criteria related to the structure of the network, over which the user has no control, i.e.,
natural cuts. For instance, if the best partition according to the objective criteria consists of two
components, only this partition can be produced. Such a partition would not be suitable for
our approach. In contrast, METIS guarantees that the generated partition has exactly the same
number of components as specified by the user.

To partition an input road network, METIS requires the number of components k as an
argument and attempts to compute a partition while minimizing the total number of border
nodes. We also provide additional parameters to ensure that the components of the partition
will always be contiguous. To store the partition of a road network, we simply add a tag/number
to each node, which indicates the component of the partition the node belongs to.

3.1.2 Extended Components

For each component C of a partitioned road network, we define the extended component
C⇤ of C which contains the nodes and edges of C plus all nodes and edges that are located on
a shortest path between two border nodes of C.

Definition 1 (Extended Component). Let G = (N,E) be a road network with partition
P (G) = {C1, . . . , C

k

}. Given a component C
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Since the shortest path between two border nodes of a component C does not necessarily
lie entirely in C, the extended component C⇤ may contain nodes and edges that are not in C. In
this case, the shortest path p

s

(s!t) can be expressed as a concatenation of three shortest paths
p
s

(s!b
i

) � p
s

(b
i

!b
j

) � p
s

(b
j

!t), where b
i

and b
j

are border nodes of C. By the definition of
C⇤, p

s

(b
i

!b
j

) is covered by C⇤, while p
s

(s!b
i

) and p
s

(b
j

!t) are covered by C. Therefore,
in order to determine the shortest path between two nodes s and t that are located in the same
component C, only nodes on the extended component C⇤ need to be accessed.

Figure 3.2 shows the extended component C⇤
1 of C1. The shortest path between the two

border nodes n2 and n3 contains nodes n6 and n7 which are not in C1. Hence, C⇤
1 is formed by

all nodes in C1 plus nodes n6 and n7 located in C2 and all edges in C1 plus the edges (n2, n6),
(n6, n7) and (n7, n3) along the shortest path between n2 and n3. For the other components we
have C⇤

2 = C2, C⇤
3 = C3 and C⇤

4 = C4.
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Figure 3.2: Extended component C⇤
1 of C1.

3.1.3 Transit Network

The transit network G
T

of a road network G consists of all shortest paths between all
border nodes of each component C

i

plus the connecting edges E
con

(G).

Definition 2 (Transit Network). Let G be a road network with partition P (G) = {C1, . . . , C
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}.
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In practice, the transit network covers all shortest paths between any two border nodes of
different components as shown in the following lemma.

Lemma 1. Let G be a road network with partition P (G) = {C1, . . . , C
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. This leads to a
contradiction.

Figure 3.3 shows the transit network of our running example. It contains all connecting
edges between components and, for each component, all shortest paths between its border
nodes.



3.1. Preprocessing for ParDiSP 23

n0

n1 n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n15

n16

n17

n18

n19

n20

3

2

2

3

3

2

5

3

7

4

2
5

24

4

4

2

8
7

3

6

3

5

4

2

4

6
3

2

4

5

5

Figure 3.3: Transit Network of the example road network.

3.1.4 Distance Tables and Component Distance Matrix

For each node in a component, we define an in-component distance table (IDT). The IDT
of a node v 2 C

i

stores the distances from v to every border node of C
i

.

Definition 3 (In-component Distance Tables). Let G be a road network with partition P (G) =

{C1, . . . , C
k

}. The in-component distance table of a node v 2 C
i

is defined as

T (v) = {hb
i

, d(v, b
i

)i | b
i

2 B(C
i

)}.

Figure 3.4 shows two IDTs. T (n0) stores the distances between n0 and the border nodes
n2, n3 and n4 of component C1, whereas T (n20) stores the distances between n20 and the
border nodes n16 and n19 of component C3.
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Figure 3.4: IDTs for node n0 and n20 and CDM with entry (C1, C3).

Next, we compute the component distance matrix (CDM) of a partitioned road network.
Given a partitioned road network G = (N,E), the CDM contains all the distances between
border nodes of any pair of components.

Definition 4 (Component Distance Matrix). Let G be a road network with partition P (G) =

{C1, . . . , C
k

}. The component distance matrix M is a k ⇥ k matrix, where each element is
defined as

M
ij

=

8
<

:
{hu, v, d(u, v)i | u2B(C

i

) ^ v2B(C
j

)} i 6= j,

; i = j.
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Algorithm 1: Preprocessing(G, k)
Input: road network G = (N,E), number k of components
Output: Extended components C⇤, transit network G

T

, in-component distance tables T ,
component distance matrix M

// Create partition
1 Partition G into k components P (G) = {C1, . . . , Ck

};
2 Determine E

con

(G), and 8C
i

2 P (G) determine B(C
i

);

// Create extended components, G
T

and IDTs
3 ET  E

con

(G);
4 foreach C 2 P (G) do
5 C⇤  C;
6 foreach b

i

2 B(C) do
7 Run Dijkstra with b

i

as source;
8 Update IDT T (v) for each v in C;
9 foreach path p

s

(b
i

!b
j

) with b
j

2 B(C) found by Dijkstra do
10 Add nodes and edges on p

s

to C⇤;
11 Add nodes on p

s

to NT and edges to ET ;

// Create component distance matrix M
12 B

cdm

 B(C1) [ . . . [B(C
k

);
13 d matrix CH many to many(G

T

, B
cdm

, B
cdm

);
14 foreach b

i

2 B
cdm

do
15 foreach b

j

2 B
cdm

\ {b
i

} do
16 C

m

 C 2 P (G) that contains b
i

;
17 C

n

 C 2 P (G) that contains b
j

;
18 if C
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6= C
n

then
19 M

m,n

 M
m,n

[ {d matrix[b
i

][b
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]};

Each cell M
ij

in the CDM is associated with a pair (C
i

, C
j

) of components and stores the
set of all distances from every border node in C

i

to every border node in C
j

. The cardinality of
this set is |B(C

i

)| · |B(C
j

)|. The diagonal elements are empty since the distances are already
stored in the IDTs. The CDM entry M1,3 in Figure 3.4 stores all pairwise distances between
the border nodes n2, n3 and n4 of C1 and the border nodes n16 and n19 of C3.

3.1.5 Preprocessing Algorithm

To summarize the entire preprocessing phase, Algorithm 14 illustrates the step-by-step
computation of all index structures employed by ParDiSP. The first step is the partitioning of
the input road network. The partition is computed using METIS configured to aim at mini-
mizing the number of connecting edges (Line 1). We elaborate more on how we choose the
number k of components in Sections 3.3 and 3.4.2.

The second step is to compute for each component C its extended component C⇤ along
with the IDTs and the transit network G

T

(lines 3-11). After initializing the edges of G
T

to
the set of connecting edges (Line 3), we iterate through all components C. First, for each
component C we initialize C⇤ to C (Line 5). Then, for each border node b

i

2 B(C) we run
Dijkstra’s algorithm with b

i

as source and all other nodes v 2 C (including border nodes) as
targets (Line 7). From this we extract the distances to update T (v) (Line 8) and the shortest



3.2. Query Processing with ParDiSP 25

paths to update C⇤ and G
T

(lines 9-11).
Finally, for the computation of the component distance matrix M we construct CH [36]

over the G
T

and execute the many-to-many variant (Line 13). All border nodes of all compo-
nents are used both as sources and as targets. The distance between every pair of border nodes
is then added to the respective entry of M (lines 14-19).

3.2 Query Processing with ParDiSP

3.2.1 Processing Distance Queries

To compute distance queries from a source node s 2 C
s

to a target node t 2 C
t

, we
distinguish two cases:

1. s and t are in the same component

2. s and t are in different components.

First, if s and t are in the same component C
i

, we employ the ALT algorithm [38] over
the extended component C⇤

i

, which is essentially a bidirectional A⇤-search with landmarks.
To compute a lower bound from any node n to the target node t, ALT hinges on the triangle
inequality dist(n, t) � |dist(n, l) � dist(t, l)| for some landmark node l. We use the border
nodes of each component C

i

as landmarks, since the precomputed IDTs store all required
distances to determine the lower bounds. Note that in case the A⇤-search expands a node that
is not in C (but in C⇤), the lower bound is set to 0. Such a strategy eagerly expands the nodes
that are in C⇤ but not in C.

Second, the distance between a source node s and a target node t that are located in different
components C

s

and C
t

, respectively, is composed of three distances: the distance from s to a
border node b

s

of C
s

, the distance from a border node b
t

of C
t

to t, and the distance from b
s

to
b
t

, i.e.,

d(s, t) = min

b

s

2B(C
s

)
b

t

2B(C
t

)

{d(s, b
s

) + d(b
s

, b
t

) + d(b
t

, t)}.

Since the three partial distances have already been precomputed and stored in the IDTs and
in the CDM, the distance query amounts to joining three distance tables, regardless of how far
away the source and target nodes are. Figure 3.5 illustrates the three distance tables T (n0), M13

and T (N20) that are required to determine the distance from node n0 2 C1 to node n20 2 C20,
along with the part of the road network that is accessed, i.e., C⇤

1 [G
T

[ C⇤
3 .

The algorithm to compute distance queries is shown in Algorithm 16. First, the components
C
s

and C
t

of the source node s and target node t, respectively, are determined (lines 1-2). If
C
s

= C
t

, we execute ALT over the extended component C⇤
s

(Line 4). Otherwise, if C
s

6= C
t

,
we join the precomputed distance tables T (s), M

C

s

,C

t

, and T (t) (lines 6-15). The first loop
joins T (s) and the entry M

C

s

,C

t

of the component distance matrix, which yields the distances
between s and each border node of C

t

(lines 9-12). The second loop joins the intermediate
result in Ttmp with T (t) and determines the overall minimum distance, which is the distance
from s to t (lines 13-15). Finally, the algorithm return the distance d from s to t in Line 16.
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Figure 3.5: IDTs/CDM entry for a distance query from n0 to n20.

Algorithm 2: Distance Query(G, s, t)
Input: road network G, source node s, target node t
Output: distance d(s, t)

1 C
s

 C 2 P (G) that contains s;
2 C

t

 C 2 P (G) that contains t;

3 if C
s

= C
t

then
4 d distance ALT(C⇤

s

, s, t);
5 else
6 T

tmp

 empty array of size |T (t)|, initialized to1;
7 d +1;
8 k  �1;
9 for i = 0 to |M

Cs,Ct |� 1 do
10 j  i mod |T (s)|;
11 if j = 0 then k  k + 1;
12 Ttmp [k] min(Ttmp [k], T (s)[j] + T2[i]);

13 for i = 0 to |T (t)|� 1 do
14 d0  Ttmp [i] + T (t)[i];
15 if d0 < d then d d0;

16 return d;

To achieve an efficient implementation of the joins, we keep for each component a sorted
list of border nodes. By doing so, the distance tables need to store only the distances (and
not the node ids) if they are sorted in the same order. Similarly, the entries of M store only
distances. The entries are sorted first by the id of the target node and then by the id of the
source node. This implementation technique saves space by omitting the storage of node ids
in the distance tables, and permits efficient joins of the tables since the indices of matching
elements can be computed directly.

Example 1. The execution of the algorithm is illustrated in Figure 3.6. The tables B(C1)

and B(C3) determine the sort order of the distance tables. The first entry of T (n0) stores the
distance from n0 to n2, whereas the first entry of T (n20) stores the distance from n16 to n20.
The first loop joins T (n0) and M13 and produces the intermediate table Ttmp, which contains
the distances from n0 to the two border nodes n16 and n19 of C3. In the second loop, we
sum one-to-one the elements of T

tmp

with the elements of T (n20) and keep the minimum, i.e.,
19 + 5 = 24 is the distance between n0 and n20. This is possible since T

tmp

and T (t) are
ordered in the same way.
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Figure 3.6: Joining distance tables to compute dist(n0, n20).

3.2.2 Processing Shortest Path Queries

For the computation of shortest paths queries we follow the same strategy as for distance
queries and distinguish two cases. First, if the source node s is in the same component C as the
target node t, we execute the ALT algorithm [38] over the extended component C⇤. Second,
if the source and the target nodes are in different components, we decompose the shortest path
into three disjoint sub-paths, as shown in the following corollary:

Corollary 2. Let G be a road network with partition P (G) = {C1, . . . , C
k

}. The shortest path
from a source node s 2 C

s

to a target node t 2 C
t

, where C
s

6= C
t

, can be expressed as the
concatenation of three shortest paths as follows:

p
s

(s!t) = p
s

(s!b
s

) � p
s

(b
s

!b
t

) � d(b
t

!t),

where b
s

2 B(C
s

) is a border node of C
s

and b
t

2 B(C
t

) is a border node of C
t

.

The corollary follows directly from Lemma 1 and forms the basis to compute shortest path
queries when source and target nodes are in different components. The key idea is to first
determine the border nodes b

s

and b
t

and then run three independent shortest path queries.
It is easy to see that the first (last) segment of the shortest path lies entirely in the extended
component C⇤

s

(C⇤
t

), whereas the intermediate segment lies entirely in the transit network G
T

.
Algorithm 11 shows our shortest path algorithm. If source and target are in the same

component, the ALT algorithm is called over C⇤ (Line 4). Otherwise, we first call a slightly
modified version of our Distance Query algorithm in Line 6, which along with the distance
returns also the two border nodes b

s

and b
t

that split the shortest path into three segments. Then,
the first and the last segment of the shortest path are retrieved from the respective extended
components in Line 7 and Line 9 respectively, by running an A⇤ search that uses the distance
to (from) b

s

(b
t

) as a lower bound. In contrast to the path retrieval mechanism for bounded hop
techniques, no distance queries are executed since all distances are in the respective IDT of
each node. To compute the middle segment, we run a shortest path query from b

s

to b
t

over G
T

(Line 8). For this query, we employ the same CH scheme that was constructed to compute the
CDM. The query time is further improved by computing the three segments in parallel. Finally,
the algorithm constructs the final path p by concatenating partial paths p1, p2 and p3, and return
p in Line 11.

Note that although we use the precomputed CH scheme for processing shortest path queries
over the transit network, CH can be replaced with any other state-of-the-art method.
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Algorithm 3: Shortest Path Query(G, s, t)
Input: road network G, source node s, target node t
Output: shortest path p

s

(s!t)

1 C
s

 C 2 P (G) that contains s;
2 C

t

 C 2 P (G) that contains t;

3 if C
s

= C
t

then
4 p shortest path⇤

(C⇤
s

, s, b
s

) // ALT over C⇤
s

5 else
6 hb

s

, b
t

, d(s, t)i  Distance Query⇤
(s, t);

7 p1  shortest path⇤
(C⇤

s

, s, b
s

) // A⇤ over C⇤
s

8 p2  shortest path(G
T

, b
s

, b
t

) // CH over G
T

9 p3  shortest path⇤
(C⇤

t

, b
t

, t) // A⇤ over C⇤
t

10 p p1 � p2 � p3;

11 return p;

3.3 Theoretical Analysis

In this section, we discuss some theoretical aspects of our ParDiSP approach with regard
to the size of the transit network, the space requirements of the precomputed structures and the
query processing cost.

ParDiSP takes full advantage of the distance tables and the transit network if the source
and target nodes are in different components C

s

and C
t

. Given a road network partitioned into
k components, the probability that C

s

= C
t

is 1/k2. Therefore, the more the components a
road network is partitioned into, the higher the chance that source and target are in different
components, which allows a more efficient use of the precomputed structures. However, the
number of components and the border nodes influence not only the query processing but also
the space requirements and the preprocessing time, which both increase with the number of
border nodes.

In general, we characterize a partition as good if it minimizes the total number of connecting
edges between the components, and hence the total number of border nodes. As road network
partitioning is NP-hard, an optimal solution is out of question [33]. However, we can estimate
the number of border nodes by employing the

p
n-Separator Theorem [53], which has also

been used in [84]. According to this theorem, the partition of a (undirected) graph G = (N,E)

into k components generates O(

q
|N |
k

) border nodes per component.

Transit Network Size. The worst case for the size of the transit network G
T

= (N
T

, E
T

)

is when all nodes of the road network G = (N,E) are in the transit network, i.e., N
T

= N .
The best case occurs if only the border nodes of the components are in the transit network, i.e.,
N

T

=

S
C

i

2P (G)B(C
i

). By applying the
p
n-Separator Theorem, we obtain the following

bounds for the size of the transit network:

k

r
|N |
k
 |N

T

|  |N |.

The transit network takes advantage of the spatial coherence of road networks, a notion that
has been analyzed and used in [74]. Since the transit network is the union of the shortest paths
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between the border nodes, it is expected to be much smaller than the original network. This is
empirically verified in Section 3.4.2.

Memory Overhead. The memory overhead of ParDiSP is dominated by the number of pre-
computed distances stored in the IDT of each node and in the CDM. The space to store the
partition, the extended components, and the transit network is negligible. The IDT associated
with a node v in a component C

i

contains the distances to/from all border nodes of C
i

. Follow-

ing the
p
n-Separator Theorem, this gives

q
|N |
k

distances for each node and a cumulative size
of all IDTs of

size(IDT) = |N |
r

|N |
k

. (3.1)

The component distance matrix M stores for each pair of distinct components C
i

, C
j

the
pairwise distances between all border nodes of C

i

and C
j

. Thus, each entry in M storesq
|N |
k

·
q

|N |
k

=

|N |
k

distances. We exclude the distances between border nodes of the same
component as these distances are stored in the IDTs. Furthermore, we need to store the dis-
tances for each pair of components C

i

, C
j

only once as M
i,j

= M
j,i

. Hence, the total number
of populated entries in M is (k2 � k)/2, yielding a total size of

size(M) =

k2 � k

2

|N |
k

=

(k � 1) |N |
2

. (3.2)

The total space overhead required by the index structures of ParDiSP is obtained by sum-
ming up Equation 3.1 and 3.2, i.e.,

size = size(IDT ) + size(M) = |N |
r

|N |
k

+

(k � 1) |N |
2

.

Query Processing Cost. For processing distance queries between two nodes located in dif-
ferent components, we join three distance tables: two IDTs and one entry of CDM (cf. Algo-
rithm 16). The first loop joins one IDT with the CDM entry and produces an intermediate table.
This step performs |N |

k

summations since the CDM entry is of size |N |
k

. The second loop joins

the intermediate table with the second IDT, which requires
q

N

k

summations, corresponding to
the size of the IDT. Therefore, the total cost for processing a distance query q

d

is

cost(q
d

) =

|N |
k

+

r
|N |
k

= O(

|N |
k

).

The complexity of shortest path queries with source and target node in the same component
C is the same as for the ALT algorithm [38], taking into consideration that the algorithm runs
only over the extended component C⇤ and not over the entire graph. To process a shortest path
query q

p

(s!t) with s and t in different components, we first have to process the distance query
q
d

(s, t). The retrieval of the first and the last segment (in the source and target components,
respectively) has linear cost in the size of the segment. The most expensive part is the retrieval
of the middle segment from the transit network G

T

. The cost for retrieving the middle segment
depends on the the size of G

T

and the runtime cost of CH [21].
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3.4 Experimental Evaluation

In this section, we describe the results of a detailed experimental evaluation of ParDiSP
on real-world road networks. We analyze the runtime, the preprocessing cost and the memory
consumption of ParDiSP in comparison to state-of-the-art methods for distance and shortest
path queries. Furthermore, we provide some additional measurements to back our claims re-
garding the effect of road network partitioning to the preprocessing cost and the performance
of our ParDiSP approach.

3.4.1 Setup and Datasets

In our experimental evaluation we use four real-world public available datasets from the
9th DIMACS Challenge1, each of which corresponds to a part of the road network in US. These
datasets are summarized in Table 3.1).

Table 3.1: Datasets.

Name Region # Nodes # Edges
NY New York City 264,346 733,846
FL Florida 1,070,376 2,712,79
CA California-Nevada 1,890,815 4,657,742
E Eastern USA 3,598,623 8,778,114

We performed three sets of experiments in total. In the first set of experiments (Figures 3.7-
3.11 and 3.13) we evaluate the performance of ParDiSP in terms of preprocessing cost, space
overhead and query processing time for different partitions of the same dataset varying the
numbers of components k from 128 to 1024.

In the second set of experiments (Figures 3.12, 3.14–3.16), we compare ParDiSP to three
different algorithms: Arterial Hierarchy (AH) [94], which has been shown to be the fastest
approach for shortest path queries [86]; Contraction Hierarchies (CH) [36], which we also
employ for the computation of the CDM; and Pruned Highway Labeling (PHL) [7], a state-of-
the-art method for distance queries.

To determine the number of components k for ParDiSP for the second set of experiments,
we use the insight we gained from the measurements of the first set. We observed that for
distance queries ParDiSP becomes faster as the number of components k is increasing while,
for shortest path queries, ParDiSP shows the best performance for k = {256, 384, 512}. Since
shortest path queries are more time consuming than distance queries we run our experiments
for all datasets with k = 384. For the selected value of k, ParDiSP is adequately fast for
distance queries too.

Finally, in the third set of experiments (Figure 3.16), we analyze the query performance
for mixed query sets that contain both distance and shortest path queries. The ratio of distance
to shortest path queries in each query set varies between 20%/80%, 40%/60%, 60%/40%
and 80%/20%. We compare ParDiSP with two combined approaches using state-of-the-art
solutions for each query type: PHL for distance queries and CH and AH, respectively, for
shortest path queries, denoted as PHL-CH and PHL-AH.

1http://www.dis.uniroma1.it/challenge9/
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For the first set of experiments we report the average runtime over 100, 000 randomly gen-
erated queries for each road network. For the second and the third set of experiments, we follow
previous works [84, 86, 94] and generate for each road network ten query sets, Q1, . . . Q10, as
follows. We select 10, 000 pairs of nodes for each query set Q

i

for i = 1, . . . , 10 such that the
distance between the nodes is in the range [

i·d
max

10 , (i+1)·d
max

10 ], where d
max

is the maximum
distance between two nodes in the data set. Hence, the distance between any pair of nodes
in Q

i

is always smaller than the distance between any pair of nodes in Q
i+1. For each road

network, we report the average runtime of all methods for all ten query sets separately.
All algorithms were implemented in C++ using the C++11 standard and compiled using

GNU G++ compiler (version 4.8.1). The source code for PHL and CH is available on the web,
while the source code of AH has been provided by the authors. Also, we implemented the short-
est path retrieval mechanism for PHL ourselves as no such mechanism was provided, while we
used CH with additional runtime optimizations provided by the authors. All experiments were
executed on an Ubuntu Linux server with 4 Intel Xeon X5550 (2.67GHz) processors and 48GB
of RAM.

3.4.2 Graph Partitioning

In Section 3.3 we showed through a theoretical analysis how the number of components has
an impact on the space overhead and the performance of ParDiSP. In what follows, we present
measurements from our first set of experiments on attributes directly connected to the partition
of the input road network, i.e., the average number of border nodes per component, the average
size of each component and extended component, and the size of the transit network for each
partition.

Figure 3.7 shows the average number of border nodes with min and max values. In all
figures we notice that the number of border nodes decreases with the increase of k in a way
that follows the trend of the

p
n-Separator Theorem [53]. We also observe that the minimum

and the maximum number of border nodes per component show significant fluctuation. For
NY (Figure 3.7a) the maximum number of border nodes is decreasing, while for the other three
datasets, no conclusion can be drawn regarding the maximum and the minimum number of
border nodes, as the behavior illustrated in Figures 3.7a-d) is irregular. This observation also
backs our claim that result of the graph partitioning process cannot be predicted accurately.

Figure 3.8 shows the average size, i.e., the average number of nodes, of components and
extended components per partition with min and max values. Naturally, the size of components
is decreasing as k increases. Furthermore, by observing the minimum and the maximum values
we notice that with the increase of k the components become more and more equally sized.
With regard to the extended components, we observe that they are slightly bigger than the
associated components per partition. However, we also observe a much greater difference
in the minimum and maximum values, especially when k is small. For all datasets, when k
is 128 the maximum size of an extended component is significantly higher than the average.
Hence, while the nodes per component are balanced, that does not guarantee that the nodes per
extended component will be balanced as well.

In general, by observing both Figures 3.7 and 3.8, we conclude that while METIS [47]
provides quality partitioning, it also provides no particular guarantees regarding the size of the
components and the extended components. Such a result is to be expected as METIS aims
to minimize the average number of border nodes per component. Due to the unpredictability
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Figure 3.7: Border nodes per partition.
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Figure 3.8: Component and extended component size per partition.

of graph partitioning, it is impossible to minimize the size of the extended components unless
both the partition and the extended components are computed. On the other hand, minimizing
the average number of border nodes per component results in smaller IDTs and, hence, faster
processing of distance queries.

Figure 3.9 analyzes the number of nodes and edges of the resulting transit network. The
size of the transit network increases with k, yet it is significantly smaller (approximately 2-
5 times) than the the original road network. Hence, any query between border nodes can be
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Figure 3.9: Transit network size per partition.

computed by accessing only a part of the road network which is only 1/2 to 1/5 the size of the
original. Furthermore, the space overhead of CH, which we build over the transit network, is
expected to decrease along with the number of components k.

For efficient query processing, apart from the size of the transit network, the density of the
network plays an important role too. The CH method that we use for queries over the transit
network works best for sparse networks. We observe though that the transit network is denser
than the original road network. The density of a road network is given by:

D(G) =

|E|
|D| · (|D|� 1)

.

For example, the density of the road network of NY is D(NY ) ' 10.5 ·10�6 while the density
of the the transit network varies from D(G

T

) ' 31 · 10�6 for k = 128 to D(G
T

) ' 18 · 10�6

for k = 1024. In general, we observe that the density of the transit network decreases with the
increase of k. Hence, the more the components in a partition, the sparser the transit network
gets.

3.4.3 Preprocessing

Figure 3.10 analyzes the preprocessing time of ParDiSP varying the number k of compo-
nents. We distinguish between the time for precomputing a) the extended components (C⇤)
b) the IDTs and the transit network (G

T

+IDTs), and c) the CDM including the construction
of the CH scheme (CDM). In all figures, we observe that the time required to precompute the
extended components decreases as k increases, whereas the time to precompute the CDM in-
creases with k. Apparently, although more extended components need to be computed, since
the size of the components and the number of border nodes decrease with k, each computa-
tion of of an extended component requires much less time; thus the overall preprocessing time
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Figure 3.10: Preprocessing time in ParDiSP.

drops. Next, we observe that the time required to compute the IDTs and the transit network is
similar for all values of k. On the contrary, the time required to compute the CDM increases
with k, since the transit network becomes larger too. Also, the total number of border nodes
increases and, hence, there are more sources-targets in the many-to-many search. Finally, we
observe that for all datasets the preprocessing time shows a local minimum; for NY the prepro-
cessing time is minimum for k = 512, for FL it is minimum for k = 384, for CA it is minimum
for k = 640 and for E it is minimum for k = 896.

Figure 3.11 shows the space overhead of ParDiSP varying the number k of components.
We distinguish between the memory required to store a) the IDTs b) the CDM and c) the
CH scheme over the transit network. The space required to store the extended components
and the transit network is negligible. With an increasing number k of components, the space
required by the CDM increases, whereas the space for the IDTs decreases. The space required
to store the CH scheme over the transit network slightly increases with k but it is negligible in
comparison to the memory requirements for storing the IDTs and the CDM. Overall, with the
exception of small values of k, the memory requirements are dominated by the CDM.

Figure 3.12 compares the preprocessing time and space overhead of ParDiSP (with k =

384) to AH, CH and PHL for all datasets. Figure 3.12a shows that CH outperforms ParDiSP
and the other competitors in terms of preprocessing time on all datasets. For NY, PHL and
ParDiSP have similar preprocessing time while AH is the slowest. For FL and CA, PHL, AH
and ParDiSP have similar preprocessing time while, for E, AH is the fastest method after CH,
ParDiSP is slightly slower and PHL is the slowest method. Figure 3.12b analyzes the space
overhead. For NY all approaches have similar space requirements except for ParDiSP which
has slightly more. For all the other datasets, CH is shown to consume the least space, followed
by AH. PHL is the method which inflicts the highest space overhead by far. ParDiSP requires
significantly less space than PHL, but more than CH and AH.
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Figure 3.11: Space overhead in ParDiSP.
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Figure 3.12: Preprocessing cost for PHL, AH, CH and ParDiSP.

3.4.4 Query Processing

Figure 3.13 presents the results of our first set of experiments on query processing with
ParDiSP. More specifically, the figure analyses the query processing time of ParDiSP for dis-
tance and shortest path queries varying the number k of components. First, we observe that,
for all datasets, the processing of distance queries becomes faster with an increasing number
of components. This result verifies our claim from observing Figure 3.7 that larger values of k
lead to few border nodes per component, thus smaller distance tables. Furthermore, the larger
the value of k is the less probable that a query will be an in-component one. Even if that is the
case though, the size of the extended component becomes smaller with an increasing k and the
processing time of in-component queries drops as well. With regard to shortest path queries,
we observe that the processing time does not change much with k. In fact, the performance of
ParDiSP for shortest path queries shows a local minimum for all datasets; for NY and FL the
processing time is minimum for k = 256, for CA it is minimum for k = 512 and for E it is
minimum for k = 384. This observation lead us to choose the number of components k = 384
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Figure 3.13: Cost of query processing in ParDiSP.

for our second set of experiments.
Figures 3.14 and 3.15 report the results of our second set of experiments on the processing

time of distance and shortest path queries. In particular, Figure 3.14 compares the processing
of distance queries with ParDiSP, AH, CH and PHL for all four datasets. In all datasets,
the runtime of ParDiSP is constant, except for query set Q1, where the rate of in-component
queries is comparably high. Clearly, processing in-component queries with ParDiSP is more
expensive than processing cross-component queries. While PHL is the fastest solution for all
four datasets, ParDiSP is very close to this state-of-the-art solution. CH is approximately one
order of magnitude slower than both ParDiSP and PHL and alt least two times slower than
AH, especially for query sets Q5 to Q10 Finally, we observe that, in all road networks, the
performance of AH deteriorates in the beginning, but improves significantly after Q4, i.e.,
while the distance between query points increases. It appears that AH is better at processing
queries where the query points are far apart. However, even for Q10 where AH shows the best
performance, it is still slower than our ParDiSP approach.

Figure 3.15 compares the processing of shortest path queries with ParDiSP, AH, CH and
PHL for all four datasets. First, for the NY dataset we observe in Figure 3.15a that, although
PHL is the fastest method for distance queries, it is extremely inefficient for shortest path
queries. The reason for this poor performance is the large number of distance queries that need
to be processed for retrieving the shortest path. Naturally, the performance of PHL deteriorates
even more for query sets where the query points are distant. For presentation purposes, we omit
PHL in Figures 3.15b–3.15d.

With regard to the other algorithms, we observe that, for NY, AH and ParDiSP have similar
performance (with AH being sightly faster) while CH is clearly the slowest approach among
the three. ParDiSP is the fastest approach in FL, CA and E, outperforming both CH and AH
for all query sets, with the exception of Q1 for the CA road network. Since the source and the
target points of queries in Q1 are very close, the number of in-component queries that ParDiSP
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Figure 3.14: Performance for distance queries.
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Figure 3.15: Performance for shortest path queries.

has to process is quite high. Clearly, The efficiency of ParDiSP drops when it has to process a
large number of in-component queries.

In addition, we observe that the performance of CH is influenced by the distance between
the source and target query points. For instance, for FL the performance of CH steadily dete-
riorates as the distance between the query points increases. We observe a similar tendency for
CA and E too. However, the performance of CH seems to stabilize for query sets Q7 to Q10. In
contrast to CH, the performance of AH and ParDiSP seems to be much less influenced by the
distance between the query points. The performance of AH varies from network to network; in
FL, the performance of AH seems to deteriorate as the distance between query points grows,
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Figure 3.16: Performance for mixed query sets.

in CA, the performance does not deteriorate and appears to be most efficient for query sets Q2

and Q3, while in E, the performance deteriorates from Q1 to Q3 but then, from Q3 to Q10 it
improves steadily. The performance of ParDiSP is similar for all query sets.

Finally, Figure 3.16 shows the results of our third set of experiments with mixed query
sets. For NY, PHL-AH is the fastest approach outperforming ParDiSP. For Q1 of CA, the
performance of ParDiSP displays a similar behavior as in our previous experiments, meaning
that the number of in-component queries is quite high. However, in all settings apart from NY
and Q1 of CA, ParDiSP clearly outperforms both PHL-CH and PHL-AH. We also observe that
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the gap between ParDiSP and the two competitors gets smaller with the increase of distance
queries in the query load. When more than 95% of the queries are distance queries, the three
approaches have comparable performance for FL, CA and E. Finally, we observe that PHL-AH
outperforms PHL-CH for all settings. Such a result is expected as both methods use PHL for
distance queries, while AH is faster than CH in shortest path queries.

3.5 Summary

We presented ParDiSP, a framework for the efficient processing of both distance and short-
est path queries on road networks. Given an input road network partitioned into components,
ParDiSP precomputes a set of index structures which are utilized to optimize query processing.
ParDiSP answers distance and shortest path queries by running the ALT algorithm if source
and target are in the same component, using the precomputed distances to the border nodes
to compute lower bounds. Otherwise, for distance queries, ParDiSP combines distances from
three precomputed tables, whereas shortest path queries are decomposed into the retrieval of
three sub-paths, which can be executed in parallel. Our experimental evaluation has shown
that ParDiSP outperforms the state-of-the-art for shortest path queries, while being comparable
to the state-of-the-art for distance queries. For mixed query sets with distance and shortest
path queries, ParDiSP is, in most cases, more efficient even than a combination of the best
state-of-the-art approaches for the two query types, while incurring less space overhead.





CHAPTER 4

k-Shortest Paths with Limited Overlap

In this chapter, we introduce a novel approach to tackle the problem of computing alter-
native paths on road networks. Our focus is to recommend a set of k paths (including the
shortest path) such that every path in the result set is sufficiently dissimilar to all the other
paths in the result set based on a user-specified similarity threshold and, at the same time, as
short as possible. We formalize this form of alternative routing as the k-Shortest Paths with
Limited Overlap (k-SPwLO) problem. Furthermore, we propose three algorithms for evaluat-
ing k-SPwLO queries. The baseline algorithm BSL computes first a (necessarily large) set of
candidate paths and applies similarity filtering in a second step. OnePass traverses the network
once and expands only those paths that qualify the similarity constraint. Finally, MultiPass
extends and improves OnePass by employing an additional pruning criterion and computes
k-SPwLO queries by traversing the network k�1 times.

41
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4.1 Alternative Paths

Given a road network G = (N,E), let P be a set of paths from a source node s 2 N to a
target node t 2 N . We call any path p(s!t) alternative to P if p is sufficiently dissimilar to
every path p0 2 P . More formally, the similarity of p to every path p0 2 P is determined by
their overlap ratio:

Sim(p, p0) =

P
(n

x

,n

y

)2p\p0 wxy

`(p0)
, (4.1)

where p\ p0 denotes the set of edges shared by p and p0. For the overlap ratio we have that 0 
Sim(p, p0)  1, where Sim(p, p0) = 0 holds if p shares no edge with p0, and Sim(p, p0) = 1

holds if p ⌘ p0. Since we consider only simple paths, i.e., cycle-free, the similarity between
different paths is strictly lower than 1. We formalize the concept of alternative paths in the
following definition.

Definition 5 (Alternative Path). Let P be a set of paths from s to t and ✓ 2 [0, 1) be
a similarity threshold. A path p is alternative to P iff (a) p is also from s to t and (b)
8p

i

2 P : Sim(p, p
i

)  ✓.

Consider the road network in Figure 4.1. The shortest path from s to t is p0 =

h(s, n3), (n3, n5), (n5, t)i with length `(p0) = 8. Assume that P contains only the short-
est path, i.e., P = {p0} and consider paths p1 = h(s, n3), (n3, n5), (n5, n4), (n4, t)i and
p2 = h(s, n3), (n3, n4), (n4, t)i with `(p1) = 9 and `(p2) = 10, respectively, as alterna-
tives to P . Path p1 shares edges (s, n3) and (n3, n5) with p0, which gives Sim(p1, p0) =

(w
s,3 + w3,5)/`(p0) = 6/8 = 0.75, whereas Sim(p2, p0) = w

s,3/`(p0) = 3/8 = 0.38.
Assuming a similarity threshold ✓ = 0.5, only p2 is alternative to P .
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Figure 4.1: Running example.

Note that the asymmetric similarity metric of Equation (4.1) allows us to exclude needlessly
long paths. Following up on our previous example, consider the shortest path p0 and the paths
p3 = h(s, n3), (n3, n4), (n4, t)i and p4 = h(s, n3), (n3, n2), (n2, n4), (n4, t)i with `(p3) =

10 and `(p4) = 13, respectively. The use of a symmetric similarity metric, such as the Jaccard
coefficient, would indicate that p4 is less similar to p0 than p3, although the shared length
of both p3 and p4 with p0 is the same. With the asymmetric definition of Equation (4.1) we
avoid such cases. Furthermore, the similarity metric of Equation (4.1) guarantees the pairwise
dissimilarity of p and p0, as long as `(p) � `(p0). This observation is captured by the following
lemma.
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Lemma 3. Given two paths p, p0 where `(p) � `(p0), and a similarity threshold ✓, iff
Sim(p, p0) < ✓ then also Sim(p0, p) < ✓.

Proof. Following Equation (4.1) for the similarity between p and p0 and given that `(p) � `(p0),
we have:

P
(n

x

,n

y

)2p\p0 wxy

`(p)


P
(n

x

,n

y

)2p\p0 wxy

`(p0)
) Sim(p0, p)  Sim(p, p0).

Therefore, iff Sim(p, p0) < ✓ then also Sim(p0, p) < ✓.

4.2 k-Shortest Paths with Limited Overlap

We now introduce the problem of k-Shortest Paths with Limited Overlap (k-SPwLO).
Given a source node s and a target node t, the goal is to recommend a set of k paths from
s to t, sorted by length in increasing order such that (a) the shortest path p0(s!t) is always
included, (b) every path is dissimilar to its predecessors with respect to a similarity threshold
✓, and (c) all k paths are as short as possible. Intuitively, this task can also be seen as pro-
gressively recommending k paths to the user starting from the shortest path p0. Every path
p
i

recommended next is alternative to the set of paths already recommended and as short as
possible. We formalize the k-SPwLO problem in the following definition.

Definition 6 (k-SPwLO). Given a road network G = (N,E), a source node s 2 N ,
a target node t 2 N , a requested number of paths k and a similarity threshold ✓. A
k�SPwLO(s, t, ✓, k) query returns a set PLO = {p0, . . . , p

k�1} of k paths from s to t, for
which the following holds:

• p0 is the shortest path from s to t,

• 8p
i

, p
j

2 PLO with i 6= j: Sim(p
i

, p
j

)  ✓, and

• 8p /2 PLO one of the following two conditions holds:

– `(p) � `(p
i

) holds 8p
i

2 PLO
– 9p

i

2 PLO with `(p
i

)  `(p) and Sim(p, p
i

) > ✓.

The first bullet of Definition 6 guarantees that the shortest path p0(s!t) is always in the
result set PLO. The second bullet assures that the recommended paths in PLO are sufficiently
dissimilar to each other. Finally, the third bullet guarantees that PLO contains the shortest
among all paths qualifying the previous constraints. More specifically, every path p that is not
part of the k-SPwLO, is either longer than all the paths in the set (Condition 1), or there is a
shorter path p

i

in the set which causes p to violate the similarity constraint (Condition 2).
A naı̈ve approach for computing k-SPwLO queries is to iterate over all paths from the

source node s to the target node t and compute their pairwise similarity. However, such a
solution is impractical; for real-world road networks, it is impossible to offline precompute and
store all paths connecting any pair of nodes as the enumeration of all possible paths is a #P -
complete problem [83]. In what follows, we present three algorithms for processing k-SPwLO
queries (Sections 4.3-4.5) which examine paths in increasing length order and built the result
set progressively.
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4.3 Baseline Algorithm

Our baseline algorithm, denoted by BSL, directly implements the idea of examining paths
in increasing order of their length and works as follows. First, the shortest path p0(s!t)
is naturally considered and added to the result set PLO. For every path p

c

examined next,
BSL investigates whether it is alternative to the already recommended paths. If yes, PLO is
updated by adding p

c

, otherwise, BSL proceeds to the next path in order until the result set
PLO contains exactly k paths or all possible paths from s to t have been examined. In practice,
BSL employs Yen’s algorithm initially proposed in [89] and further optimized in [41, 59] to
efficiently generate paths in length order.

Algorithm 4 illustrates the pseudocode of BSL. The result set PLO is initialized with p0,
i.e., the shortest path from s to t (Line 1). At each iteration (Lines 3-6), the loop of Yen’s
algorithm is employed in Line 3 to access the next path p

c

from s to t in length order. Note
that Yen’s algorithm does not run from scratch; instead, it continues from its previous state.
In Line 5, BSL checks whether the current path p

c

is alternative to the already recommended
paths and updates PLO in Line 6, if needed. Finally, the PLO result set is returned in Line 7.

Algorithm 4: BSL
Input: Road network G = (N,E), source node s, target node t, # of results k, sim. threshold ✓
Output: Set PLO of k paths

1 initialize PLO  ;;
2 p

c

 NULL;
3 while PLO contains less than k paths and p

c

not null do
4 p

c

 NextShortestPath(G, s, t); . Use Yen’s alg.
5 if Sim(p

c

, p
i

)  ✓ for all paths p
i

2 PLO then
6 add p

c

to PLO; . Update result set

7 return PLO;

Example 2. We demonstrate BSL using the road network illustrated in Figure 4.2 and
the k-SPwLO(s, t, 0.5, 3) query. The first path constructed by BSL is the shortest path
p0 = hs, n3, n5, ti which is added to the result set. The next path examined by BSL
is p1 = h(s, n3), (n3, n5), (n5, n4), (n4, t)i. Path p1 is not added to the result set as
Sim(p1, p0) = 6/8 = 0.75 which exceed the similarity threshold. Next, BSL examines path
p2 = h(s, n3), (n3, n4), (n4, t)i. Since the similarity Sim(p2, p0) = 3/8 = 0.375 does not
violate the similarity constraint, p2 is added to the results set. BSL continues its execution until
it examines path p4 = h(s, n2), (n2, n4), (n4, t)i and adds it to the result set. Then BSL returns
the result set PLO = {p0, p2, p4}.

Despite its simplicity, BSL cannot be used even for small networks; our tests in Section 4.7
clearly verify this argument. As the algorithm does not employ any pruning techniques, a large
number of paths need to be examined in length order. For this task, BSL builds upon an already
expensive operator, i.e., the computation of K-shortest paths. In practice, returning the next
path in length order requires a number of intermediate/candidate paths to be constructed first.
In the worst case scenario, BSL has to construct all paths connecting source node s and target
node t, a problem which, as we already mentioned, is #P -complete [83].
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Figure 4.2: Computation of k-SPwLO (s,t,0.5,3) query with BSL.

4.4 OnePass Algorithm

OnePass, our second algorithm, traverses the road network starting from source node s ex-
panding only paths that satisfy the similarity constraint ✓. Hence, the number of paths examined
by OnePass for the computation of a k-SPwLO query is significantly lower than the number of
paths examined by BSL. In what follows, we formally introduce this pruning criterion and we
present the OnePass algorithm which employs it.

4.4.1 Pruning Overlaping Sub-paths

Let p(s!n) be a path connecting source node s to some node n, and p
i

(s!t) 2 PLO be
an already recommended path. Assume that p is extended to reach target t, resulting in path
p0(s!t). As p0 contains all edges shared by p and p

i

, its similarity with p
i

is at least equal to the
similarity of p with p

i

, i.e., Sim(p0, p
i

) � Sim(p, p
i

). Hence, given a similarity threshold ✓, if
there exists p

i

2 PLO such that Sim(p, p
i

) � ✓, path p can be safely discarded; no extension
of p can possibly be an alternative path. This pruning criterion is formally captured by the
following lemma:

Lemma 4. Let PLO be the set of already recommended paths. If p is an alternative path to
PLO with respect to a similarity threshold ✓ then Sim(p0, p

i

)  ✓ holds for every subpath p0 of
p and any p

i

2 PLO.

Proof. Let p be an alternative path to PLO, i.e., 8p
i

2 PLO : Sim(p, p
i

)  ✓. Consider a
subpath p0 of p and denote by E

p�p

0 the set of edges contained in p but not in p0. Following
Equation (4.1), for the overlap ratio of p and p0 and 8p

i

2 PLO we have:

Sim(p, p
i

) = Sim(p0, p
i

) +

P
(n

x

,n

y

)2E
p�p

0 wxy

`(p
i

)

from which we get

Sim(p0, p
i

)  Sim(p, p
i

)) Sim(p0, p
i

)  ✓.
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Lemma 4 also demonstrates the monotonicity of the similarity function of Equation 4.1.
Let a path p

i

2 PLO, a path p and a path p0 which is created by extending p, hence p is a
subpath of p0. According to Lemma 4 the similarity Sim(p0, p

i

) can only be larger or equal to
Sim(p, p

i

) and it will not decrease under any circumstances.

4.4.2 The OnePass Algorithm

Next, we present a label-setting algorithm, termed OnePass, which employs the pruning
criterion of Lemma 4 to evaluate k-SPwLO queries. The algorithm has the following key
features. OnePass traverses the road network expanding every path from source node s that
qualifies the pruning criterion of Lemma 4. Similar to all label-setting algorithms, OnePass
maintains a set of labels ⇤(n), where each label hn, p(s!n)i represents a path from s to n1.
The paths are examined in increasing order of their length. Each time a new path p(s!t)
is added to PLO, an update procedure takes place for all remaining paths p0 in ⇤(n). More
specifically, for each path p0 in ⇤(n), OnePass computes the similarity of p0 with the newly
found p(s!t) path and removes all paths p0 from ⇤(n) for which the similarity with p exceeds
the similarity threshold ✓ (Lemma 4). Finally, the algorithm terminates when either k paths are
recommended or all paths from s to t qualifying Lemma 4 have been examined.

Algorithm 5 illustrates the pseudocode of OnePass. The result set PLO is initialized with
p0, i.e., the shortest path from s to t, in Line 1. The algorithm uses a min-priority queue
Q (initialized with hs, ;i in Line 2) to traverse the road network. In between Lines 4 and
15, OnePass examines the contents of Q until either k paths are recommended or the queue is
depleted. At each round, current label hn, p

n

i is popped from Q (Line 5). If node n is the target
t then p

n

is recommended, i.e., added to PLO (Line 7). Next, between Lines 8-10, for each
label hn

q

, p
q

i in Q, OnePass computes the similarity ratio of p
q

with the newly recommended
path p

n

and determines whether p
q

qualifies the pruning criterion of Lemma 4; in particular, if
Sim(p

q

, p
n

) > ✓ then p
q

can be safely discarded. If node n is not the target t, the algorithm
expands the current path p

n

considering all outgoing edges (n, n
c

) (Lines 12-15), provided that
the new path p

c

 p
n

� (n, n00
) qualifies the pruning criterion of Lemma 4 (Line 14). Finally,

the result set PLO is returned in Line 16.
To achieve an efficient implementation, OnePass stores for each label hn, p

n

i a vector V
Sim

containing the overlap ratio of p
n

with all paths that were in PLO at the time when the label
was created. Due to the monotonicity of Equation 4.1, the overlap ratios stored in V

Sim

can
be updated incrementally. When a new label is created and added to Q, our implementation of
OnePass performs lazy updates for Q. In order to consider results in PLO that are added after
the creation of the label, each time a label is popped, OnePass compares the size of V

Sim

stored
in the popped label to |PLO|. If the size of V

Sim

is smaller than the number of paths currently
in PLO, OnePass computes the missing overlaps and updates V

Sim

accordingly.

Example 3. We demonstrate OnePass using the road network of Figure 4.3 and the
k-SPwLO(s, t, 0.5, 2) query. During the initialization phase, the shortest path p0(s!n) =

h(s, n3), (n3, n5), (n5, t)i is computed and added to the result set PLO. Starting from s, the
first path examined by OnePass is p1. The similarity Sim(p1, p0) = 3/8 = 0.375 is below

1In practice, OnePass stores only the predecessor of each label during the expansion. By tracing backwards each
step of the expansion, the actual path can be retrieved at any time.
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Algorithm 5: OnePass
Input: Road network G = (N,E), source node s, target node t, # of results k, sim. threshold ✓
Output: Set PLO of k paths

1 PLO  {shortest path p0(s! t)};
2 initialize min-priority queue Q with hs, ;i;
3 8n 2 N : ⇤(n) ;;
4 while PLO contains less than k paths and Q not empty do
5 hn, p

n

i  Q.pop(); . Current path
6 if n = t then
7 PLO  PLO [ {p

n

}; . Update result set
8 foreach label hn0, `(p

n

0
)i in Q do

9 if Sim(p
n

0 , p
i

) > ✓, 8p
i

2 PLO then
10 remove hn0, `(p

n

0
)i from Q ; . Lemma 4

11 else
12 foreach outgoing edge (n, n

c

) 2 E do
13 p

c

 p
n

� (n, n
c

); . Expand path p
c

14 if 8p
i

2 PLO : Sim(p
c

, p
i

)  ✓ then
15 Q.push(hn

c

, p
c

i);

16 return PLO;

the similarity threshold ✓ = 0.5; hence p1 is not pruned. The same holds for p2, the sec-
ond path examined by OnePass. Subsequently, OnePass examines paths p3, p4 and p5. Paths
p3 and p4 are not pruned as their respective similarities Sim(p3, p0) = 3/8 = 0.375 and
Sim(p4, p0) = 0 do not exceed the similarity threshold. On the contrary, for path p5 the sim-
ilarity Sim(p5, p0) = 6/8 = 0.75 exceeds the similarity threshold of 0.5 and so, path p5 is
pruned. OnePass continues its execution until the alternative path p14 with `(p14) = 10 is
found and subsequently added to PLO.
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shortest path (p0) 1st alternative (p14)

Examined paths
p1 h(s, n3)i 3
p2 h(s, n2)i 4
p3 h(s, n3), (n3, n1)i 5
p4 h(s, n1)i 6
p5 h(s, n3), (n3, n5)i 6

(. . .)
p12 h(s, n2), (n2, n3), (n3, n5)i 10
p13 h(s, n2), (n2, n4), (n4, n5)i 10
p14 h(s, n3), (n3, n4), (n4, t)i 10

Figure 4.3: Computation of the k-SPwLO (s,t,0.5,2) query with OnePass.

Complexity analysis. OnePass can be viewed as an extension of Fox’s algorithm [35] for
computing the K-shortest paths. Fox’s algorithm traverses the road network expanding every
path from source node s. At each iteration, the algorithm expands up to K nodes, allowing each
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node to be expanded up to K times, and terminates when the target node has been expanded
K times. The time complexity of Fox’s algorithm is O(|E|+K · |N | · log |N |). In contrast to
Fox’s algorithm, OnePass allows each node to be visited an unlimited number of times. Each
node can be visited by OnePass as many times as the number of paths from s to t. OnePass
terminates when either k paths are recommended or all paths from s to t qualifying Lemma 4
are examined. Hence, the complexity of OnePass is O(|E| + K · |N | · log |N |), where K is
the number of shortest paths that have to be computed in order to cover the k results of the
k-SPwLO query.

4.5 MultiPass Algorithm

Despite employing the pruning criterion of Lemma 4, OnePass still has to expand and
examine a large portion of all possible p(s!t) paths. In this section, we propose a novel label-
setting algorithm, termed MultiPass, to enhance the computation of k-SPwLO. The algorithm
employs an additional powerful pruning criterion which significantly reduces the search space
by avoiding expanding non-promising paths.

4.5.1 Pruning Non-Promising Paths

Let p0(s!t) be the shortest path from a source node s to a target node t as illustrated in
Figure 4.4. In addition, let p

i

(s!n) and p
j

(s!n) be two distinct paths from source s to a
node n of the shortest path p0 such that `(p

i

) < `(p
j

). Assuming that both p
i

, p
j

are extended
to reach target t following the same path p(n!t), any extension of p

i

will be shorter than the
respective extension of p

j

. Furthermore, let Sim(p
i

, p0)  Sim(p
j

, p0), i.e., the similarity
of p

i

with p0 is equal or lower than the similarity of p
j

with p0. Due to the monotonicity of
the similarity function (Equation (4.1)), any extension of p

i

to n will have the same or less
similarity with p0 compared to the respective extension of p

j

. In other words, for any extension
of p

j

there will always be a shorter extension of p
i

with less or equal similarity with p0; thus,
p
j

can be pruned.

s n t
p0

p
i

p
j

Figure 4.4: Pruning paths with Lemma 5.

The same idea can be utilized to prune the search space when computing the short-
est alternative path to a set of paths P . Consider again p

i

,p
j

with `(p
i

) < `(p
j

) and
Sim(p

i

, p0)  Sim(p
j

, p0). Path p
j

is pruned if for every path p 2 P the similarity Sim(p
i

, p)
is lower or equal to Sim(p

j

, p). This pruning criterion is formally captured by the following
lemma:

Lemma 5. Let P be a set of paths from a source node s to a target node t, and p
i

, p
j

be two
paths from s to some node n. If `(p

j

) > `(p
i

) and 8p 2 P : Sim(p
i

, p)  Sim(p
j

, p) hold
then path p

j

cannot be part of the shortest alternative path to P and we write p
i

�
P

p
j

.
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Proof. We prove the lemma by contradiction. Assume that an extension p0
j

=

h(s, ⇤), . . . , (⇤, n), . . . , (⇤, t)i of p
j

(s!n) to target t is the shortest alternative path to P . Then,
we show that an extension p0

i

= h(s, ⇤), . . . , (⇤, n), . . . , (⇤, t)i of p
i

(s!n) to target t is also an
alternative path and it will be examined and recommended before p0

j

.
According to the definition of an alternative path, Sim(p0

j

, p)  ✓ holds 8p 2 P , and
following Lemma 4 Sim(p

j

, p)  ✓ also holds 8p 2 P . Furthermore, due to the 8p 2 PLO :

Sim(p
i

, p)  Sim(p
j

, p) assumption of Lemma 5, we get that Sim(p
i

, p)  ✓ holds 8p 2 P .
As extension paths p0

i

and p0
j

share the same sequence of edges connecting n to target t, we
deduce that (a) Sim(p0

i

, p)  ✓ holds 8p 2 P , i.e., p0
i

is alternative to P and (b) `(p0
i

) < `(p0
j

)

which means that p0
i

will be examined before p0
j

.

The pruning criterion of Lemma 5 can be utilized to compute the shortest alternative path
to a set of paths as follows. Let P be the set of paths for which we want to compute the
shortest alternative path, and P

n

the set of paths from s to some node n created during the
expansion of all paths from s. If P

n

contains a path p0(s!n) such that (a) p0 is longer than
any path p

n

2 P
n

\ {p0}, and (b) for every path p 2 P the similarity Sim(p0, p) is higher than
Sim(p

n

, p) for all paths p
n

2 P
n

\ {p0}, then p0 can be pruned. Note that the addition of a path
in P

n

may render condition (b) not applicable for another path already contained in P
n

. To
ensure that set P

n

contains only paths for which both (a) and (b) hold, every time a new path is
added to P

n

, we have to check whether condition (b) still holds for all paths in the set.
The aforementioned pruning criterion cannot be employed directly for the computation of

k-SPwLO queries. Consider again the example in Figure 4.4. Let p0 be the only path in the set
of currently recommended alternative paths P . If during the search for the alternative path p1
to P , p

j

is pruned because p
i

�
P

p
j

holds, p
j

cannot be part of the shortest alternative to P .
However, there is no guarantee that p

j

will not be part of the shortest alternative to both p0 and
p1. In particular, if p

i

is part of p1, then, during the search for the next alternative path, i.e.,
the alternative path to P = {p0, p1}, p

i

may be pruned much earlier by Lemma 4. Hence, we
have to compute k-SPwLO queries in an iterative way. Each time a new alternative is added
to the k-SPwLO result set, we have to re-start the search for the next alternative path from the
beginning.

4.5.2 The MultiPass Algorithm

Next, we present MultiPass, a label-setting algorithm which employs both pruning criteria
of Lemma 4 and Lemma 5 to enhance the computation of k-SPwLO queries. The algorithm
has the following key features. For each node n of the road network, MultiPass maintains a
set of labels ⇤(n). Each label represents a path from s to n and is of the form hn, p(s!n)i2.
MultiPass traverses the road network k-1 times. At each iteration, the algorithm examines paths
from s in increasing order of their length and expands every path p(s!n) from s to a node n
for which the following holds: (a) its similarity with any already computed result does not
exceed the input threshold ✓ (Lemma 4) and (b) its extension can possibly lead to the shortest
alternative path during the current iteration (Lemma 5). Every time a new path p

n

(s!n) that
qualifies conditions (a) and (b) is found, a label hn, p

n

i is added to ⇤(n) and MultiPass removes
all paths from ⇤(n) which do not qualify condition (b) anymore. As soon as a path to target
t is found, MultiPass terminates current round, discards all stored labels, and re-traverses the

2Similar to OnePass, MultiPass stores only the predecessor of each label during the expansion.
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Algorithm 6: MultiPass
Input: Road network G = (N,E), source node s, target node t, # of results k, similarity threshold ✓
Output: Set PLO of k paths

1 PLO  {shortest path p0(s!t)};
2 while |PLO| < k and last round updated PLO do
3 initialize min-priority queue Q with hs, ;i;
4 8n 2 N : ⇤(n) ;;
5 while Q not empty do
6 hn, p

n

i  Q.pop(); . Current path
7 if n = t then
8 PLO  PLO [ {p

n

}; . Update result set
9 break;

10 else
11 foreach outgoing edge (n, n

c

) 2 E do
12 p

c

 p
n

� (n, n
c

); . Expand path p
c

13 if 9p
i

2 PLO : Sim(p
c

, p
i

)�✓ then
14 continue; . Pruned by Lemma 4
15 else if 9hn

c

, p0
c

i 2 ⇤(n
c

) : p0
c

�PLO p
c

then
16 continue; . Pruned by Lemma 5
17 else
18 remove from Q and ⇤(n

c

) all hn
c

, p0
c

i : p
c

�PLO p0
c

; . Lemma 5
19 Q.push(hn

c

, p
c

i);
20 ⇤(n

c

) ⇤(n
c

) [ {hn
c

, p
c

i};

21 return PLO;

network from source s. The algorithm terminates after k paths are added to result set PLO or
the last round failed to find an alternative path. In the latter case, a complete set of k-SPwLO
with respect to given ✓ and k values cannot be computed.

Algorithm 6 illustrates the pseudocode of MultiPass. The result set PLO is initialized with
the shortest path p0(s!t) (Line 1). The algorithm employs a min priority queue Q to traverse
the road network. Before each traversal round, Q is initialized to hs, ;i (Line 3) and each
node n is associated with a (initially empty) set of labels ⇤(n) (Line 4). At each round in
between Lines 5 and 20, MultiPass pops label hn, p

n

i for current path p
n

in Line 6. If n is the
target t, then p

n

is added to PLO and the round terminates (Lines 7–9). Otherwise, MultiPass
expands the current path p

n

considering all outgoing edges (n, n
c

) (Lines 10-16). Each new
path p

c

 p
n

�(n, n
c

) (Line 12) is evaluated against the pruning criteria of Lemma 4 (Lines 13-
14) and Lemma 5 (Lines 15-16). If p

c

qualifies both pruning criteria, MultiPass removes from
Q and ⇤(n

c

) every label representing a path p0
n

such that p
c

�PLO p0
n

(Line 19). Finally, the
new label is added to Q (Line 19) and ⇤(n

c

) (Line 20) and the next label is popped from Q.
The loop terminates after k paths are added to PLO or the last round failed to find an alternative
path. Finally, the PLO result set is returned in Line 21.

To achieve an efficient implementation, similar to OnePass, MultiPass also stores for each
label hn, p

n

i a vector V
Sim

containing the overlap ratio of p
n

with all paths that were in PLO
at the time when the label was created. The overlap ratios stored in V

Sim

are updated incre-
mentally. When a new label is added to Q, MultiPass performs lazy updates for Q. Finally,
each time a label is popped, MultiPass compares the size of V

Sim

stored in the popped label to
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|PLO| and computes any missing overlaps.

Example 4. We demonstrate MultiPass using the road network of Figure 4.5 and the
k�SPwLO(s, t, 0.5, 3) query. During initialization, the shortest path p0(s!n) =

h(s, n3), (n3, n5), (n5, t)i is computed and added to the result set PLO. Starting from s, the
first path examined by MultiPass is p1. The similarity Sim(p1, p0) = 3/8 = 0.375 is be-
low the similarity threshold ✓ = 0.5; hence p1 is not pruned. The same holds for p2 the next
path examined MultiPass. Subsequently, MultiPass examines paths p3, p4 and p5. Path p3
is not pruned as the similarity Sim(p3, p0) = 3/8 = 0.375 does not exceed the similarity
threshold. For path p4 the similarity Sim(p4, p0) = 0.375 also does not exceed the simi-
larity threshold. Since node n1 has already been visited by path p3 though, we also check
Lemma 5. We have Sim(p3, p0) > Sim(p4, p0) and for the length `(p3) < `(p4). Therefore,
Lemma 5 cannot be applied and path p4 is not pruned. On the contrary, for path p5 the similar-
ity Sim(p5, p0) = 6/8 = 0.75 exceeds the similarity threshold of 0.5 and so, path p5 is pruned
by Lemma 4. MultiPass continues the execution of the current round in the same fashion until
the alternative path p14 with `(p14) = 10 is found and subsequently added to PLO.

Next, MultiPass performs the second round in the same fashion, computes the alternative
path p013 with `(p013) = 11 and completes the result set PLO.
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p1 h(s, n3)i 3
p2 h(s, n2)i 4
p3 h(s, n3), (n3, n1)i 5
p4 h(s, n1)i 6
p5 h(s, n3), (n3, n2)i 6

(. . .)
p12 h(s, n2), (n2, n3), (n3, n5)i 10
p13 h(s, n2), (n2, n4), (n4, n5)i 10
p14 h(s, n3), (n3, n4), (n4, t)i 10

Examined paths - round 2
p01 h(s, n3)i 3
p02 h(s, n2)i 4
p03 h(s, n3), (n3, n1)i 5
p04 h(s, n1)i 6
p05 h(s, n3), (n3, n2)i 6

(. . .)
p012 h(s, n2), (n2, n4), (n4, n5)i 10
p013 h(s, n3), (n3, n1), (n1, t)i 11

Figure 4.5: Computation of the k-SPwLO (s,t,0.5,3) query with MultiPass.

Compared to OnePass, MultiPass traverses the road network k�1 times instead of once
(hence, the name of the algorithm). Each round works independently, i.e., builds a new path tree
by expanding all paths that qualify both pruning criteria. As a result, at each round, MultiPass
may potentially re-expand and re-examine paths already processed in previous rounds. On
the other hand, by employing Lemma 5, the number of paths that MultiPass has to examine
(including the paths examined multiple times) is lower than the paths processed by OnePass.
Finally, OnePass has to check the simplicity of every new path, i.e., whether any cycles are
contained, while MultiPass does not need to perform such a check, as Lemma 5 ensures that
all non-simple paths are pruned.

Complexity analysis Given a k-SPwLO query, MultiPass first computes the shortest path
p0(s!t) from source node s to target t. Naturally, the cost of this step is independent the
number of requested paths k or the similarity threshold ✓. For the computation of p0(s!t)
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any shortest path algorithm can be employed, e.g., Dijkstra’s algorithm [32] which requires
O(|E|+ |N | · log |N |).

To find each subsequent alternative path, all paths from source s that qualify the pruning cri-
terion of Lemma 4 are expanded. However, as the value of the similarity threshold ✓ approaches
1, the number of paths pruned by Lemma 4 significantly drops. In such a case, the result set
is the K-Shortest paths. Furthermore in practice, there exists no formula for estimating the
number of paths pruned by the pruning criterion of Lemma 5. Hence, each round of MultiPass
becomes equivalent to Fox’s algorithm [35] with a complexity O(|E|+K ·|N |·log |N |), where
K is the number of the shortest paths that have to be computed to cover the k-SPwLO result.
Since k�1 rounds are required to compute a k-SPwLO query, the total runtime complexity of
MultiPass is O(k(|E| +K · |N | · log |N |)) where K >> k. As we explained in Section 4.2,
the number of paths that have to be computed in order to cover the k-SPwLO set is very high;
in extreme cases MultiPass may have to construct all paths from s to t.

Finally, note that the time complexity of MultiPass is worse than the time complexity of
OnePass. However, we show in our experimental evaluation that MultiPass is much faster
than OnePass. The reason for this inconsistency is that although by employing the pruning
criterion of Lemma 5 MultiPass examines much less paths than OnePass, there can be no
formal guarantees for the number of paths that are pruned. Although MultiPass has worse
theoretical time complexity though, in practice it is much more efficient than OnePass.

4.6 Optimization

To further improve the performance of OnePass and MultiPass we employ a lower bound,
d(n, t), for the network distance d(n, t) of every node n to the target t. By employing such a
lower bound, both algorithm traverse the network in an A⇤-like fashion and direct the search
towards the target, which avoids visiting nodes that are far away. In order to derive tight d(n, t)
lower bounds, we first reverse the edges of the road network and then run Dijkstra’s algorithm
from target t to every node n of the network [71]. In practice, at the beginning of the execution
of both OnePass and MultiPass, instead of simply computing the shortest path from s to t, we
compute the shortest path tree from target t to each node n in the road network.

4.7 Experimental Evaluation

4.7.1 Experimental Setup

To demonstrate the efficiency of our algorithms, we measure the performance of BSL,
OnePass and MultiPass using real road networks. To assess the runtime performance, we mea-
sure the average response time over 1,000 random queries (i.e., pairs of nodes), varying the
number k of requested paths, the similarity threshold ✓ and the distance between the query
points in a similar fashion as in Section 3.4.1. In the first two experiments, we vary one of
the two parameters and fix the other to its default value: 3 for k and 0.5 for ✓; in the third
experiment we fix both k and ✓ to their default values. All algorithms were implemented in
C++ using the C++11 standard and compiled using GNU G++ compiler (version 4.8.1). All
experiments were executed on an Ubuntu Linux server with 4 Intel Xeon X5550 (2.67GHz)
processors and 48GB of RAM.
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Due to the high execution time of BSL and OnePass, our experiments involve only the road
networks for the city of Oldenburg (6,105 nodes and 14,058 edges) and the city of San Joaquin
(18,263 nodes and 47,594 edges). We also consider a timeout of 120 seconds. Each query that
fails to execute within the predefined timeout is considered failed.

4.7.2 Performance

The continuous lines in Figures 4.6-4.8 show the time for the queries for which all al-
gorithms finished their execution in less than 120 seconds (successful queries), whereas the
dashed lines show the time for all 1,000 queries including those which did not finish within
120 seconds (timed-out/failed queries). In both figures we observe in that BSL is clearly im-
practical. In fact, without the timeout, the response time of BSL would have been several orders
of magnitude higher than MultiPass (even with timeout MultiPass is from one to almost 4 or-
ders of magnitude faster). Naturally, this is due to the large number of paths examined by BSL
in length order, i.e., the paths returned by Yen’s algorithm. Hence, for presentation purposes,
we report the results of BSL only for Oldenburg.
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Figure 4.6: Performance comparison varying requested paths k (✓=50%).

Next, we observe that the performance of both OnePass and MultiPass deteriorates as the
number k of requested paths increases. For all values of k though, MultiPass is clearly faster
than OnePass. In most cases, MultiPass is at least two times faster. Another interesting obser-
vation is that the performance curve of OnePass is almost linear, that is each iteration requires
approximately the same time, e.g., for Oldenburg (Figure 4.6a) the algorithm needs similar time
to find the third and the fourth alternative path. On the other hand, MultiPass needs more time
for each subsequent result. This behavior can be explained by the fact that MultiPass restarts
and re-expands paths.

With regard to parameter ✓, we observe in Figure 4.7 that in all cases, MultiPass is faster
than OnePass. Especially for the lowest values of ✓, i.e., 0,1 and 0.3, MultiPass outperforms
OnePass by at least an order of magnitude. The performance of OnePass is close to MultiPass
only for ✓=0.9, where the computed alternative paths can be very similar. Furthermore, the
fact that the performance of OnePass and MultiPass deteriorates as ✓ increases, indicates that
the pruning power of Lemma 4 deteriorates. However at the same time, we observe that for
small values of ✓ the performance of MultiPass improves. This result indicates that for small
values of ✓ the pruning power of Lemma 5 increases.

Finally, Figure 4.8 compares the response time of all algorithms varying the distance be-
tween query points. For all algorithms we observe that their performance deteriorates as the
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Figure 4.7: Performance comparison varying similarity threshold ✓ (k=3).

distance between query points increases. Once again it is clear that BSL is the slowest algo-
rithm, OnePass is faster than BSL, while MultiPass is clearly the fastest algorithm as it beats
both BSL and OnePass. However, in Figure 4.8b we also observe that, even though MultiPass
is the fastest algorithm, for Q5, where the distance between query points is the highest, Multi-
Pass requires more than ten seconds to compute the k-SPwLO; thus, for larger road networks,
MultiPass may not be very practical.
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Figure 4.8: Performance comparison varying distance between s and t nodes (k=3, ✓ = 50%).

4.7.3 Memory Consumption

To provide a better insight on the performance of MultiPass and OnePass, we report in
Figures 4.9 and 4.10 the number of labels each algorithm needs to examine before returning
the k-SPwLO result. We observe that, in all scenarios, MultiPass examines significantly fewer
paths than OnePass (even though we count the total number of paths from all rounds of Multi-
Pass, hence some paths may be counted more than once).

With respect to the similarity threshold ✓, the result verifies our claim in Section 4.7.2
regarding the pruning power of Lemmas 4 and reflm:prune2. As ✓ increases, the pruning power
of Lemma 4 deteriorates, and both OnePass and MultiPass construct more paths. However at
the same time, the next result can be determined earlier and, hence, the total runtime drops.
In addition, as ✓ decreases, the pruning power of Lemma 5 increases, and more partial paths
can be pruned. This explains the behavior of MultiPass, where the number of examined paths
initially increases, but after ✓=0.5 it goes down.
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Figure 4.9: Comparison of examined paths varying requested paths k (✓=5�%).
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Figure 4.10: Comparison of examined paths varying similarity threshold ✓ (k=3).

4.7.4 Failed Queries

Finally, in Table 4.1 we report the percentage of timed-out/failed queries for timeout values
of 30, 60 and 120 seconds. First, we observe that the failure rate of BSL is clearly the highest.
Also, we observe that the failure rate of OnePass is, in most cases, much higher than the failure
rate of MultiPass. More specifically, for the road network of Oldenburg, the failure rate of
OnePass is more than 10% when k>3 or ✓<0.5. For the road network of San Joaquin, apart
from the case where k=3 and ✓=0.9, the failure rate of OnePass is more than 30%, even when
the timeout is set to 120 seconds. On the contrary, the failure rate of MultiPass for the road
network of Oldenburg is in all cases below 10%. For the road network of San Joaquin, the
failure rate of MultiPass is below 10%, except for the cases where k>3. However, even in
cases where the failure rate of MultiPass is the highest (✓=0.5 and k>3), it is still significantly
lower than the failure rate of OnePass and BSL.

4.8 Summary

We studied the problem of alternative routing on road networks. Our goal was to rec-
ommend k paths that are sufficiently dissimilar to each other and as short as possible. We
formalized this task using the k-SPwLO query and designed three algorithms to evaluate such
queries: BSL, a baseline solution based on Yen’s algorithm for the K�shortest paths; OnePass,
a label-setting algorithm which traverses the network once and prunes partial paths that cannot
lead to a solution; and our best algorithm, MultiPass, which progressively computes the result
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Table 4.1: Failure rate (%) for timeout set to 30, 60 and 120 sec.

road
network ✓ k

BSL OnePass MultiPass
30 60 120 30 60 120 30 60 120

Oldenburg

0.1 3 98.1 95.8 93.6 46.9 45.4 44.5 0 0 0

0.3 3 83.9 76.5 74.2 22.8 20.5 17.8 0 0 0

0.5 3 61.3 54.7 48.5 9.1 7.7 6.6 0 0 0

0.7 3 31.4 25.6 21 0.4 0.1 0.1 0 0 0

0.9 3 0.4 0 0 0 0 0 0 0 0

0.5 2 36.6 31.3 27.4 2.7 0.2 1.5 0 0 0

0.5 4 74.5 67.6 61.5 15.2 12.8 10.7 2.6 1.4 0.7
0.5 5 82.1 76.3 70.1 20.4 17.5 15 9.6 7.4 6.2

San Joaquin

0.1 3 99.3 99.1 98.7 77.5 76 74.6 3.2 1.8 1.3
0.3 3 97.5 96.6 96.2 66.8 65.2 63.2 8.1 5.6 4.4
0.5 3 93.8 93.1 91.3 52.3 49.4 46.6 6.8 5.1 3.5
0.7 3 86.2 83.4 81.3 35.8 33.6 32.1 2.1 0.9 0.3
0.9 3 61.3 54.1 46.7 3.1 2.3 1.6 0 0 0

0.5 2 85.1 82.6 80.6 36.5 34.1 33.2 0 0 0

0.5 4 96.2 94.7 93.8 61 59.3 56.8 28.9 25.5 22.5
0.5 5 97.2 96.3 95.5 67.5 64.8 62.3 45.2 42 39.1

set after traversing the network k�1 times, and reduces the search space by employing two
powerful pruning criteria. Through an extensive experimental evaluation using real road net-
works, we demonstrated that MultiPass is superior to both BSL and OnePass; hence, MultiPass
is the fastest exact algorithm for computing k-SPwLO queries.



CHAPTER 5

Heuristic Algorithms for k-SPwLO Queries

In the previous chapter, we showed that MultiPass is the most efficient algorithm for com-
puting k-SPwLO. However, despite employing two pruning criteria, MultiPass still has to ex-
amine a large number of paths, which essentially renders the algorithm not applicable on large
road networks. In view of this, in this chapter, we investigate heuristic algorithms which ex-
amine only a fraction of the paths required to process k-SPwLO queries. We first discuss a
baseline algorithm termed SVP+, which builds on top of existing literature. Then, we propose
two novel heuristic algorithms: OnePass+ employs the same pruning criteria as MultiPass, but
traverses the network only once. Thereby, some paths might be lost that otherwise would be
part of the solution. ESX computes alternative paths by incrementally removing edges from
the road network and running shortest path queries on the updated network.

57
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5.1 Baseline Heuristic Algorithm

Our baseline algorithm, denoted by SVP+, builds upon the notion of single-via paths,
which was introduced as an alternative routing technique in [4]. Given a road network
G = (N,E), a source node s and a target node t the single-via path p

svp

(n) of a node
n 2 N \{s, t} is the concatenation of the shortest path p

s

(s!n) and the shortest path p
s

(n!t).
Naturally, only simple single-via paths are considered. The method compares each single-via
path with the shortest path using a set of objective criteria, i.e., local optimality and stretch.
However, the method considers the similarity of single-via paths only with the shortest path
and disregards the pairwise dissimilarity of all results; thus it cannot be employed directly for
computing k-SPwLO queries.

Instead of employing the objective criteria proposed in [4], our SVP+ algorithm iterates
over the set of single-via paths aiming to find a subset of k paths that are (a) sufficiently dis-
similar to each other, and (b) as short as possible. Intuitively, the main idea behind SVP+ is
similar to the baseline method for computing k-SPwLO queries discussed in Section 4.2. How-
ever, instead of iterating over all possible s�t paths and computing their pairwise similarity,
SVP+ iterates over the much smaller set of single-via paths.

Algorithm 7 illustrates the pseudocode of SVP+. First, the algorithm computes two shortest
path trees, one from s to every node n of G (Line 2) and a reverse one from every node n of
G to t (Line 3). During this step all distances d(s, n) and d(n, t) are computed. The algorithm
orders the nodes based on the sum d(s, n)+d(n, t), which is also the length of the single-via
path of n, using a min priority queue Q (Lines 4-5). In Line 6, the result set PLO is initialized
with p0, i.e., the shortest path from s to t. Note that the shortest path p0 is actually the shortest
single-via path and, hence, no additional computation is required. At each iteration between
lines 7 and 11, SVP+ pops from the queue the top element representing a node n (Line 8) and
retrieves the single-via path p

n

for node n (Line 9). Then, SVP+ checks in Line 10 whether p
n

is sufficiently dissimilar to all paths currently in PLO; if so, p
n

is added to PLO (Line 11). The
algorithm terminates and returns the PLO set when either k paths have been added to PLO or
there exist no more single-via paths to examine, i.e., queue Q is depleted.

Algorithm 7: SVP+

Input: Road network G = (N,E), source node s, target node t, # of results k, sim. threshold ✓
Output: Set PLO of k paths

1 initialize min-priority queue Q with ;;
2 T

s!N

 shortest path tree from s to all n 2 N ;
3 T

N!t

 shortest path tree from all n 2 N to t;
4 foreach n 2 N do
5 Q.push(hn, d(s, n)+d(n, t)i);
6 PLO  {shortest path p0(s! t)};
7 while PLO contains less than k paths and Q not empty do
8 hn, d(s, n)+d(n, t)i  Q.pop();
9 p

n

 RetrieveSingleViaPath(T
s!N

, T
N!t

, n);
10 if Sim(p

n

, p)  ✓ for all p 2 PLO then
11 add p

n

to PLO; . Update result set

12 return PLO;
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Example 5. We demonstrate SVP+ using the road network of Figure 5.1 and
the k-SPwLO(s, t, 0.5, 3) query. First, SVP+ adds the shortest path p(s!t) =

h(s, n3), (n3, n5), (n5, t)i to the result set. Then, SVP+ iterates over the set of single-via paths
in length order. The table in Figure 5.1 shows the entire set of single-via paths for the example
road network. The first single-via paths examined are p

svp

(n3) and p
svp

(n5). Both paths are
rejected as their similarity with the shortest path exceed the similarity threshold ✓. Single-via
paths p

svp

(n3) and p
svp

(n5) are the same with the shortest path, hence Sim(p
svp

(n3), p) =

Sim(p
svp

(n5), p) = 1. In fact, the single-via path of every node on the shortest path is the
shortest path. Single-via path p

svp

(n4) is also rejected as Sim(p
svp

(n4), p) = 6/8 = 0.75
exceeds the similarity threshold. Next, SVP+ examines single-via path p

svp

(n2) for which the
similarity with the shortest path is Sim(p

svp

(n2), p) = 0. Hence, p
svp

(n2) is recommended,
i.e., added to the result set. Finally, single-via path p

svp

(n1) is examined for which we have
Sim(p

svp

(n1), p) = 3/8 = 0.375 and Sim(p
svp

(n1), psvp(n2)) = 0; thus, p
svp

(n1) is also
added to the result set.

s

n1

n2

n3

n4

n5 t

6
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3

2
6
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5

5

3

1
2

2

shortest path (p0) 1st alternative (p15) 2nd alternative (p4)

Single-via paths length
p
svp

(n3) h(s, n3), (n3, n5), (n5, t)i 8
p
svp

(n5) h(s, n3), (n3, n5), (n5, t)i 8
p
svp

(n4) h(s, n3), (n3, n5), (n5, n4), (n4, t)i 9
p
svp

(n2) h(s, n2), (n2, n4), (n4, t)i 11
p
svp

(n1) h(s, n3), (n3, n1), (n1, t)i 11

Figure 5.1: Example of SVP+.

Notice that in Example 5, SVP+ fails to find the exact result for the given k-SPwLO query.
In particular, path p = h(s, n3), (n3, n4), (n4, t)i, which is in the exact k-SPwLO result, is not
a single-via path; hence, p is not examined by SVP+.

5.2 The OnePass+ algorithm

Our first heuristic algorithm, denoted by OnePass+, combines the feature of OnePass to
scan the road network only once with the pruning power of Lemma 5, which is also used by
MultiPass. OnePass+ has the following key features. Given a source node s and a target node
t, OnePass+ traverses the road network expanding every path p(s!n) from source s to a node
n that qualifies both Lemma 4 and Lemma 5. This procedure is the same with each distinct
round of MultiPass. In contrast to MultiPass though, each time a new path is added to the
result set PLO, an update procedure takes place for all remaining incomplete paths p(s!n).
In particular, for every incomplete path p(s!n), OnePass+ computes the overlap of p with
the newly found result and, then, p is checked against Lemma 4 with respect to the updated
PLO. The same update procedure is also employed by OnePass. The algorithm terminates
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when either k paths are added to the result set or all paths from s to t qualifying both Lemma 4
and Lemma 5 have been examined.

By not restarting after the computation of each new result, OnePass+ avoids expanding
the network multiple times. However, the fact that OnePass+ does not restart the expansion
after each round implies that the next best path might get pruned. In Section 4.5, we explained
that for the MultiPass algorithm to find the exact solution, the restart is required. A path that is
pruned as non-promising during the current round may be promising during the next round. All
such paths are excluded permanently from the search space of OnePass+ and, hence, OnePass+

cannot guarantee that the exact solution is found. Nevertheless, this case applies to only a small
subset of the examined paths. The average length of paths in the result set of OnePass+ is
expected to be close to the optimal one.

Algorithm 8 illustrates the pseudocode of OnePass+. The algorithm employs a min priority
queue Q (initialized with source s in Line 1) to traverse the road network. Result set PLO is
initialized with p0, i.e., the shortest path from s to t (Line 2). In between Lines 4 and 21,
OnePass+ examines the contents of Q until either k paths are found and added to PLO or Q is
depleted. At each iteration, a label hn, p

n

i is popped from Q (Line 5). If node n is the target
t (Line 6), then p

n

is added to PLO (Line 7) and the same update procedure as in OnePass
takes place (Lines 8-10), i.e., all paths p

h

with Sim(p
h

, p
c

) > ✓ are discarded. Otherwise, the
algorithm expands the current path p

n

considering all outgoing edges (n, n
c

) (Lines 12-21).
OnePass checks whether the new path p

c

 p
n

� (n, n
c

) qualifies the pruning criteria of both
Lemma 4 (Lines 14-15) and Lemma 5 (Lines 16-17) and updates Q and ⇤(n

c

) accordingly.
OnePass adds a new label for p

c

to Q (Line 20) and ⇤(n
c

) (Line 21) and proceeds with popping
the next label from Q. Finally, the result set PLO is returned in Line 20.

Similar to OnePass and MultiPass, for each label our implementation of OnePass+ main-
tains and updates incrementally a vector V

Sim

containing the overlaps of p
n

with all paths that
where in PLO at the time when the label was created. Furthermore, OnePass+ also performs
lazy updates for Q. That is, for labels that have already been created and added to Q, OnePass+

updates V
Sim

only at the time when a label is popped from Q.

Complexity Analysis Given a k-SPwLO query from a node s to a node t, OnePass+ first
computes p0(s!t) using any shortest path algorithm, e.g., Dijkstra, and adds it to the result
set. Naturally, the cost of this step is independent of the number of requested paths k or the
similarity threshold ✓. To compute alternatives, OnePass+ traverses the road network expand-
ing every path p(s!n) from source s to a node n that qualifies both Lemma 4 and Lemma 5.
As we discussed in the cost analysis of MultiPass, there can be no formal guarantees regarding
the number of paths that are pruned using either pruning criterion. In the worst case when no
paths are pruned, OnePass+ is equivalent to OnePass and Fox’s algorithm. Therefore, the time
complexity of OnePass+ is also O(|E|+K · |N | · log |N |), where K is the number of shortest
paths that have to be computed in order to cover the k-SPwLO result.

5.3 Edge Subset Exclusion

Our second heuristic algorithm, denoted by ESX, computes k-SPwLO by iteratively ex-
cluding edges from the road network. The idea behind ESX is the following. Given a road
network G = (N,E), a source node s and a target node t, a requested number of paths k and a
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Algorithm 8: OnePass+

Input: Road network G = (N,E), source node s, target node t, # of results k, sim. threshold ✓
Output: Set PLO of k paths

1 initialize min-priority queue Q with hs, ;i;
2 PLO  {shortest path p0(s! t)};
3 8n 2 N : ⇤(n) ;;
4 while PLO contains less than k paths and Q not empty do
5 hn, p

n

i  Q.pop(); . Current path
6 if n = t then
7 PLO  PLO [ {p

n

}; . Update result set
8 foreach label hn0, `(p

n

0
)i in Q do

9 if Sim(p
n

0 , p
i

) > ✓, 8p
i

2 PLO then
10 remove hn0, `(p

n

0
)i from Q ; . Lemma 4

11 else
12 foreach outgoing edge (n, n

c

) 2 E do
13 p

c

 p
n

� (n, n
c

); . Expand path p
c

14 if 9p
i

2 PLO : Sim(p
c

, p
i

) � ✓ then
15 continue; . Pruned by Lemma 4
16 else if 9hn

c

, p0
c

i 2 ⇤(n
c

) : p0
c

�PLO p
c

then
17 continue; . Pruned by Lemma 5
18 else
19 remove from Q and ⇤(n

c

) all hn
c

, p0
c

i : p
c

�PLO p0
c

; . Lemma 5
20 Q.push(hn

c

, p
c

i);
21 ⇤(n

c

) ⇤(n
c

) [ {hn
c

, p
c

i};

22 return PLO;

similarity threshold ✓, the algorithm first adds the shortest path p0 to the result set PLO, similar
to all previously described methods. Next, ESX removes an edge of p0 from the road network
and computes the shortest path p

c

from s to t on the updated road network1. If the similarity
of path p

c

with p0 does not exceed the similarity threshold ✓, then p
c

is added to the result set
PLO. Otherwise, the algorithm proceeds with removing more edges from the road network. If
PLO contains more than one paths, ESX removes an edge from path p 2 PLO for which the
similarity Sim(p

c

, p) is the highest. At each iteration, ESX removes only one edge from some
path in PLO. The process is repeated until a path that does not violate the similarity threshold ✓
is found. To compute more alternatives, the algorithm continues by removing more edges until
another alternative is found, or until there are no more edges to remove.

Removing an edge from the road network may cause the network to become disconnected
and prevent any subsequent iteration from finding a valid path. To avoid such a case, the
algorithm has to make sure that any edge affecting the connectivity of the road network is
never removed. To this end, after removing an edge from the road network, if the shortest path
search fails to find a path connecting s and t, then ESX re-inserts the edge in the road network
and marks it as non-removable. Edges marked as non-removable cannot be removed from the
road network at any iteration.

The order in which we remove the edges from the road network affects both the quality of

1In practice, the edges are not actually deleted from the road network but only marked as such in order to be
ignored by the search.
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the result and the performance of ESX. However, determining the optimal order is prohibitively
expensive. Therefore, to determine which edge to remove at each iteration, we employ a heuris-
tic based on the following observation: the more shortest paths cross an edge, the greater the
probability that the removal of this edge will cause a detour and lead to the next result faster.
As it is also prohibitively expensive to compute the all-pairs shortest paths and count the num-
ber of shortest paths crossing each edge, ESX performs a local check. Given an edge e(a, b)
on some path p 2 PLO, let E

inc

(a) be the set of all incoming edges e(n
i

, a) to a from some
nodes n

i

2 N\{b} and E
out

(b) be the set of all outgoing edges e(b, n
j

) from b to some nodes
n
j

2 N\{a}. First, ESX computes the set P
s

which contains the shortest paths from every
node n

i

2 E
inc

(a) to every node n
j

2 E
out

(b). Then, ESX defines the set P 0
s

which contains
all paths p 2 P 0

s

that cross edge e. Finally, ESX assigns a priority to edge e, denoted by prio(e),
which is set to |P 0

s

|.
Example 6. Consider our running example in Figure 5.2, where p0(s!t) =

h(s, n3), (n3, n5), (n5, t)i is the shortest path from s to t and the only path currently in PLO.
For edge (n3, n5) we compute the shortest path from every node in {s, n1, n2, n4} to every
node in {n4, t}. Three shortest paths, p(n1!n4), p(s!n4) and p(s!t), cross edge (n3, n5)

(bold lines). The rest of the shortest paths, e.g., shortest path p(n2!t) (dashed line), do not
cross edge (n3, n5). Therefore, the priority of edge (n3, n5) is prio(n3, n5)=3. In the same
fashion, we compute the priorities prio(s, n3)=0 and prio(n5, t)=0.

s
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n4

n5 t
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Figure 5.2: Computing the priority of edge (n3, n5).

Algorithm 9 illustrates the pseudocode of ESX. First, PLO is initialized with the shortest
path p0 (Line 1) and a max-heap H0 is created (Line 2). H0 is associated with p0 and all
the edges of p0 are enheaped and sorted based on their priority. Note that, every time a path
p
i

is added to the result set, a max-heap H
i

is created and stores the edges of p
i

in priority
order. The set E

DNR

of non-removable edges is also initialized in Line 3. ESX enters the outer
loop in Line 4 and continues until either k results are found or there are no more edges to be
removed from the road network. Next, the algorithm sets p

c

to the last result found and enters
the inner loop (Line 6). At each iteration p

max

is chosen as the path in PLO which has the
maximum overlap Sim(p

c

, p
max

) and contains edges in H
max

that can be removed from the
road network. Then, ESX deheaps edge e

tmp

from H
max

(Line 8) and checks whether e
tmp

is in E
DNR

, i.e., it is marked as non-removable (Line 9). If it is not, edge e
tmp

is removed
(Line 10) and the algorithm computes the shortest path p

tmp

on the updated road network
(Line 11). In Lines 12-15 p

tmp

is checked whether it is a valid path from s to t, and, if not,
e
tmp

is re-inserted to the road network and marks it as non-removable. Otherwise, ESX sets
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p
c

to p
tmp

and proceeds to the next iteration. When the inner loop is finished, the algorithm
checks if p

c

is a valid alternative path by checking its similarity with all paths currently in PLO
(Line 17). If p

c

is a valid alternative, it is added to PLO and a new max-heap H
c

associated
with p

c

is initialized with the edges of p
c

(Lines 18-19). Finally, after the outer loop is finished,
the result set PLO is returned in Line 20.

Algorithm 9: ESX
Input: Road network G(N,E), source node s, target node t, # of results k, sim. threshold ✓
Output: Set PLO of k paths

1 PLO  {shortest path p0(s! t)};
2 initialize max-heap H0  hei,prio(G, e

i

)i, 8e
i

2 p0; . H
i

is associated with p
i

3 initialize E
DNR

 ;;
4 while PLO contains less than k paths and 9H

i

not empty do
5 set p

c

 last path added to PLO;
6 while max{Sim(p

c

, p
i

) : p
i

2 PLO and H
i

not empty } > ✓ do
7 Edge e

tmp

 H
i

.pop();
8 if e

tmp

2 E
DNR

then
9 continue;

10 G.remove(e
tmp

);
11 Path p

tmp

 ShortestPath(G, s, t);
12 if p

tmp

is null then
13 re-insert e

tmp

to G;
14 insert e

tmp

to EDNR;
15 continue;

16 p
c

 p
tmp

;

17 if max{Sim(p
c

, p
i

) : p
i

2 PLO} then
18 add p

c

to PLO;
19 initialize max-heap H

c

 he
j

,prio(G, e
j

)i, 8e
j

2 p
c

;

20 return PLO;

Example 7. We demonstrate the functionality of ESX using the road network of Figure 5.2
and the k�SPwLO(s, t, 0.5, 2) query. During initialization, the shortest path p0(s!t) =

h(s, n3), (n3, n5), (n5, t)i is computed and added to the result set PLO. Next, we com-
pute the priority of each edge of the shortest path. Having computed the priorities, we
first remove edge (n3, n5), which is the edge with the highest priority. Then, we compute
the shortest path p0(s!t) on the updated road network. The shortest path is p0(s!t) =

h(s, n3), (n3, n4), (n4, t)i with `(p0(s!t)) = 10. We check the overlap of the new path with
the original shortest path and find that Sim(p0(s!t), p0) = 0.375, which does not exceed the
similarity threshold. Therefore, p0(s!t) is added to PLO.

Complexity Analysis ESX reduces the search for an alternative path to a set of ordinary
shortest path queries. In particular, given a road network G = (N,E) let PLO be the result set
of a k-SPwLO(s, t, ✓, k) query containing k paths. ESX requires |P |⇥ total number of edges
in P executions of shortest path queries, i.e., the number of shortest path queries that have to
be processed is linear to the number k of paths and the size of the result paths.

Finally, in our implementation of ESX we employed the optimization using lower bounds
described in Section 4.6, which reduces the cost for retrieving shortest paths and optimizes the
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performance of ESX even further.

5.4 Experimental Evaluation

5.4.1 Experimental Setup

In order to measure the performance of our heuristic algorithms we use seven different road
networks shown in Table 5.1. To assess the runtime performance, we measure the average re-
sponse time over 1,000 random queries (i.e., pairs of nodes), varying the number k of requested
paths and the similarity threshold ✓. In each experiment, we vary one of the two parameters and
fix the other to its default value: 3 for k and 0.5 for ✓. As a reference, we also include MultiPass
in our experiments, the fastest exact algorithm for processing k-SPwLO queries, presented in
the previous chapter.

Table 5.1: Road networks.

road network # nodes # edges
Oldenburg 6,105 14,058

San Joaquin 18,263 47,594
Vienna 19,826 54,918
Denver 73,166 196,630

San Francisco 174,956 443,604
New York City 264,346 730,100

Colorado 435,666 1,057,066

Similar to Section 4.7, due to the high execution time of MultiPass and OnePass+, we
consider a timeout of 120 seconds for each query. Each query that fails to execute within
the predefined timeout is considered timed-out/failed. While we have already reported on the
ratio of failed queries for MultiPass in Section 4.7, the ratio of failed queries for OnePass+

was below 10% in all experiments. For SVP+ and ESX, all queries were executed within 120
seconds. For presentation purposes, the results shown in this section consider only those queries
which were successfully completed by all algorithms. In addition, we report experiments on the
quality of the results computed by the heuristic algorithms. Given the number k of requested
paths, we measure (a) the number of paths returned by each algorithm and (b) the average
length of the computed paths in comparison to the length of the shortest path.

All algorithms were implemented in C++ using the C++11 standard and compiled using
GNU G++ compiler (version 4.8.1). All experiments were executed on an Ubuntu Linux server
with 4 Intel Xeon X5550 (2.67GHz) processors and 48GB of RAM.

5.4.2 Performance

The first experiment in Figure 5.3 compares the exact algorithm MultiPass with the heuris-
tic algorithms SVP+, OnePass+ and ESX for a constant similarity threshold ✓=50% varying
the requested number of paths k. In all figures we observe that the runtime of all algorithms
increases with the number k of requested paths. As expected, the runtime of the heuristic al-
gorithms increases only slightly, whereas the exact solution MultiPass deteriorates for large
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Figure 5.3: Performance comparison of algorithms varying requested paths k (✓=50%).

values of k. For k>3, MultiPass becomes one order of magnitude slower than OnePass+ and
more than two orders of magnitude slower than ESX and SVP+. Clearly, MultiPass cannot
scale and, hence, we exclude it from our measurements on Vienna and Denver (Figures 5.3c-
d). Furthermore, in Figures 5.3c-d we also observe that the performance of OnePass, SVP+ and
ESX is similar. However, for increasing values of k both SVP+ and ESX clearly outperform
OnePass+ up two one order of magnitude.

The second experiment compares the exact algorithm MultiPass with the heuristic algo-
rithms SVP+, OnePass+ and ESX for a constant requested number of paths k=3 varying the
similarity threshold ✓. Figure 5.4 shows that for ✓<70%, MultiPass is much slower than the
heuristic algorithms: one order of magnitude slower than OnePass+ and two orders of mag-
nitude slower than SVP+ and ESX (for ✓=30%). For large values of ✓, the performance of
MultiPass gets closer to the performance of the heuristic algorithms (for ✓=90% MultiPass
is even faster than ESX and SVP+). We also observe that OnePass+ is very fast for extreme
values of ✓ (✓=10% and ✓=90%), but it is rather slow for values in between.

Another interesting observation in Figures 5.3c–d and 5.4c–d is that the performance of
MultiPass and OnePass+ shows a local maximum for ✓=30%, which indicates the following
important trade-off. As ✓ increases, the pruning power of Lemma 4 deteriorates, and both
MultiPass and OnePass+ construct more paths. At the same time, the next result will be de-
termined earlier, and hence the total runtime drops. In addition, as ✓ decreases, the pruning
power of Lemma 5 increases and more partial paths can be pruned. This explains the behavior
of MultiPass and OnePass+, where the response time initially increases, but after ✓=30% the
runtime of both algorithms goes down again.

To sum up, the heuristic algorithms clearly outperform the correct algorithm MultiPass.
Comparing the heuristic algorithms, we observe that SVP+ and ESX have a similar perfor-
mance and are the clear winners for small and medium size datasets. Apparently, OnePass+ is
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Figure 5.4: Performance comparison of algorithms varying similarity threshold ✓ (k=3).

not practical for large road networks and/or values of k>3.

5.4.3 Scalability

From the previous experiments it is clear that both MultiPass and OnePass+ are not scal-
able. For values of k>3 both algorithms are prohibitively expensive. However, the same does
not apply for ESX and SVP+. To demonstrate their scalability, we present in Figure 5.5 the
results of an experiment using larger values of k 2 {4, 8, 12, 16} and including also larger
datasets. We observe that for San Francisco and Colorado, ESX is significantly faster that
SVP+ for all values of k. For the road networks of Denver and New York, ESX is faster than
SVP+ only for small values of k, whereas SVP+ appears to be faster than ESX for k=12 and
k=16. The reason for this behavior is that SVP+ computes considerably less alternative paths
than ESX (cf. Table 5.2 and the discussion in Sec. 5.4.4). Notice that the smaller result set is
not due to a timeout, rather the algorithm is not able to find more alternatives. Overall, when-
ever ESX and SVP+ find approximately the same number of alternative paths, ESX clearly
outperforms SVP+.

5.4.4 Result Quality and Completeness

In Figure 5.6, we present our measurements on the quality of the computed results. We
consider all queries for which each algorithm returned exactly k paths and compute the average
length of the returned paths. Then we compare the average length of each result set to the
shortest path. We show how much longer, on average, are the alternative paths with respect
to the shortest path. Apparently, the exact k-SPwLO result contains the shortest alternative
paths. Looking at the heuristic algorithms, OnePass+ produces clearly the best alternative
paths, which are very close to the paths in the exact k-SPwLO result. Both ESX and SVP+
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Figure 5.5: Performance comparison of SVP+ and ESX for k 2 {2, 4, 8, 16} and ✓ = 50%.

recommend alternative paths that are, on average, up to 15% longer than the alternative paths
in k-SPwLO. The alternative paths recommended by ESX, though, are most of the time shorter
than the alternative paths recommended by SVP+.
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Figure 5.6: Result quality of algorithms varying requested paths k (✓ = 50%).

Next, we measure the completeness of the result sets. Table 5.2 reports for each algorithm
the percentage of queries for which exactly k alternative paths were found. Apparently, the
exact solution k-SPwLO has the highest completion ratio. The completion ratio OnePass+ is
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Table 5.2: Average completeness ratio (%) per query varying k (✓ = 50%).

road
k k-SPwLO OnePass+ ESX SVP+

network

Oldenburg

2 100 100 100 100
3 99.9 99.1 98.7 99.5
4 99.9 98.6 97.1 95
5 99.9 98.2 95.8 85.6

San Joaquin

2 100 100 100 99.9
3 100 99.8 98.5 99.5
4 100 99.7 97.7 97
5 100 99.3 95.6 94.3

very close to the exact solution. In particular, for San Joaquin the completion ratio of OnePass+

is always more than 99%. The completion ratio of ESX is lower than OnePass+, but constantly
over 95%. Finally, SVP+ has generally the lowest completion ratio.

Finally, in Table 5.3 we compare the quality of ESX and SVP+ by measuring the average
number of returned paths for four road networks and values of k 2 {4, 8, 12, 16}. It is clear that
ESX returns more alternative paths than SVP+ for all values of k. The number of alternatives
returned by ESX is, in all cases, very close to k. In contrast, the number of paths returned by
SVP+ is significantly lower than k for k>8. For instance, for New York SVP+ cannot find
more than six alternatives per query on average; similar figures can be observed for Denver
and San Francisco. Apparently, the set of single-via paths does not contain enough sufficiently
dissimilar paths. Hence, SVP+ returns more and more incomplete results for an increasing k.

Table 5.3: Average returned results per query varying k (✓ = 50%) for SVP+ and ESX.

road
k ESX SVP+ road

k ESX SVP+

network network

Denver

4 3.96 3.95

New York

4 3.97 3.75
8 7.72 6.52 8 7.77 5.49
12 11.39 7.14 12 11.45 5.85
16 14.94 7.25 16 15.02 5.91

San
Francisco

4 3.97 3.95

Colorado

4 3.97 3.81
8 7.92 7.03 8 7.92 7.87
12 11.81 8.42 12 11.83 10.78
16 15.55 8.80 16 15.71 12.55

5.5 Summary

We studied heuristic algorithms to compute k-SPwLO queries. First, we presented SVP+, a
baseline heuristic algorithm based on existing literature. We also introduced two novel heuris-
tic algorithms. OnePass+ employs ideas from both OnePass and MultiPass, presented in the
previous chapter, and achieves to compute a set of relatively short dissimilar paths. ESX, our
second heuristic algorithm, computes alternative paths by incrementally removing edges from
the road network and running shortest path queries. Through a comprehensive experimental
evaluation we showed that (a) OnePass+ is significantly faster than MultiPass, the most effi-
cient exact algorithm, while its result set is close to the exact solution, and (b) ESX is scalable,
i.e., it computes a result set of dissimilar paths for large road networks and large values of k.



CHAPTER 6

MoTrIS: A System for Multimodal Route Planning

In this chapter, we present MoTrIS, a Multimodal Transport Information System. MoTrIS
differs from existing frameworks as it not only offers route planning services over road net-
works, but also tackles the challenge of combining different types of networks into a single
multimodal network. MoTrIS allows shortest path and distance query processing on multi-
modal transportation networks. Such fundamental queries can be employed as basic building
blocks for creating advanced solutions to different types of problems on multimodal networks,
e.g., journey and itinerary planning. Selected algorithms presented in the previous chapters
of this thesis for route planning on road networks, have been implemented and integrated into
MoTrIS as well.

69
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6.1 MoTrIS Framework

MoTrIS is a service-oriented framework designed to support applications that depend on
multimodal transportation networks. The framework allows users/developers to create cus-
tomized services over specific regions. First, the users choose a road network and select the
modes of transportation which will be associated with the selected road network. Then, MoTrIS
creates a new instance/service where the selected street and transportation networks are com-
bined into a single multimodal network. To enable easy access to query services, MoTrIS
provides an API which allows users to employs the customized routing services directly in
their applications.

6.1.1 System Overview

Figure 6.1 illustrates the architecture of MoTrIS, which is composed of four core mod-
ules: the network module represents the multimodal network; the timetable module handles
the transportation network data, i.e., the schedule and the availability of each transportation
mode; the query processing module includes algorithms for processing queries either on the
multimodal network or on each of its individual components; and the visualization module
produces the results of each query execution.

Apart from the core modules, Figure 6.1 also illustrates the data import, which is re-
sponsible for importing road and transportation network data into PostGIS1, a spatial-enabled
RDBMS, as well as the web application, which allows users to create new services and run
sample queries to test the services.

A
P

I

Query
Processing

Timetable

Visualization

Network

Web
Application

API Calls

Data ImportPostGIS

m
External Sources (osm, gtfs)

Figure 6.1: System architecture.

6.1.2 Data Import and PostGIS

The data import module is responsible for importing road and transportation network data
from various sources into PostGIS. In particular, we obtain road network data from Open-
StreetMap2 (OSM). The road network data from OSM is then transformed into a routable graph
format and stored in a single relational table in PostGIS. Each tuple represents an edge of the
road network along with related information about the edge and its two adjacent nodes, i.e.,

1http://postgis.net
2https://www.openstreetmap.org/
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edge length, source and target node location, etc. Together with the road network, a polygon
that marks the boundaries of the region associated with the road network is stored in PostGIS.

Routing services can be employed over any imported region directly. To employ services
over smaller regions though, the module allows users to specify sub-regions of already imported
regions. Polygons representing sub-regions are stored in PostGIS in a hierarchical fashion,
as illustrated in Figure 6.2. Note that in order to define a sub-region, the polygon bounding
the sub-region must entirely inside the polygon bounding an already imported region. After
specifying a polygon that represents a sub-region, the module extracts the edges of the road
network that lie inside the given polygon. Then, PostGIS creates a view which models only the
part of the road network that is bounded by the given polygon3.

Figure 6.2 illustrates an example, where we have the entire network of Italy obtained from
OSM and stored in table italy streets. The polygons representing various cities and states are
stored in table road network. To obtain the road network for the city of Bolzano, all the edges
that lie entirely inside the respective polygon are extracted. Then, the view bolzano view is
created which contains only the edges on the sub-network for the city of Bolzano.

Note that the extracted edges may not always form a connected road network but may form
several ones. Since sub-regions are not always defined with the road network in mind, it is
possible that, in order to reach certain parts of the bounded region, the user has to travel outside
the region first. To address this problem, the data import module comes with an optional
verification process which extracts only the largest sub-network and, hence, ensures that the
road network of every sub-region is a connected graph.

Italy

Veneto

Verona

South Tyrol

Merano Bolzano

italy streets
id src trg length geometry
1 1 2 254 linestr 1
2 1 3 128 linestr 2
3 2 1 254 linestr 3
4 2 4 365 linestr 4
5 3 1 129 linestr 5
6 4 5 241 linestr 6
7 5 4 243 linestr 7

road network
id region boundary pid
1 italy polygon 1 -
2 s tyrol polygon 2 1
3 veneto polygon 3 1
4 merano polygon 4 2
5 bolzano polygon 5 2
6 verona polygon 6 3

bolzano view
id src trg length
1 1 2 254
2 1 3 128
3 2 1 254
4 2 4 365
5 3 1 128

Figure 6.2: Sub-region road network extraction.

For transportation network data, we first create a set of relational tables in PostGIS that
match the General Transit Feed Specification4 (GTFS). We outline the key GTFS entities for
building a transportation network: stops, which are individual locations where vehicles pick up
or drop off passengers and can be associated with several routes; routes, which are groups of
trips that are displayed to riders as a single transportation service, i.e., a bus line; trips, which

3In practice, instead of creating a view, we add a column of Bit type to the table storing the road network to
mark the edges that are on the road network of the sub-region.

4https://developers.google.com/transit/gtfs/reference
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Figure 6.3: Multimodal network.

store sequences of two or more stops that are on the same route; and stop times, which store
the time that a vehicle arrives at and departs from individual stops for each trip. The module
creates additional columns for spatial data types. For example, the location of a stop is stored
both as two separate float numbers (representing longitude and latitude as dictated by GTFS)
and as a Point data type.

Finally, the data import module associates each imported transportation network with an
already imported (or extracted) road network. The associated road network is either provided
manually or is determined automatically as the network bounded by the smallest polygon which
also bounds the given transportation network. For each stop in the transportation network, the
closest point p of the road network (the black point along the road network in Figure 6.3)
is computed and edge e(u, v) which contains p is retrieved. Weights w

u

(u, p) and w
v

(p, v),
which represent the length of the segment of e from u to point p and the length of the segment
of e from point p to v, respectively, are determined. Finally, two links for each bus stop are
stored as a single tuple hstop id, e id, u node id, v node id, w

u

, w
v

i in PostGIS.
Since the regions are stored hierarchically, the transportation network associated with a

given region can be directly employed for services on all the ancestors of the given region in
the hierarchy. For example, given the polygon hierarchy in Figure 6.2, a transportation network
associated with Bolzano can be directly employed for services over South Tyrol and Italy.

6.1.3 Network Model

The network module is responsible for constructing and maintaining the multimodal net-
work graph for each service in main memory. To construct a multimodal network, we first
choose a region and the module obtain from the database the road network for the selected
region. Then, the module loads from PostGIS the transportation networks selected by the user
and models each transportation network following the time-dependent model [69]. For all
routes, the stops that each route serves are extracted from the trips. For each distinct pair of a
route and a stop, a node is created and added to the transportation network graph. For example,
in Figure 6.3 there are three routes passing through the bus stop. Hence, there are three nodes
A, B and C, one for each route, added to the transportation network graph. Subsequently, the
module extracts from the trips all pairs of consecutive stops. An edge connecting nodes that
are associated with consecutive stops and are on the same route, is added to the transportation
network graph. Each edge is assigned with a travel time function, which is executed on query
time and determines the weight, i.e., the time required to cross the edge.



6.1. MoTrIS Framework 73

Next, transfer link edges between nodes of the transportation network are generated to
allow transfers. Apparently, a stop can be associated with more than one nodes. The number
of nodes associated with a given stop is the same as the number of routes that pass through that
stop. The module adds transfer link edges between all nodes associated with the same stop (red
dashed lines in Figure 6.3). The weight of each link edge represents the time required to switch
from one route to another. By default the transfer time is zero, unless it is specified explicitly
in the input GTFS timetable.

Finally, for each bus stop, the module loads from the database the precomputed links to
nodes u and v of the road network. For each node n associated with a stop, two link edges
e(u, n) and e(n, v) with weights w

u

and w
v

, respectively, are added to the network graph,
thereby connecting the transportation networks with the road network. In Figure 6.3, each of
the two blue/dashed lines represents three link edges, each connecting a road network node
with one of the nodes A, B, C of the transportation network, all associated with the same stop.

6.1.4 Timetable

The timetable module is responsible for storing in main memory and querying the schedule
of each transportation network. Given a timestamp and an edge of some transportation network,
the timetable determines the weight of the edge, i.e., the time needed to cross the edge at the
given timestamp. For example, given a bus network, the timetable module stores for each edge
e a set of entries {n

s

, n
d

, t
s

, t
d

}, where n
s

is the source node, n
d

is the target node, t
s

is the
departure time of the bus from the stop associated with n

s

and t
d

is the arrival time of the bus
at the stop associated with n

t

. Given a timestamp t, i.e., arrival time of the user at the stop
associated with n

s

, the timetable determines the bus that the user should take to reach n
d

. The
selected bus is the one which arrives at the stop after t, i.e., t

s

� t and the travel time t
d

� t
required to reach node n

d

, which also includes the waiting time, is minimum.

6.1.5 Query Processing

The query processing module executes queries over the multimodal network. Shortest path
queries are of the form q(G, p

s

, p
t

, t), where G is a multimodal network, p
s

and p
t

are the
source and destination query points on the map and t is the starting time of the journey. First,
the module maps the query points to the multimodal network in the same way bus stops are
mapped during the construction of the network. To compute the shortest path on the multimodal
network, a modified version of Dijkstra’s algorithm is used. During the expansion of edges on
the road network, the fixed weight is used, whereas during the expansion of edges on some
transportation network, the module queries the timetable to obtain the weights of the edges.

Apart from route planning on multimodal networks, the query processing module can also
process queries over the road network by simply ignoring transportation and link edges. For
processing queries over the road network, we have implemented and integrated into MoTrIS
two of our algorithms: (a) ParDiSP, for processing distance and shortest path queries, and (b)
ESX, for recommending alternative routes.

We have designed the query processing module in a way that it is highly extensible; new
algorithmic implementations can be integrated easily into our framework. Algorithms in the
query processing module can be accessed via a public API interface, which provides the users
with all the required calls for submitting queries and retrieve results. The multimodal network
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is accessed in an abstract way and cannot be modified by the algorithms that are implemented in
the query processing module. By designing the module with extensibility in mind, we aim for
MoTrIS to become a solid framework for further research that is not limited to route planning
services on multimodal networks. More algorithms for processing different types of queries
can be added to our framework, as long as the implementation of these algorithms does not
require the modification of the network model.

6.1.6 Visualization

The visualization module is responsible for producing the results in a visualizable format
after a query is successfully executed. Given the result of a shortest path query, first the module
retrieves from the network model the geometries for all the edges contained in the shortest path.
Then a response in GeoJSON5 format is generated, which can be visualized directly by most
external map services, e.g., Google Maps, Mapbox, OpemStreetMap, etc. Apart from the route
itself, the module includes in the GeoJSON response additional information about the result,
such as distance, trip duration for each mode, cost of the trip, etc., provided that the information
is available in the dataset.

6.1.7 Web Application

The web application allows users to create, modify and test services. Users can create a
new service by selecting the region/road network on which their service will be applied, the
transportation modes that will be supported by the new service and the queries that will be
available. The application allows the visualization of the resulting multimodal network. For
each route in the transportation network, the application also displays the links connecting the
transportation network stops with the street network.

Moreover, to get a clear picture of the query results, a testing interface which uses the API
for submitting queries and visualizing the results is provided. The testing interface provides
all the necessary tools to allow users to explore the functionality of the public API, along with
instructions on how to access the API directly from external applications. For the visualization
the module employs Mapbox6.

6.2 Use-cases

This section present the main use-cases of our MoTrIS framework. We split the users of
MoTrIS into two groups:

• the administrators who manage existing data and import new data into PostGIS, and

• the developers who want to use our framework for building customized routing services
and employ them in their applications

In what follows, we present use-cases for both user groups.

5http://geojson.org
6https://www.mapbox.com
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6.2.1 Administrator tasks

We have implemented a set of command line scripts for the system administrators. Hence,
an administrator can perform any of the following tasks simply by running the respective script.

Importing new road networks. To import new road network data, the administrators need to
obtain first data directly from OpenStreetMap7 in OSM or PBF format. In addition, they need
to obtain or extract from the input file, the polygon which bounds the associated region. Finally,
the administrators execute the script providing a name and a description for the imported road
network. The road network is assigned with an id and it becomes the root of a new hierarchy.

Defining sub-regions. Given that a root region already exists in PostGIS, the administrators
can define and extract sub-regions. The administrators run the respective script providing the
id of the root region from which they want to extract the road network of a sub-region, the
polygon of the sub-region, a name and a description. MoTrIS checks automatically whether
the input polygon lies entirely inside the polygon of the root region. If yes, then the sub-region
is extracted as we described in Section 6.1.2 and the polygon is inserted at the appropriate
level of the hierarchy. Otherwise, MoTrIS stops the import process and prints an error message
indicating that the input polygon does not define a proper sub-region.

Importing transportation data. Finally, administrators can also import data in gtfs format
by running the respective command line script. Administrators need to provide the location on
which all the GTFS files are located, along with a name and a description for the transportation
network. Additionally, administrators may provide the id of the region with which they want
the imported transportation network to be associated with. If no such id is provided, MoTrIS
matches the input transportation network with the smallest possible region and generates links
accordingly. Either when an id is provided or not, if no matching region or sub-region for the
transportation network is found, e.g. some stops of the transportation network are outside the
polygon of any region or sub-region stored in PostGIS, then MoTrIS stops the import process
and prints a message indicating the error.

6.2.2 User/Developer

Any user of MoTrIS can use the web application to deploy and test customized services.
Figures 6.4- 6.6 illustrate an example in which we create a new multimodal routing service for
the province of South Tyrol.

Create New Service. To create a new service, the user provides a name and a description for
the service, and defines the region/road network over which he/she wants the new service to
be functional. In the example illustrated in Figure 6.4 the user selects the road network of the
province of South Tyrol as the road network for the new service.

Next, the user selects transportation modes from a list of available transportation networks.
Figure 6.5 illustrates the web interface which enables the user to select one or more trans-
portation networks. Note that the interface displays only those transportation networks that

7http://download.geofabrik.de
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Figure 6.4: Selection of road the transportation networks.

are compatible with the selected road network. Therefore, the only available transportation
network shown in Figure 6.5 is that of SASA, the local city-bus company.

Figure 6.5: Selection of road the transportation networks.

After the user has verified his selection, MoTrIS extracts from the database the road net-
work for the requested region as well as the timetables for the requested transportation net-
works, and constructs the multimodal network for the new service. The new service is loaded
into the main memory and is ready to be accessed using the API.

Run Sample Queries. Next, we show how the user can submit shortest path queries to
MoTrIS and visualize the results using the web interface. The application asks the user to
define a starting location, a destination, the date and the starting time (or the desirable arrival
time) of his trip. Figure 6.6 illustrates the web interface of MoTrIS for testing query services.
More specifically, the visualization of a shortest path query over a multimodal network for the
city of Bolzano is shown. The blue lines represent the parts of the route that the user crosses
on foot while the orange lines represent the parts that are crossed by bus.
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Figure 6.6: Sample query result visualization.

6.3 Summary

We presented MoTrIS, a service-oriented framework which provides support for building
applications on multimodal networks. Our framework combines street and transportation net-
works into a single multimodal network and provides query services via a public API. Apart
from route planning on multimodal transportation networks, MoTrIS can also be employed
for route planning on road networks. Selected algorithms presented in the previous chapters
of the thesis for route planning and alternative routing, have been integrated into MoTrIS as
well. MoTrIS comes with a web-interface which enables users to create, modify and test their
own customized services. Last but not least, MoTrIS was implemented with extensibility in
mind; thus, more algorithms for processing different types of queries can be implemented and
integrated into our framework easily.





CHAPTER 7

Conclusion

7.1 Summary

In this thesis, we studied, formalized and proposed algorithmic solutions for two problems
related to route planning on road networks: the processing of distance and shortest path queries
and the computation of dissimilar yet short alternative paths.

For processing distance and shortest path queries on road networks, we presented ParDiSP,
a framework which supports the efficient processing of both types of queries. We showed how
ParDiSP partitions the network into components and precomputes a set of index structures.
Distance and shortest path queries are processed by running the ALT [38] algorithm if source
and target are in the same component. Otherwise, for distance queries ParDiSP combines
distances from three precomputed tables, whereas shortest path queries are decomposed into
the retrieval of three sub-paths, which can be executed in parallel. An experimental evaluation
has shown that ParDiSP outperforms the state-of-the-art for shortest path queries, while being
comparable to the state-of-the-art for distance queries. For mixed query sets containing both
distance and shortest path queries, ParDiSP is even more efficient than a combination of the
best state-of-the-art approaches for the two query types, while incurring less space overhead.

The second problem we studied is that of alternative routing on road networks. Our goal
was to recommend k paths that are sufficiently dissimilar to each other and as short as possible.
We formalized this task using the k-Shortest Path with Limited Overlap query. We also de-
signed and implemented three algorithms for processing k-SPwLO queries: BSL builds upon
the computation of the K�shortest paths; OnePass traverses the network once expanding only
paths that do not violate the similarity constraint; and MultiPass progressively computes the
result set after traversing the network k�1 times, while employing two powerful pruning crite-
ria. Through an extensive experimental evaluation, we demonstrated that MultiPass is the most
efficient algorithm for processing k-SPwLO queries outperforming its competitors and, in most
cases, by a large margin.

To achieve scalability though, we also introduced two heuristic algorithms. OnePass+

employs ideas from both OnePass and MultiPass and achieves to compute a set of dissimilar

79



80 Chapter 7. Conclusion

paths which, in terms of average length, is very close to the exact solution. ESX computes
alternative paths by incrementally removing edges from the road network and running shortest
path queries. Through a comprehensive experimental evaluation we showed that OnePass+

is significantly faster than MultiPass while its result set is close to the exact solution, and, in
contrast to the other algorithms, ESX is scalable and can compute k-SPwLO queries for large
road networks and large values of k.

Finally, we have presented MoTrIS, a service-oriented framework which provides support
for building applications on multimodal networks. Apart from integrating our algorithms for
route planning on road networks, MoTrIS combines street and transportation networks into a
single multimodal network and provides query services over such networks via a public API.
In addition, MoTrIS comes with a web-interface which enables the users to create, modify
and test their own customized services. Last but not least, MoTrIS is highly extensible. New
algorithms can be easily integrated and extend the capabilities of the platform.

7.2 Future Work

Future work points in different directions. First, regarding the computation of distance and
shortest path queries, we plan to extend ParDiSP to support more dynamic scenarios, i.e., when
the weights of the edges of a road network change over time. In addition, as both distance and
shortest path queries are used as building blocks for processing more complex queries, we will
study the problem of the efficient processing of such queries in batches, as well as the efficient
computation of other spatial network queries, such as kNN queries and distance joins.

Second, with regard to alternative routing, we plan to extend and improve our algorithms
by employing preprocessing-based methods such as Contraction Hierarchies [36]. From a the-
oretical point of view, we will investigate approximation algorithms with error guarantees. We
also plan to extend the definition of alternative routing by considering additional criteria and
constraints besides the overlap between paths and their length. Last but not least, we will in-
vestigate the computation of multiple dissimilar paths on different types of networks such as
social networks and web graphs.

Third, we will study the problem of route planning on multimodal transportation networks.
We plan to modify ParDiSP to support distance and shortest path query processing on multi-
modal transportation networks. Furthermore, we would like to investigate alternative routing
on multimodal transportation networks and the computation of dissimilar trips using appropri-
ate similarity metrics, e.g. means of transport used, walking distance, journey cost etc.

Finally, we plan to extend MoTrIS with additional modules, such as a module to monitor
the timetable information and support real-time updates on the schedule. Moreover, we intend
to use MoTrIS as basis for further research on more efficient algorithms for various problems
on multimodal networks, such as the analysis and evaluation of transportation networks. Such
tools will support transportation scientists to identify problems and evaluate the usability of
existing transportation systems, and will support the development of more efficient solutions.
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[48] E. Köhler, R. H. Möhring, and H. Schilling. Fast Point-to-Point Shortest Path Compu-
tations with Arc-Flags. In Proceedings of the 9th DIMACS Implementation Challenge,
2006.



BIBLIOGRAPHY 85

[49] M. Kolahdouzan and C. Shahabi. Voronoi-based K Nearest Neighbor Search for Spatial
Network Databases. In Proceedings of the 30th International Conference on Very Large
Data Bases, VLDB’04, pages 840–851, 2004.

[50] H.-P. Kriegel, M. Renz, and M. Schubert. Route skyline queries: A multi-preference path
planning approach. In Proceedings of the 26th IEEE International Conference on Data
Engineering, ICDE’10, pages 261–272, 2010.

[51] P. H. Li, M. L. Yiu, and K. Mouratidis. Discovering historic traffic-tolerant paths in road
networks. GeoInformatica, 21(1):1–32, 2017.

[52] Y. Lim and H. Kim. A Shortest Path Algorith for Real Road Network based on Path
Overlap. Journal of the Eastern Asia Society for Transportation Studies, 6:1426–1438,
2005.

[53] R. J. Lipton and T. R.E. A Separator Theorem for Planar Graphs. SIAM Journal on
Applied Mathematics, 36(2):177–189, 1979.

[54] W. Luo, H. Tan, L. Chen, and L. M. Ni. Finding Time Period-Based Most Frequent
Path in Big Trajectory Data. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD’13, pages 713–724, 2013.

[55] D. Luxen, N. Gmbh, and C. Vetter. Real-Time Routing with OpenStreetMap data Cat-
egories and Subject Descriptors. In Proceedings of the 19th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, GIS’11, pages
513–516, 2011.

[56] D. Luxen and D. Schieferdecker. Candidate Sets for Alternative Routes in Road Net-
works. Journal of Experimental Algorithmics, 19:1–28, 2015.
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