
Free University of Bozen-Bolzano
Faculty of Computer Science

Master Thesis

A Relational Implementation
of Multimodal Road Networks

by
Viktorija Šukvietytė

Supervisor: Johann Gamper
Co-supervisor: Theodoros Chondrogiannis

2016

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Contribution . 3
1.3 Structure of the Thesis . 3

2 Background 4
2.1 Shortest Path Computing Techniques 4
2.2 Modelling of Time-Dependent Networks 6
2.3 Querying Multimodal Time-Dependent Networks 7

3 Relational Implementation 9
3.1 Time-Dependent Data Model 9
3.2 Database Schema . 12

3.2.1 Location Schema . 12
3.2.2 Network Schema . 12
3.2.3 Pedestrian Network Schema 13
3.2.4 Transport Network Schema 14
3.2.5 Link Network Schema 18

3.3 Examples . 18

4 Import of Multimodal Network 24
4.1 Creation and Initialization of Tables in Database 24
4.2 Import of the Pedestrian Network 25
4.3 Import of the Transport Network 26
4.4 Linking of Pedestrian and Transport Networks 28
4.5 Development Environment and Tools 29

5 Query Services (DB API) 30
5.1 Implementation of Query Services (DB API) 30
5.2 Static Information of the Transport Network 31
5.3 Transport Network Information 32
5.4 Functions for the Shortest Path Computation 33
5.5 Example . 33

i

CONTENTS ii

35

38

40

6 Evaluation

7 Conclusion and Future Work

Appendix

Bibliography 50

Abstract

Nowadays, the number of systems based on maps that use geographical
data to build applications for route searching or trip planning is greatly
increased. However, it is not so easy to model data efficiently. The multi-
modal networks integrate networks of different type: pedestrian, bus, train
network, etc., which come from different sources and have a different struc-
ture. Some of these networks may hold features such as timetables that must
be considered when a trip is planned.

In this thesis, we propose a relational implementation of multimodal
road networks. Our implementation is based on the time-dependent ap-
proach that models timetable information in public transport systems. The
PostgreSQL database under Ubuntu Operating System (OS) was chosen as
a platform for the implementation. We adopt the following popular stan-
dards of imported data: GTFS and VDV to import timetables of the public
transport systems; OSM, PBF to import pedestrian networks.

We implement maintenance tools for this model to import or drop dif-
ferent modes. Also, we propose query services about the data model. In
order to facilitate and simplify the usage of query services in various pro-
gramming platforms, it was implemented as a PostgreSQL database set of
functions written in SQL and PL/pgSQL languages.

We describe in detail our model for multimodal road networks stored in
PostgreSQL. Also, a description of implemented tools is presented. In the fu-
ture, this model could be applied in other relational Database Management
Systems (DBMS).

1

Chapter 1

Introduction

1.1 Motivation

The current pace of life makes people rush and daily use various means of
transport. The smart devices with mobile applications such as maps, GPS
navigation, public transport timetables, become the most faithful guide of
the life. Without the latest technologies it would be difficult to keep up
with the rhythm of life. However, a rare user of these technologies raises
a thought, in what way it has become possible to instantly find out the de-
sired travel direction, the shortest path, the fastest trip or various transport
timetables and routes; how and where this variety of information is stored,
and how the flow of information is manageable.

The problem in finding the shortest path became relevant more than 50
years ago (it was conceived by computer scientist Edsger W. Dijkstra in 1956
and published three years later). It has been shown that the task of finding
the shortest path belongs to the NP-hard (unsolvable) class of problems, but
this problem was studied and currently is still researched by many scientists.
There are a number of methods (techniques) to address this challenge.

Searching for the best solution, we are faced with trade-offs. One of
them is the choice between the compactness of data storage and high speed
to access data. Obviously, if we save some space for storing data, we need
more time to access the required information. The data operated quickly
will consume a lot of space. In other words, we have to decide how to store
the problem data: in the specific format, compressed OS files or in relational
DBMS. Practically, this trade-off has a number of specific solutions of data
storage for static road networks: in the specific format, compressed OS files
and in relational DBMS. As an example of specific format files, OSM, PBF are
the most popular formats for street networks, and PostGIS – to store spatial
and geographical objects in the PostgresSQL database. A different situation
arises solving more complex problems in time-depending networks. There
are many solutions that store data in specific format OS files like GTFS or

2

CHAPTER 1. INTRODUCTION 3

VDV. Meanwhile, it is difficult to find similar solutions of storing data in
relational DBMS. The challenge becomes even more complex for multimodal
networks.

1.2 Contribution

In this paper, we provide our insights what has been done before for the
optimal route planning as a solid starting point for our relational imple-
mentation of multimodal road networks. We review querying techniques,
modelling approaches and common challenges.

A model of multimodal networks was implemented. To gain the fast and
convenient information access, we have chosen an innovative way of data
storage in the relational DBMS (PostgreSQL).

We developed a tool that allows user to select, import and load data of
desirable pedestrian and public transport networks to the model and com-
bine them. Comprehensive schema descriptions together with instances are
provided.

Moreover, we implemented a database application program interface
(DB API) intended for application developers to get information from this
model in various environments easily and quickly. In the end, we have per-
formed several synthetic tests to evaluate and prove that our model works
effectively and correctly.

1.3 Structure of the Thesis

The thesis is organized as follows. In Chapter 2, we briefly review groups
of querying techniques, modelling approaches of time-dependent networks
and their challenges. The model realization, schemas, and data examples
are described in Chapter 3. The developed tools are described in Chapters 4
and 5 of this paper. Chapter 6 discusses the evaluation of the work. Chap-
ter 7 summarizes our insights and provides future perspectives. In the Ap-
pendix, we provide detailed a manual of query services.

Chapter 2

Background

In this chapter, we briefly observe what has been done currently for multi-
modal networks as the basis for a new data model.

Regardless of the choice of transport network, we always have to com-
pute some form of shortest path queries. There are basic types of the shortest
path problems [10]:

• In the point-to-point shortest path problem, a graph G, a source s ∈ V ,
and a target t ∈ V are given as input, and must compute the length of
the shortest path from s to t in G.
• The one-to-all problem is to compute the distance from the given ver-

tex v to all the vertices in the graph.
• The many-to-many problem finds the shortest paths for all pairs of

vertices.

However, finding the optimal route is an NP-hard problem. Therefore,
there are not one but a lot of algorithm solutions that are constantly evolv-
ing. They include multicriteria and require compromises in query time,
space usage, preprocessing efforts and other factors. Numerous shortest
path algorithms for the road network are described by H. Bast et al. [2].
They are classified by techniques and can always be combined with addi-
tional speedup too.

2.1 Shortest Path Computing Techniques

Basic Techniques. The standard technique to find the shortest path be-
tween nodes in the graph is Dijkstra’s algorithm [6]. It is a baseline for nu-
merous techniques that preprocess the input graph to achieve speedups. The
nodes can be, for example, different cities, crossroads, street intersections,
etc. The edges weights are the distances between a pair of nodes connected
by direct road. There are many modifications of this algorithm. The most

4

CHAPTER 2. BACKGROUND 5

common variant takes the single node as a source and finds the shortest
path to other nodes in the graph. It also can be used to find the shortest
path between two given nodes. The algorithm maintains tentative distances
that are initiated∞ for unreached nodes and 0 for the source node s. It picks
an unvisited node with the lowest distance, calculates the distance through
it to each unvisited neighbour and updates the neighbour’s distance if it is
smaller. Then the process stops as soon as the shortest path to the target
node t is reached or all distances for all the pairs of nodes are found.

In practice, one can reduce the search space and accelerate the process,
using the bidirectional search. It runs forward and backward at the same
time and stops when intersection contains the same vertex.

Goal-Directed Techniques. These methods allow preprocessing of network
data in order to obtain information used to speedup queries. The aim is to
direct the search towards the target t by pruning the edges that are not in
the direction to t, and preferring edges that shorten the distance. The classic
goal-directed algorithm is A* search [5]. It uses a lower bound function
on vertices. This induces us to scan earlier vertices that are closer to the
target t. Another method based on the Dijkstra algorithm is Arc Flags [9].
This approach is combined with partitioning. In the preprocessing stage, the
algorithm divides the graph into balanced cells with a similar number of
vertices and has a small number of boundary vertices. The boundary can
be used to prune the search. If the search reaches the cell that contains the
target t, it starts evaluating the arc flag. Otherwise, the search is pruned.

Separator-Based Techniques. Methods partition the graph into small sub-
graphs by a small separator [12]. One of techniques is based on the vertex
separator, which is a subset of vertices. There is another technique that use
thearc separator. These separators can be used to overlay graph G. The dis-
tance of arc added between the separator vertices is equal to the distance
in G. Such new graphs are much smaller and can accelerate the queries.
Separators can have hierarchies too. However, addition of more shortcut
arcs may significantly increase the space usage and preprocessing time.

Hierarchical Techniques. These methods exploit hierarchical nature of the
road network in one way or another. This is very useful if we have the source
and target nodes far away from each other. In this case, it suffices to scan
only highway nodes.

As an example of the hierarchy approach, Contraction Hierarchies (CH)
are the technique that generates a multi-layered node hierarchy in the pre-
processing stage [7]. The idea is to reduce the visited number of vertices by
ranking them according to “importance”. The method introduces new edges,
so-called shortcuts, during the preprocessing butvisits only the arc leading
to higher rank vertices.

CHAPTER 2. BACKGROUND 6

Bounded-Hop Techniques. The main idea of techniques is to precompute
pairwise distances of vertices by labelling vertices. In order to get the short-
est path, we use already precomputed distances between the pairs of vertices
instead of the input graph. A simple approach is to precompute distances be-
tween all the pairs of vertices. In this way, a single look-up of the table is
sufficient.

The Labelling algorithm is one of the techniques that compute labels for
each vertex of the graph [10]. For example, the label L(u) consists of a set of
vertices (hubs) from the vertex u together with their distances from u. Thus,
the distance of any pair s and t can be determined by looking at their labels.
The chosen labels also obey the cover property. It means that intersection of
labels for any pair of vertices s and t must contain at least one vertex on the
shortest path s–t. In the direct graphs, the labels associated with vertices are
split into forward and backward labels. However, the space usage is higher
than that of similar methods.

Another Transit Node Routing is one of the fastest speedup algorithms to
compute the shortest path in the road network [1]. During preprocessing, it
selects a set of transit nodes of arterial networks. The chosen set is crucial to
the performance of the algorithm. Then the distances between transit nodes,
and the distances to their access nodes as well as information that identifies
whether the shortest path does not cross the transit nodes are stored in the
tables.

2.2 Modelling of Time-Dependent Networks

It is desirable that applications for computing optimal paths in road net-
works use realistic scenarios like transport networks, which can be affected
over time, incorporate traffic congestions, delays, closures, and many other
factors. This makes the problem more complicated and time-dependent be-
cause the best route solution depends on departure time. However, the tech-
niques considered above can be adapted and used for efficiency. That can be
done by assigning the travel time function to (some of) edges, representing
how long it takes to traverse them at each time of the day. Also, they only
can be traversed at specific points in time.

In this scenario, the input is given as a timetable consisting of a set of
bus stops or train platforms, a set of routes (bus or train lines) and a set
of trips. The trips are given as pairs of (origin/destination) stops and (ar-
rival/departure) times.

Dealing with this issue, it does not suffice to compute a single shortest
path like in static networks. The first challenge is to build the graph G =
(V,A) from a timetable so that the shortest paths in G corresponded to the
optimal journeys. There are two common approaches to do that.

CHAPTER 2. BACKGROUND 7

The solutions of the time-expanded and time-dependent data model are
presented and compared in [4, 11].

Time-Extended Model. The idea of the time-extended model is to build an
event graph that “enrolls” time. The model creates a vertex for each event
and it connects consecutive arrival and departure events by connecting arcs.
All vertices at the same stop are connected in chronological order by transfer
arcs to enable transfers between vehicles. The model has already modified
versions that try to optimize the number of transfers, reduce redundant arcs,
incorporate the minimum change time given by input, etc.

Time-Dependent Model. In contrast to the previous approach, the result-
ing time-dependent graph is less space-consuming. Instead of unrolling the
timetable, the model encodes time dependencies by the travel function on
the arcs. In the model vertices correspond to stops. For each stop p and
route r that serves p there is a route vertex. Route vertices at p are con-
nected to the common stop by arcs with a constant cost of minimum change
time. The route arcs connect the subsequent route vertices and form their
trips. Both models are represented in Fig. 2.1.

Figure 2.1. Time-expanded (left) and time-dependent (right) models.
Trips ti denote connection arcs in the time-expanded model, and routes ri
denote route arcs in the time-dependent model [2].

2.3 Querying Multimodal Time-Dependent Networks

When we are planning a journey from s to t, there are diverse criteria ac-
cording to which we choose the “best” route. One of the goals is minimizing
the travel time, i.e. to arrive as soon as possible to the destination point.
Further, we face several problems during the modelling process:

Earliest Arrival Problem. The simplest problem is the earliest arrival prob-
lem [10]. A source stop, a target stop, and departure time are given. It is

CHAPTER 2. BACKGROUND 8

necessary for a trip to start from the source stop no earlier than the given
departure time and arrive at the target stop as soon as possible.

Range Problem. A similar variant is the range problem [2]. In this case,
a time range replaces departure time and we need to set trips with the
minimum travel time departing within the given range. Both this and the
previous problems consider only arrival and departure times.

Multimodal Journey Planning. The multimodal networks are more com-
plicated and require approximations [10, 3, 8, 14]. However, this is an in-
creasingly relevant topic worldwide. They are composed of multiple modes:
schedule-based transportations (bus, trains, flights) and unrestricted modes
(walking, cycling, cars).

A common case to obtain a multimodal network is to build individual
graphs for each transportation mode and merge into a single multimodal
graph with link arcs. The shortest path computation in a multimodal net-
work should incorporate historic patterns, rush hours, transit information,
real-time traffic, user preferences and other constraints.

Transit Data Format. There are different size of public transport networks
worldwide. In many cases, the agencies that manage these networks sel-
dom communicate with one another. Even more, they do not have common
agreements on the standards or formats for public transportation schedules.
The situation changed in 2005, when the USA’s public transit agency TriMet
in collaboration with Google defined a common format for public trans-
portation schedules and associated geographic information, so-called GTFS
[13]. Since that time, the GTFS format has changed significantly and it is
constantly evolving and having widespread effects among transit agencies.
GTFS data are now being used by a variety of third-party software applica-
tions for many different purposes: trip planning, timetable creation, transit
data visualization, to provide real-time transit information.

Chapter 3

Relational Implementation

In this chapter, we introduce a multimodal time-dependent theoretical net-
work, which is a basis for our relational implementation. In the next sec-
tions, we show the model schemas in detail and examples of imported data.

3.1 Time-Dependent Data Model

In this section, we describe a theoretical time-dependent data model that
represents the real processes of traffic in detail. We consider two basic types
of modes: a pedestrian network and a bus network separately. These net-
works are connected through links. We define the structure of each network
in the multimodal graph below.

Pedestrian Network. We define a pedestrian network as a direct graph
Gs = (Vs, Es), where Vs is a set of vertices or nodes and Es is a set of
edges. Each node represents a real world object such as street intersects or
crossroads. Edges represent a street or a part of it and store its source and
destination nodes.

The connections among nodes are bidirectional, i.e. people can walk in
both directions. Each node has a neighbourhood if there exists an edge going
from this node to another node or there are any incoming edges to this node
from other ones. The number of incoming edges is the so-called in-degree of
sni node. The number of outgoing edges is an out-degree of pni node.

In Fig. 3.1, a small real world example is sketched. The solid lines are
used to represent pedestrian paths. The nodes pn1, . . . , pn7 represent street
intersections, and are connected by pairs of street edges denoting the road
segments.

Public Transport Network. This transport is a completely restricted mode.
It has fixed routes, bounded by the timetable, and can be accessed from
specific location (bus stop or station). In real life, a bus stops always at the
pedestrian sidewalk so that passengers can wait there safely and reach it on

9

CHAPTER 3. RELATIONAL IMPLEMENTATION 10

Figure 3.1. Pedestrian network.

foot. At the moment when a bus arrives, people can transfer from the pedes-
trian to transport network. Hence we can identify three main components
as bus routes, bus stops, and other nongeometrical information needed as
a bus schedule.

The structure of the public transport network is similar to the pedestrian
network. It has an underlay graph Gt = (Vt, Et), where Vt and Et are the set
of nodes and edges, respectively. Each node denotes a station or bus stop
in the real world for the route i and holds information about the routes and
timetables.

As you can see in Fig. 3.2, a small real world example represents a trans-
port mode. bn1, . . . , bn4 are bus network nodes, and the dashed lines indi-
cates different routes passing through the nodes.

Link Network. As a result, we construct a final multimodal graph by map-
ping the transport network on the pedestrian network. Bus stops or stations
usually are at a distance from the street crossroads and intersection, i.e. the
nodes of the pedestrian network. Therefore, we find the closest point on the
edge to each given point (bus stop or station) as a fraction of total length,
make a new node in that place, and link it to the closest stop. These links let
easily transfer between both modes. In Fig. 3.3, a full multimodal network
that combines the pedestrian and transport networks is shown. The blue
dots are new street nodes as projections of bus stops bn1, . . . , bn4.

CHAPTER 3. RELATIONAL IMPLEMENTATION 11

Figure 3.2. Transport network.

Figure 3.3. Multimodal network with link edges expressed in dotted lines.

CHAPTER 3. RELATIONAL IMPLEMENTATION 12

3.2 Database Schema

In this section, we provide instances of our model tables and their brief
descriptions.

3.2.1 Location Schema

The first table we imported to the data model stores information about all
pedestrian networks. It is primarily identified by the column loc_id. The col-
umn loc_short_name is a name of region and loc_long_name shows a coun-
try and continent, where region is located. Loc_url is a download link of
appropriate OSM.PBF file. We also use two more columns url_file_name and
url_file_type to have a file name and its type separately. In addition, table
stores geometry of location, download, parse and import statuses. Schema
of the table Location with all columns and types is represented in Fig. 3.4.

Figure 3.4. Schema of the table Location.

The schema of locations is defined as follows:
Location(loc_id, loc_short_name, loc_long_name, loc_url, loc_file_

name, loc_file_type, loc_geometry, loc_geometry str, loc_poly_file,
download_directory, download_status, parse_directory, parse_status, im-
port_status)

3.2.2 Network Schema

The structure of the table Network is similar to that of the table Location.
Each network is identified by the column net_id, which is a primary key. It
contains columns for names, download link, type, geometry, and the rest

CHAPTER 3. RELATIONAL IMPLEMENTATION 13

information as in the table Location. In addition, this table has the column
link_status of Boolean type. It shows whether the network is linked with
any region. The schema of table Network with all the columns and types is
represented in Fig. 3.5.

Figure 3.5. Schema of the table Network.

The schema of networks is defined as follows:
Network(net_id, net_short_name, net_long_name, net_url, net_file_

name, net_file_type, net_geometry, download_directory, download_status,
parse_directory, parse_status, import_status, link_status)

3.2.3 Pedestrian Network Schema

The pedestrian network described in Section 2.2, is imported into a da-
tabase. They are intended to store the nodes and edges of the pedestrian
network.

Street_node. Each node is the start or end point of the edge and is iden-
tified by a primary key constraint on the node_id that is of serial type. The
column osm_id originally came from the OpenStreetMap (OSM) file that has
a public access and further could be used for updates and extensions of the
map. The column node_location contains spatial information of the node, i.e.
longitude and latitude coordinations. loc_id denotes the location that holds
the node.

The schema of the street nodes is defined as follows:
Street_node(node_id, osm_id, node_location, loc_id)

Street_edge. A table presents a list of streets. Each row is identified by
a primary key constraint on the column edge_id that is of serial type. There
are edge_source and edge_target references to the table Street_node that show

CHAPTER 3. RELATIONAL IMPLEMENTATION 14

the nodes as start and end points of the edges. The column edge_length_km
shows the real length of a street in kilometres. The column edge_geometry
is a street topology, i.e. spatial information of an edge as linestring. loc_id
indicates a location that holds an edge.

The schema of the street edges is defined as follows:
Street_edge(edge_id, edge_source, edge_target, edge_length_km,

edge_geometry, loc_id)

In Fig. 3.6, we represent Street_node and Street_edge relations by an ER-
diagram, including all the columns, types, primary and foreign keys as well
as the number of rows in each table.

Figure 3.6. Pedestrian network schema.

3.2.4 Transport Network Schema

The transport network described in Section 2.2, is similarly imported into
a database as the pedestrian network. The network includes relations of
bus nodes and edges, relations of schedules and one relation of geometric
segments of routes. See the relations of transport network nodes and edges
in Fig. 3.7.

Busnet_node. Relation stores all information about the bus node as a sta-
tion. Each node is identified by the primary key on the column node_id
that is of serial type. Other columns: stop_id, route_id and street_node_id
are, respectively, integer foreign keys to these tables: Bus_stop, Bus_route,
Street_node.

The schema of the bus network nodes is defined as follows:
Busnet_node(node_id, stop_id, route_id, street_node_Id)

Busnet_edge. The table of edges represents movements among the bus
nodes. Each row of this table is primarily identified by the column edge_id
that is also of serial type. Both integer edge_source and columns edge_target
are foreign keys to the table Busnet_node. They show the start and end of the
edge. The column route_id is the integer foreign key to the table Bus_route.
The column service_id checks the validity of edge in certain day. It is also the
integer foreign key and reference to the table Bus_service. The last column

CHAPTER 3. RELATIONAL IMPLEMENTATION 15

Figure 3.7. Transport network schema.

edge_link is of Boolean type and shows whether the edge passes through the
same station or different ones.

The schema of the bus network edges is defined as follows:
Busnet_edge(edge_id, edge_source, edge_target, route_id, service_id,

edge_link)

The tables Bus_route, Bus_trip, Bus_stop, Bus_stop_times, Bus_service,
Bus_service_date intended to store the imported GTFS data, are presented
below. Each table has a one-to-one correspondence with GTFS. Also, ta-
bles have an additional field to store the original GTFS IDs with exception
of the table Bus_stop_times. The extra attribute together with the column
net_id explicitly show the relation between GTFS data and the information
contained into our model.

Bus_route. The table has information about bus routes. Each route is iden-
tified by the primary key on the column route_id that is of integer type. The
column gtfs_route_id is of integer type and comes as the original ID from
the source file. The route has the string type columns route_short_name and
route_long_name of route short and long names. It also has geometry and
network ID, to which the bus route belongs.

CHAPTER 3. RELATIONAL IMPLEMENTATION 16

The schema of the routes is defined as follows:
Bus_route(route_id, gtfs_route_id, route_short_name, route_long_

name, route_geometry, net_id)

Bus_trip. The primary key on the column trip_id that is of integer type iden-
tifies each trip of the route. In addition, the table consists of two more inte-
ger columns route_id and service_id. The latter checks the validity of a trip in
particular days. Both columns are foreign keys. The column gtfs_trip_id is of
integer type and comes as the original ID from the source file. The column
net_id shows a network ID, to which the bus trip belongs.

The schema of the trips is defined as follows:
Bus_trip(trip_id, route_id, gtfs_trip_id, service_id, net_id)

Bus_stop_times. Each row is identified by the primary key compounded of
three columns: trip_id, stop_id and stop_sequence. All of them are of integer
type and at the same time trip_id and stop_id are foreign keys, respectively,
to tables Bus_trip and Bus_stop. The column stop_sequence indicates the se-
quence number of stops in the trip. The arrival and departure times are given
in seconds and stored in integer columns arrival_time and departure_time.

The schema of the stop times is defined as follows:
Bus_stop_times(trip_id, stop_id, arrival_time, departure_time, stop_

sequence, net_id)

Bus_stop. The table contains information about the bus stops. Each of them
is identified by the primary key on the column stop_id that is of integer type.
The column gtfs_stop_id is of integer type and comes as the original ID from
the source file. The bus stop has a name in the string column stop_name
and spatial information, i.e. 2D coordinates of points in the map, in the
geometric column stop_location. The column net_id shows network ID to
which the stop belongs.

The schema of the stops is defined as follows:
Bus_stop(stop_id, gtfs_stop_id, stop_name, stop_location, net_id)

Bus_service. A relation is meant to check the validity of trips according to
week days or exceptional dates. Each row identified by the primary key on
the column service_id. gtfs_service_id is of integer type and comes as the orig-
inal ID from the source file. The rest columns are of Boolean type indicating
a certain week day. The columns start_date and end_date are of date type to
indicate a certain date. The column net_id shows the network to which each
service belongs.

The schemas of the services are defined as follows:
Bus_service(service_id, gtfs_service_id, net_id)
Bus_service_date(service_id, monday, tuesday, wednesday, thursday, fri-

day, saturday, sunday, start_date, end_date, exception_type)

A relational schema of GTFS data is depicted in Fig. 3.8.

CHAPTER 3. RELATIONAL IMPLEMENTATION 17

Figure 3.8. Relational schema of GTFS tables.

Bus_route_segment_geom. The table is meant for visualization purposes.
The primary key on the column segment_id identifies a segment of the bus
route that is of serial type. Integer columns top_source and stop_target are
the bus stop IDs. They refer to the table Bus_stop, respectively. The column
route_id is of integer type and refer to the table Bus_route. Segment_geometry
is a geometric column of a linestring shape. A relational schema of transport
route segment geometries is depicted in Fig. 3.9.

Figure 3.9. Relational schema for transport route segment geometries.

CHAPTER 3. RELATIONAL IMPLEMENTATION 18

The schema of the route segments geometries is defined as follows:
Bus_route_segment_geom(segment_id, stop_source, stop_target, route_

id, segment_geometry)

3.2.5 Link Network Schema

This section reviews a schema of the link network described in Section 2.2.
The schema consists of only one table that combines pairs of nodes between
Street_node and Bus_stop relations.

Bus_street_link. The relation is primarily identified by the column link_id
that is of serial type. Each row combines bus stops with street nodes, and
stores the references to the corresponding tables Bus_stop and Street_node.

The schema of the links is defined as follows:
Bus_street_link(link_id, bus_stop_id, street_node_id, link_geometry)

A relational schema of links is depicted in Fig. 3.10.

Figure 3.10. Relational schema of links.

3.3 Examples

In this section, we illustrate some examples of real data of the tables stored
in our data model as well as description of the information showed.

Locations. Table 3.1 contains the data about regions that we can import
to our model. Each area has a geometry, which is a specified value from
Extended Well-Known Text representation (EWKT). EWKT is one of Post-
GIS formats to represent the geometric objects with alphanumeric values.
Download_status, parse_status and import_status are Boolean attributes and
indicate statuses of locations.

CHAPTER 3. RELATIONAL IMPLEMENTATION 19

Table 3.1. Instance of the table Location.

Entity Record 1 Record 2
loc_id 1 2
short_name Barcelona Bilbao
long_name Europe/Spain Europe/Spain
loc_url http://download.geofabrik. . . http://download.geofabrik. . .
url_file_name spain.osm.pbf spain.osm.pbf
url_file_type OSM.PBF OSM.PBF
loc_geometry 0103000000010. . . 0103000000010. . .
loc_geometry_str POLYGON((−71.1776585 . . . POLYGON((−71.1776585 . . .
osm_file_name barselona.osm bilbao.osm
poly_file_name barselona.poly bilbao.poly
pf_context Barcelona. . . Bilbao. . .
download_dir ./data ./data
d_status FALSE FALSE
.
import_status FALSE FALSE

Networks. In Table 3.2, the data about schedules are shown similarly as in
the table Location. Each network contains geometry represented in EWKT
format. This shape is constructed during the import phase and covers all
bus stops of the specific network. Among the Boolean attributes, this table
has link_status that indicates whether the networks are already linked with
regions.

Table 3.2. Instance of the table Network.

Entity Record 1 Record 2
net_id 1 2
short_name MeranoBolzano Trenitalia
long_name Europe/Italy Europe/Italy
net_url http://open.sasabz.it/files. . . http://www.gtfs-data-exch. . .
url_file_name meran_vdv.zip trenitalia_gtfs.zip
url_file_type VDV.ZIP GTFS.ZIP
net_geometry 010300002073. . .
download_dir ./data ./data
d_status FALSE FALSE
.
import_status FALSE FALSE
link_status FALSE FALSE

Pedestrian Nodes. The street points are stored in a table street_nodes, as
you can see in Table 3.3. In Section 4.3, we have mentioned that new unique
IDs are assigned to nodes. We choose the bigint type for the original IDs that
can be even larger than the attribute node_id. The points have coordinates
and they are stored in EWKT format as well.

CHAPTER 3. RELATIONAL IMPLEMENTATION 20

Table 3.3. Instance of the table Street_node.

node_id osm_id node_location loc_int
1 9192415 0101000020. . . 4
2 9194517 0101000020. . . 4
3 9195242 0101000020. . . 4
.

Pedestrian Edges. Once we have the points of location, we use them to
build edges. Some rows of the table street_edges are shown in Table 3.4.
Under the field edge_lengh_km there are double precision values with 8 dec-
imal digits. This information is obtained from OSM source files. The edge
geometry is stored in EWKT format.

Table 3.4. Instance of the table Street_edge.

edge_id edge_source edge_target edge_length_km
1 1 7 0.20901966
2 2 8546 0.10151595
3 3 4 0.13601428
.
edge_id edge_geometry loc_id
1 0102000020E61. . . 4
2 0102000020E61. . . 4
3 0102000020E61. . . 4
.

Bus Network Nodes. Timetable nodes are saved in the database similar to
the pedestrian ones. Each node stores three integer type attributes: stop_id,
route_id and street_node_id. An instance of this table is shown in Table 3.5.

Table 3.5. Instance of the table Busnet_node.

node_id stop_id route_id street_node_id
.
30 5 17 10521
31 6 17 10570
32 7 17 10392
.

Bus Network Edges. In Table 3.6, we have an instance of the table
Bus_net_edge. There are no attributes to geometry or length. Each row stores
start and end nodes of edges. We have the attribute route_id that denotes
the edge belonging to the route. The attribute service_id shows the valid-
ity of edge in specific days. The link attribute indicates type of links. If the
edge_link value is FALSE, the edges are between different bus stops and their

CHAPTER 3. RELATIONAL IMPLEMENTATION 21

source and target node have the same route. If the edge_link value is TRUE,
the source and target nodes are connected by edges in the same stop and
have different routes.

Table 3.6. Instance of the table Busnet_edge.

edge_id edge_source edge_target route_id service_id link
1 607 601 20 4 FALSE
2 1329 1376 38 3 FALSE
3 1233 1237 38 4 FALSE
.

Bus Routes. An instance of Bus_routes is shown in Table 3.7. This is a small
table, where route_id and original GTFS IDs are the most important infor-
mation in our model. Route_short_name and Route_long_name are useful for
query functions and user interface.

Table 3.7. Instance of the table Bus_route.

route_id gtfs_route_id r_short_name r_long_name . . . net_id
.
5 6 6 ME 6 . . . 1
6 110 110 BZ 110 . . . 1
7 111 111 BZ 111 . . . 1
.

Bus Stops. In Table 3.8, some rows of the table Bus_stop are shown.
This table has original IDs referred to OSM sources. There is a attribute
stop_location to coordinates of bus stops. Also, the names of stops are stored
in this relation.

Table 3.8. Instance of the table Bus_stop.

stop_id gtfs_stop_id stop_name stop_location net_id
.
10 248 Via delle Corse - Rennweg 0101000020E61. . . 1
11 249 Ospedale - Krankenhaus 0101000020E61. . . 1
12 306 Terme - Thermen 0101000020E61. . . 1
.

Bus Services. Our model has 2 tables assigned to services. The data exam-
ple of the table Bus_service is shown in Table 3.9. We have Boolean attributes
to indicate valid days for routes and the period displayed in the attributes
start_date and end_date. The table Bus_service contains IDs of services: glob-
als and original GTFS IDs, and net_ID values.

CHAPTER 3. RELATIONAL IMPLEMENTATION 22

Table 3.9. Instance of the table Bus_service.

service_id gtfs_service_id net_id
1 21 1
2 23 1
3 24 1
.

Table 3.10. Instance of the table Bus_service_date.

service_id Monday . . . Sunday start_date end_date exception_type
1 FALSE . . . TRUE 2015-06-21 2015-08-30 1
2 TRUE . . . FALSE 2015-06-22 2015-09-03 1
3 FALSE . . . FALSE 2015-06-27 2015-09-05 2
. .

Bus Stop Times. Table 3.11 describes all the stops of trips and their arrival
and departure times. These instances are defined as the number of seconds
in an internal format. The field stop_sequence indicates the sequence number
of the bus stop in the trip.

Table 3.11. Instance of the table Bus_stop_times.

stop_id trip_id arrival_time departure_time stop_sequence net_id
.
885 2852 30060 30060 2 1
885 8995 25200 25200 21 1
885 8994 35160 35160 21 1
.

Bus Trips. An instance of the table Bus_trip is depicted in Table 3.12. Here
we have a trip ID of integer type together with a route ID and service ID.
The attribute gtfs_trip_id is original IDs from OSM source files.

Table 3.12. Instance of the table Bus_trip.

trip_id route_id gtfs_trip_id service_id net_id
1 1 3459 2 1
2 1 3458 2 1
3 1 3457 2 1
.

Bus Route Segment Geometries. This table is meant for visualization pur-
poses. The data example shown in Table 3.13 represents all the segment
geometries of routes in EWKT format. Each segment has source and target
nodes of an edge as well as ID of the route that passes this segment.

CHAPTER 3. RELATIONAL IMPLEMENTATION 23

Table 3.13. Instance of the table Bus_route_segment_geom.

segment_id stop_source stop_target route_id segment_geom
1 1 11 24 0102000020. . .
2 1 12 13 0102000020. . .
3 1 149 1 0102000020. . .
.

Bus-Pedestrian Links. The last table of the schema is the most important in
order to construct the final multimodal network. In each entry, bus_stop_id
of the table Bus_net_node is associated with that of the table Street_node to
build a specific link edge. These links also have geometry. One can see some
rows in Table 3.14.

Table 3.14. Instance of the table Bus_street_link.

link_id bus_stop_id street_node_id link_geometry
1 718 9813 0102000020. . .
2 754 10620 0102000020. . .
3 516 10562 0102000020. . .
.

Chapter 4

Import of Multimodal Network

The development process of the multimodal network can be split into sev-
eral stages. These stages are independent processes that can be executed
separately or in combination with other model building processes. The
model building principles are essential to understand in order to obtain the
final fully functioning multimodal network. We split the model building pro-
cess into these stages:

1. Creation and initialization of tables in database;
2. Import of the pedestrian network;
3. Import of the transport network;
4. Linking of pedestrian and transport networks;
5. Implementation of query services (DB API).

First of all, we briefly explain the purposes of each stage. Later on, we
describe each stage in detail.

4.1 Creation and Initialization of Tables in Database

This stage is dedicated to create or recreate multimodel network tables and
indices in the database. As a result, we obtain the new empty model tables
and indices. The rest old data are deleted. This stage must be performed
prior to all the other stages, except for the fifth stage. The creation of DB
API can be performed at any time.

In addition to tables and indices, the data for tables Location and Net-
work are also loaded in this stage. The latter tables store information about
pedestrian and transport networks, such as download URL, original file
name in Internet, file type, download category, download, parse, import sta-
tuses, etc. The data are predefined in the planning process about the imput
of certain networks to the multimodal model.

24

CHAPTER 4. IMPORT OF MULTIMODAL NETWORK 25

4.2 Import of the Pedestrian Network

This stage is dedicated to import selected predefined pedestrian networks
to a multimodal network. It includes download of OpenStreetMap (OSM)
free data from Internet [15]. OSM is a collaboration project that contributes
and maintains roads, trails and much more, all over the world. It supports
some different formats like .pbf, .bz2 and shape file. For convenience, in our
implementation we used only the PBF format.

The creation of a .poly file is the next thing included in the import phase.
The required region is extracted from the whole country. Then we parse and
load data into a database. This process can be carried out as long as we want
and stop the execution at any point of the phase. Successfully completed
steps are remembered and there is no need to repeat them any more. In the
same time, we import only one pedestrian network. The previous stage, i.e.
the model tables, is prerequisite in order to run the current one.

A pseudocode is the best way to describe this process:

Algorithm 1. Algorithm for the pedestrian network import

Require: Select Pedestrian Network net_id
1: Read information from the table Location about net_id
2: Test whether the file is downloaded
3: if not a downloaded file exists then
4: Download the file from Internet with the command wget
5: end if
6: Test whether there exists a .poly file
7: if not .poly file exists then
8: Create a .poly file
9: end if

10: Osmosis tools extract a region defined by a .poly file from the OSM.PBF
file

11: Osm2po converter parses the OSM file we have got after step 10
12: The result obtained at step 11 is inserted into a temporary table

osm_2po_4pgr
13: Data are loaded from the temporary table to the corresponding multi-

modal network tables

It should be noted that we import all pedestrian networks to the same
tables. The street nodes and edges assigned to unique IDs during the im-
port process and the original ones are stored as extra attributes. Moreover,
additional information is stored about the network.

In this stage, we use three external tools: GNU wget, Osmosis tools, and
Osm2po converter [16]. GNU wget is a free softer package for retrieving files
using HTTP, HTTPS and FTP, and the most widely used Internet protocols.

CHAPTER 4. IMPORT OF MULTIMODAL NETWORK 26

Osmosis is a command line Java application for the processing OSM data.
Osm2po is a converter and routing engine for OpenStreetMap.

4.3 Import of the Transport Network

This stage is dedicated to import the predefined selected public transport
networks to the multimodal network. It includes download of public trans-
portation schedules and associated geographic information in VDV [19] or
General Transite Feed Specification (GTFS) [18] formats as well as the con-
version of VDV to GTFS format and loading data to database. Simultane-
ously, only one transport network is imported to multimodal network. The
first stage is prerequisite to run it.

Similarly as the pedestrian network, all transport networks are imported
to the same tables, but different than for the pedestrian network. The edges
and nodes are assigned to unique IDs during the import process and their
original IDs remains as extra attributes. Moreover, additional information is
stored about the network.

Algorithm 2. Algorithm for the transport network import

Require: Select Transport Network net_id
1: Read information from Network table about net_id
2: Test whether the file is downloaded
3: if not a downloaded file exists then
4: Download file from Internet with command wget
5: end if
6: Check whether the downloaded file is in VDV or GTFS format
7: if the format of file is VDV then
8: Convert VDV452 to GTFS format, using OneBusAway
9: end if

10: Parse GTFS files and load to relevant multimodal network tables for
transport network

11: Load data into a database the rest tables: Bus_net_node, Bus_net_edge,
Bus_net_route_segment_geom

In this stage, we use 2 external tools: GNU Wget and a converter from
OneBusAway.

• GNU Wget that is a free software package for retrieving files using
HTTP, HTTPS and FTP, the most widely-used Internet protocols.
• OneBusAway offers a suite of application programming interfaces

(APIs) that facilitate and support the development of a wide range
of third-party applications, based on the actual vehicle locations and
on scheduled and predicted arrival times.

CHAPTER 4. IMPORT OF MULTIMODAL NETWORK 27

Line 8 in the pseudocode requires a further explanation. We use GTFS to
define a common format for public transportation schedules and associates
geographic information. GTFS was developed by Google to incorporate tran-
sit data into Google Maps. This standard is much simpler than VDV. A GTFS
feed is a collection of at least 6 and up to 13 CSV files (with extension .txt):

agency: list of agencies, including names, websites, contact information,
etc.

Required fields:

• agency_name
• agency_url
• agency_timezone

routes: identifies all distinct routes.

Required fields:

• route_id (primary key)
• route_short_name
• route_long_name
• route_type

trips: all the trips for the available route with valid days.

Required fields:

• trip_id (primary key)
• route_id (foreign key)
• service_id (foreign key)

stop_times: connections between two stops for a given trip with related
arrival and departure times.

Required fields:

• stop_id (primary key)
• trip_id (foreign key)
• arrival_time
• departure_time
• stop_sequence

stops: defines the geographic locations for each bus stops or stations

Required fields:

• stop_id (primary key)
• stop_name

CHAPTER 4. IMPORT OF MULTIMODAL NETWORK 28

• stop_lon
• stop_lat

calendar and calendar_dates: defines service patterns that operate re-
currently, for example, each weekend. A special event that does not repeat
will be defined in the table Calendar_dates.

Required fields:

• service_id (primary key)
• monday
• tuesday
• wednesday
• thursday
• friday
• saturday
• sunday
• start_date
• end_date

4.4 Linking of Pedestrian and Transport Networks

In this stage, the pedestrian and transport networks are already imported
and linked together. It is the last process enabling us to use the multimodal
network. Simultaneously, only one pedestrian network and one transport
network can be linked together. This fact requires the initial tables to be cre-
ated in the database and at least one pedestrian and one transport network
loaded in the database.

Algorithm 3. Algorithm for linking of pedestrian and transport networks

1: Set all possible pedestrian-transport linkings
Require: Select pedestrian-transport network loc_id-net_id

2: Street nodes obtained by projections of the closest stops are inserted.
3: Street edges are split through the new inserted nodes
4: Bus_net_nodes are appended with information obtained in step 2

Both the pedestrian and transport networks have the defined geographic
area (coordinates). This information is stored in the model tables (Location
and Network). At the first step of this stage, this information is used for
intersection of networks. Thus, we get all possible links.

It is necessary to highlight that we had to find the closest streets (edges)
to the bus stops (nodes) in the third step. Then, locations of the closest

CHAPTER 4. IMPORT OF MULTIMODAL NETWORK 29

points on edges to the nodes were found. The edges were split through
these points into fractions.

Figure 4.1 depicts the situation before the splitting process. The picture
below represents the situation after splitting. A, B, C, D correspond to street
nodes. E and F correspond to bus stops. B and C are the closest points on
edge AD to bus stops. Also, B and C are new street nodes that split edge AD
into AB, BC, and CD fractions.

Figure 4.1. Splitting of street edges into fractions through projections of
the closest stops.

4.5 Development Environment and Tools

The process to create our multimodal network has been finished and tested
under Linux Ubuntu 14.04. A virtual machine was created based on Ora-
cle VM VirtualBox in order to become more independent of the OS. Data of
the multimodal network are stored in PostgreSQL 9.4 database [17]. Import
tools use Java 9 SE, PostGIS 2.1, GNU Wget, Osmosis tools, osm2po con-
verter, and a converter from the OneBusAway suite. The Entity-Relationship
(ER) diagrams were generated using the SchemaSpy tool. The model was
tested using the PostGIS extension, so-called pgRouting. We execute the in-
dividual script for each stage of the model building process. The scripts are
written in SQL, PL/pgSQL languages. The whole flow of work is managed
by the bash script v_run-all.sh. This script is carried out in the interactive
mode.

Chapter 5

Query Services (DB API)

One of the objectives of the multimodal network building is understandable,
easy, and fast access to information. Well knowing the internal structure of
the model allows extracting the information about the model objects and
their relationships to other model objects directly from the model tables.
Such a way is quite complicated for an ordinary user or applications that use
model data. In turn, this situation reduces a user base. In order to simplify
the process and facilitate user’s work to get data from the model, a set of
functions was developed that releases him from writing complex queries.
Functions can be called from very different environments like Bash, SQL,
PERL, JAVA scripts, etc. Typically, these functions are called in the query
form of:

SELECT * FROM DB_API_Function(Parameter_1,Parameter_2, . . .)

Many functions can be called with different types and number of param-
eters. It facilitates customization of functions for different needs. A com-
prehensive description of functions with examples of their parameters are
provided below.

As mentioned above, all functions can be classified into groups according
to their purpose of use.

5.1 Implementation of Query Services (DB API)

The Database Application Interface (DB API) was implemented and loaded
into a database. DB API consists of a set of functions to maintain the multi-
modal model. As stated above, this stage can be run at any time regardless
of what stages have been done or not before. All DB API functions can be
classified into groups according to their usage. These groups are shown in
the following table.

30

CHAPTER 5. QUERY SERVICES (DB API) 31

Table 5.1. Function groups implemented to maintain the model.

Function name Function description

Transport network static information
MN_ST_list List of stops by the network
MN_ST_of_R Stops of route
MN_Route_names & MN_Net_routes List of route names
MN_R_segments List of route segments
Transport network information
MN_Stop_seq_in_Trip Stop sequence numbers

in trip
MN_Stop_list_of_Trip Stop list of a trip
MN_Stop_list_of_Route Distinct stop lists of trips

of a route
MN_R_ST_list Name list of route stops

of different trips
MN_R_ST_Time_list Route departure times

in a stop
Functions for the shortest path calculation
MN_ST_NearestST_list The list of the nearest stops

from a given stop
by the given distance

MN_R_Closest_stops Full information on valid routes
to the closest stops for a given date

MN_ClosestPoint Projection of a bus stop on
the closest street edge

MN_SplitEdge Splits of the street edge through
a given point

5.2 Static Information of the Transport Network

A group of functions that return static non time-dependent information
about transport network objects are: bus stops, routes, etc. The following
functions described below belong to this group.

MN_ST_list – the purpose of this function is to return the list of bus
stops belonging to a particular network. The network ID has to be specified
in the list of parameters.

MN_ST_of_R – this function returns ID numbers of all stops of the route.
A route ID has to be specified in the list of parameters. A list of bus stops is
not sorted, because the route can have several trips with the different list of
stops.

CHAPTER 5. QUERY SERVICES (DB API) 32

MN_Route_names – this function returns names of the route (short, and
long). The route ID has to be specified in the parameter list.

MN_Net_routes – this function returns all route names of a given net-
work (short, long). The network ID has to be specified in the list of param-
eters.

MN_R_segments – this function returns a segment list of the given
route. The route ID has to be specified in the parameter list. The list of
segments shows what bus stops it combines (source and target). Also, the
geometry of that segment is returned. The list of segments is not sorted.

5.3 Transport Network Information

A function group that returns information about transport network objects
that are time-dependent: trips, schedules, etc. The following functions de-
scribed below belong to this group.

MN_Stop_seq_in_Trip – this function returns the sequence numbers of
all bus stops for a given route, trip or just a sequence number of a specific
bus stop in a trip. We can specify route_id, trip_id and stop_id or route_id
and trip_id, or just route_id in the list of parameters. The sequence numbers
in the trip will be returned of a specific bus stop or of bus stops of the given
trip or route, respectively, to the number of parameters we specified. The
stop, network, route, and trip IDs will be returned along with the sequence
of that stop in the trip.

MN_Stop_list_of_Trip – this function returns a list of bus stops of trips
for a given route. We can specify route_id, trip_id as parameters or only the
route_id. The list of bus stops in the trip is returned in a single text record
field. Commas separate the bus stops from one another in the record. The
network, route, and trip IDs are returned along with the list of bus stops.

MN_Stop_list_of_Route – this function returns a list of bus stops of dis-
tinct trips for a given route. We have to specify route_id in the list of pa-
rameters. The list of bus stops in the trip is returned in a single text record
field. Commas separate the bus stops from one another in the record. The
network and route IDs are returned along with the list of bus stops.

MN_R_ST_list – this function returns a name list on of bus stops of dis-
tinct trips for a given route. We have to specify route_id in the list of param-
eters. The function returns the name list of bus stops in a single text record
field. The list is sorted. Dashes separate the names from one another in the
record. The route_id is returned along with the list.

MN_R_ST_Time_list – this function returns a list of departure times of
distinct routes for a given bus stop. We have to specify the bus stop_id in
the list of parameters. The bus stop name, route_id, and route name are
returned along with the list.

CHAPTER 5. QUERY SERVICES (DB API) 33

5.4 Functions for the Shortest Path Computation

A function group that is important for computations of intermediate results
of different applications of Dijkstra algorithm in finding the shortest path,
the isochrones, etc. The functions described below are a part of this group.

MN_ST_NearestST_list – this function returns a list of the nearest bus
stops that are far from the given bus stop no more than the specified distance
or no more than 1 km if the distance is not specified. We can specify the
stop_id, the distance in kilometers or only the stop_id. The function returns
2 lists of textual type, where commas separates stop IDs and distances to the
stops. The stop_id we provided is returned along with the lists. The distance
between stops is calculated as segments connecting the stops.

MN_R_Closest_stops – this function returns full information about valid
routes to the closest stops at a given date. We specify stop_id, a date and an
optional service_ON parameter. The optional parameter defines whether ser-
vice operation period will be taken into consideration or not. The function
returns the following type of records: stop_source int, stop_target int, edge_id
int, bn_node_source int, bn_node_target int, route_id int, service_id int, link
Boolean. The function is applied to the transport network.

MN_ClosestPoint – this function returns coordinates the shape of text
of the given point on the closest street edge, geometry and ID of that edge.
We specify stop_id as a parameter.

MN_SplitEdge – this function splits a street edge into 2 fragments
through a given point of a bus stop. As a result, geometries of the new
edges with the total length, equal to the given edge, are returned.

5.5 Example

For clarity, we take the function MN_Stop_seq_in_Trip that returns stop se-
quence numbers in the trip and explains its usage with different parameters
in detail. We test the function in PostgreSQL.

The function has the following syntax:
MN_Stop_seq_in_Trip(<route_id>,<trip_id>,<stop_id>)
MN_Stop_seq_in_Trip(<route_id>,<trip_id>)
MN_Stop_seq_in_Trip(<route_id>)

As you can see, this function has three parameters:

Term Type Definition
route_id int The route id specifies the route that holds all trips
trip_id int The trip id specifies a trip
stop_id int The stop id specifies a stop sequence number in the trip

CHAPTER 5. QUERY SERVICES (DB API) 34

We can specify all of them; trip_id with stop_id or only single stop_id.
Some query examples:

SELECT * FROM MN_Stop_seq_in_Trip(83,3071,99);
SELECT * FROM MN_Stop_seq_in_Trip(83) WHERE trip_id=3071 AND

stop_id=99;
SELECT * FROM MN_Stop_seq_in_Trip(83,3071);

In Table 5.2, we present the result of query that returns the first five
stops sequence numbers of route_id = 21.

Table 5.2. The result of query with the function MN_Stop_seq_in_Trip.

SELECT * FROM MN_Stop_seq_in_Trip(21) LIMIT 5;

net_id route_id trip_id stop_id value
1 21 4039 263 0
1 21 4039 264 1
1 21 4039 849 2
1 21 4039 266 3
1 21 4039 847 4
(5 rows)

The rest functions can be found in the Appendix.

Chapter 6

Evaluation

Oracle VM VirtualBox with 2 CPU and 3GB of RAM was used to develop
and test the multimodal network on the Linux Ubuntu 14.04 OS and Post-
greSQL 9.4 database. For testing purposes, Merano–Bolzano pedestrian and
transport networks were uploaded to the model. These networks correspond
to medium-sized network in Italy. As mentioned before, development of
the multimodal network and loading data can be divided into independent
stages. Therefore, model testing was run in stages.

Data Loading of Pedestrian Network. After loading the Merano–Bolzano
street data into the model tables, we have obtained:

• 9658 street nodes
• 11532 street edges

The process takes approximately 10 seconds together with extraction of the
relevant area from the downloaded file and parsing. We exclude the time to
download the pedestrian network from Internet.

0

2000

4000

6000

8000

10000

12000

14000

Street network Transport network

9658

1888

11532

13356

nodes edges

Figure 6.1. Distribution of Merano–Bolzano multimodal network nodes and
edges by networks.

35

CHAPTER 6. EVALUATION 36

Data Loading of Transport Network. The Merano–Bolzano timetable data
were parsed and loaded to the model tables:

• 887 stops
• 7560 trips
• 255286 stop times
• 1888 bus network nodes
• 13356 bus network edges

Stop_times file parsing took most time in this process. It took approximately
23 seconds.

Linking of the Pedestrian and Transport Networks. In this process, we
dealt with a challenge to link 9658 street nodes and 11532 edges of the
pedestrian network with 1888 bus nodes and 13356 edges of the trans-
port network. There arose difficulties because linking had to be done based
on geometries. The connection points had to be projections to the closest
streets. Instead of scanning all streets for each stop, we drew a rectangle
(bounding box) 1 km wide around each stop. Thus, only streets that in-
tersect with rectangles were scanned. Indices and geometry columns were
used to check the intersection of streets and bounding box geometries.

After optimizations of computations, we present the results of street
splitting process:

• 11532 street edges and 1888 bus nodes were linked;
• 563 street edges were split through 876 new nodes;
• After splitting 1441 new street edges were inserted;
• In total, the splitting process lasted approximately 2 seconds.

Conclusions and future perspectives. To test the effectiveness of the
model, we selected the synthetic tests: the same networks were considered
as distinct ones and were imported into the model several times. The tests
have showed that:

• Time of network import and linking is almost linearly dependent only
upon the number of nodes and edges of networks we have imported;

• Only slightly they are dependent on the number of already imported
networks in the model (see Figs. 6.2–6.4).

The analysis of pedestrian and transport networks has showed that the
pedestrian network has on average about 10 times more nodes than the
transport network in the same region (see Fig. 6.1). Moreover, the pedes-
trian network does not use timetables. To sum up, we can optimize the query
time by putting the preprocessing effort to the pedestrian network.

CHAPTER 6. EVALUATION 37

0

500

1000

1500

2000

2500

3000

1st attempt 2nd attempt 3rd attempt

 Inserted nodes: 9918 Inserted edges: 11807

Figure 6.2. Import time of the pedestrian network in ms.

17000

19000

21000

23000

25000

27000

1st attempt 2nd attempt 3rd attempt

Services: 4 Services dates: 6 routes: 40 stops: 886 trips: 7559 stop_times: 183625

Figure 6.3. Import time of the transport network in ms.

10000

11000

12000

13000

14000

15000

1st attempt 2nd attempt 3rd attempt

 Inserted busnet nodes: 1888 Inserted busnet edges: 16738

Figure 6.4. Time of the linking networks in ms.

Chapter 7

Conclusion and Future Work

The last section is dedicated to the final inferences about our proposed
model, the advantages and disadvantages against a similar type of other
models as well as future perspective of this model for further development
and exploitation. The biggest benefit of this model is the solution to store all
the pedestrian networks in the same tables. We apply the same solution to
the transport networks. It may seem that it can affect data search, however
necessary indices on data, clustering and other database techniques makes
the search fast and efficient.

Loading of the new networks into the model is organized using database
tools. Only some parts like downloading from Internet, extracting region
from a map or file conversion from one format to another use third-party
software. The database tools used for loading data ensure the speed and ef-
ficiency of this process. The short loading time into the model enables these
and other works related to the model to be carried out in the interactive
mode.

A set of implemented functions makes it easier to work with a model for
a wider range of users, who do not need to know the internal structure of
the model.

Obviously, the model has some drawbacks that can be easily improved
in the future. First of all, there is poor information about the pedestrian
network. The original source of the roads (OSM files) contains more infor-
mation such as street names, direction (one-way, bidirectional), valid speed
of that street, etc. This information is refused in our model.

There is also a proposal to use precomputed data, i.e. precompute the
shortest distances between stops for the pedestrian network. Since we can
add more than one network in the model, it would be good to compute
distances not among all stops, but only those, which are far from each other
not more than the given distance (for example, 5 km).

It is necessary to expand the multimodal DB API (increase a variety of
functions to work with the model) in order to make our model simpler and

38

CHAPTER 7. CONCLUSION AND FUTURE WORK 39

more accessible for a greater number of users. In future, it would be useful
to offer this model to other OS platforms such as Windows and other DBMS
such as Oracle.

Appendix

Comprehensive definitions of query services together with parameters and
examples of queries are described below.

Function MN_Stop_list_of_Trip

This is a function that returns the stop list of a trip.

Syntax
MN_Stop_list_of_trip(<route_id>,<trip_id>)
MN_Stop_list_of_trip(<route_id>)

Parameters

Term Type Definition
route_id int The route id specifies the route that holds all trips
trip_id int The trip id specifies a trip that holds a stop list

Return Value
A record set of network_id int, route_id int, trip_id int, stop_list text.

Example
The query below shows the usage of the function with different parameters:

SELECT * FROM MN_Stop_list_of_trip(83,3071);

Table A.1. The result of query with the function MN_Stop_list_of_Trip.

SELECT * FROM MN_Stop_list_of_trip(21) LIMIT 5;

net_id route_id trip_id list
1 21 4039 263, 264, 849, 266, 847, 269, 270, 261, 260, 271, 272, 473
1 21 4040 473, 272, 326, 259, 262, 268, 267, 848, 265, 850, 263
1 21 4041 473, 272, 326, 259, 262, 268, 267, 848, 265, 850, 263
1 21 4042 263, 264, 849, 266, 847, 269, 270, 261, 260, 271, 272, 473
1 21 4043 473, 272, 326, 259, 262, 268, 267, 848, 265, 850, 263
(5 rows)

40

APPENDIX 41

Function MN_Stop_list_of_Route

This is a function that returns the different stop lists of trips of the route.

Syntax
MN_Stop_list_of_route(<route_id>)

Parameters

Term Type Definition
route_id int The route id specifies the route that holds different

stop lists of trips

Return Value
A record set of network_id int, route_id int, stop_list text.

Example
The following query shows the usage of the function:

SELECT * FROM MN_Stop_list_of_route(21);

Table A.2. The result of query with the function MN_Stop_list_of_Route.

SELECT * FROM MN_Stop_list_of_route(21);

net_id route_id list
1 21 263, 264, 849, 266, 847, 269, 270
1 21 473, 272, 326, 259, 262, 268, 267, 848, 265, 850, 263
1 21 263, 264, 849, 266, 847, 269, 270, 261, 260, 271, 272, 473
(3 rows)

Functions MN_Route_names & MN_Net_routes

These are functions that return a list of route names.

Syntax
MN_Route_names(<route_id>)
MN_Route_names()
MN_Route_names(<route_name_context>)
MN_Net_Routes(<net_i>)

Parameters

Term Type Definition
route_id int The route id specifies the route, whose

name should be returned (if route_id is
unspecified, all route names will be returned)

route_name_context text Context of route name

APPENDIX 42

Return Value
A record set of network_id int, route_id int, short_name text, long_name.

Examples
The following queries shows the usage of the function with different param-
eters:

SELECT * FROM MN_Route_names(83);
SELECT * FROM MN_Route_names() WHERE route_id=83;
SELECT * FROM MN_Route_names(’4’);
SELECT * FROM MN_Net_routes(2);

Table A.3. The result of query with the function MN_Route_names.

SELECT * FROM MN_Route_names(21);

net_id route_id short_name long_name
1 21 222 ME 222
(1 row)

Table A.4. The result of query with the function MN_Net_routes.

SELECT * FROM MN_Net_routes(1) LIMIT 4;

net_id route_id short_name long_name
1 1 1 ME 1
1 2 2 ME 2
1 3 3 ME 3
1 4 4 ME 4
(4 rows)

Function MN_R_segments

This is a function that returns the list of route segments.

Syntax
MN_R_segments(<route_id>)

Parameters

Term Type Definition
route_id int The route id specifies the route, whose segments should

be returned

Return Value
A record set of route_id int, stop_source int, stop_target int, seg-
ment_geometry geometry.

Examples
The following queries shows the usage of the function:

APPENDIX 43

SELECT * FROM MN_R_segments(83);
SELECT route_id, stop_source, stop_target, ST_AsText(segment_geometry)
FROM MN_R_segments(83);

Table A.5. The result of query with the function MN_R_segments.

SELECT * FROM MN_R_segments(21) LIMIT 5;

route_id stop_source stop_target segment_geometry
21 259 262 0102000020E610000002000000A9FB00A. . .
21 260 271 0102000020E610000002000000DE8D058. . .
21 261 260 0102000020E6100000020000000875914. . .
21 262 268 0102000020E610000002000000F2B0506. . .
21 263 264 0102000020E61000000200000018EB1B9. . .
(5 rows)

Table A.6. The result of query with the function MN_R_segments.

SELECT route_id, stop_source, stop_target, ST_AsText(segment_geometry)
FROM MN_R_segments(21) LIMIT 5;

route_id stop_source stop_target st_astext
21 259 262 LINESTRING(11.158 46.686,11.155 46.689)
21 260 271 LINESTRING(11.159 46.686,11.161 46.682)
21 261 260 LINESTRING(11.156 46.687,11.158 46.686)
21 262 268 LINESTRING(11.155 46.689,11.154 46.691)
21 263 264 LINESTRING(11.157 46.702,11.154 46.700)
(5 rows)

Function MN_R_ST_Time_list

This is a function that returns the route departure times in the bus stop.

Syntax
MN_R_ST_Time_list(<stop_id>)

Parameters

Term Type Definition
stop_id int The stop that holds departure times of the routes

Return Value
A record set of stop_id int, stop_name text, route_id int, route_long_name
text, times_list text.

Example
The following query shows the usage of the function:

SELECT stop_id, stop_name, route_id, route_long_name,
left(times_list,50) FROM MN_R_ST_Time_list(1) LIMIT 5;

APPENDIX 44

Table A.7. The result of query with the function MN_R_ST_Time_list.

SELECT stop_id, stop_name, route_id, route_long_name, left(times_list,50)
FROM MN_R_ST_Time_list(1) LIMIT 5;

stop_id stop_name route_id route_long_name
1 Stazione Merano - Bhf Meran 20 221
1 Stazione Merano - Bhf Meran 40 999
1 Stazione Merano - Bhf Meran 1 1
1 Stazione Merano - Bhf Meran 11 146
1 Stazione Merano - Bhf Meran 4 4
stop_id left(times_list,50)
1 6:20, 6:20, 6:20, 6:55, 6:55, 6:55, 6:56, 6:56, 6:
1 22:53, 23:45, 24:6, 24:45, 24:58, 25:45, 25:58, 26
1 6:19, 6:19, 6:19, 6:44, 6:44, 6:44, 6:44, 7:4, 7:4
1 20:0, 20:0, 20:0, 20:20, 20:20, 20:20, 20:22, 20:2
1 5:49, 5:49, 5:49, 5:52, 5:52, 5:52, 6:21, 6:21, 6:
(5 rows)

Function MN_R_ST_list

This is a function that returns the name list of stops of different trips.

Syntax
MN_ST_of_R(<route_id>)

Parameters

Term Type Definition
route_id int The route id specifies route that holds the list of stops

Return Value
A record set of stop_list.

Example
The following query shows the usage of the function:

SELECT route_id, left(stops_list,80) FROM MN_R_ST_list(21);

Table A.8. The result of query with the function MN_R_ST_list.

SELECT route_id, left(stops_list,80) FROM MN_R_ST_list(21);

route_id left(stops_list,80)
21 Tirolo Croce - Tiroler Kreuz - - Lechner - - Pamer Kreuz - Funivia Muta - Seilba
21 Monte S. Benedetto Seggiovia - Segenbühe - Salita Tirolo - Tirolersteig - Lido -
21 Tirolo Croce - Tiroler Kreuz - - Lechner - - Pamer Kreuz - Funivia Muta - Seilba
(3 rows)

Function MN_ST_list

This is a function that returns the stop list of a specific transport network.

APPENDIX 45

Syntax
MN_ST_list(<net_id>)

Parameters

Term Type Definition
net_id int The transport network that holds the list of stops

Return Value
A record set of stop_id int, stop_name text.

Examples
The following queries shows the usage of the function with different param-
eters:

SELECT * FROM MN_ST_list(2);
SELECT * FROM MN_ST_list(2)
WHERE stop_name like ’%Wein%’;
SELECT * FROM MN_ST_list(1)
WHERE stop_id = 517;

Table A.9. The result of query with the function MN_ST_list.

SELECT * FROM MN_ST_list(1) LIMIT 3;

stop_id stop_name
1 Stazione Merano - Bhf Meran
2 Via delle Corse - Rennweg
3 Ospedale - Krankenhaus
(3 rows)

Function MN_ST_of_R

This is a function that returns the stops of a specific route.

Syntax
MN_ST_of_R(<route_id>)

Parameters

Term Type Definition
route_id int The route id specifies route that holds all the stops

Return Value
A record set of stop_id int.

Example
The following query shows the usage of the function:

SELECT * FROM MN_ST_of_R(21) LIMIT 5;

APPENDIX 46

Table A.10. The result of query with the function MN_ST_of_R.

SELECT * FROM MN_ST_of_R(21) LIMIT 3;

mn_st_of_r
264
259
269
(3 rows)

Function MN_ST_NearestST_list

This is a function that returns the list of the nearest stops from a selected
bus stop.

Syntax
MN_ST_NearestST_list(<stop_id>)
MN_ST_NearestST_list(<stop_id>,<distance_in_km>)

Parameters

Term Type Definition
stop_id int The selected stop id
distance_in_km double precision Distance in km

Return Value
A record set of stop_id int, stop_list text, dist_list text.

• Important
If distance_in_km is not specified, the function takes the distance by default
(≈ 150 meters).

Examples
The following queries shows the usage of the function with different param-
eters:

SELECT * FROM MN_ST_NearestST_list(732)
SELECT * FROM MN_ST_NearestST_list(732,0.5);

Table A.11. The result of query with the function MN_ST_NearestST_list.

SELECT * FROM MN_ST_NearestST_list(1);

stop_id stop_list dist_list
1 1; 142; 143; 171; 368; 775 0.00; 0.11; 0.12; 0.08; 0.11; 0.13
(1 row)

SELECT * FROM MN_ST_NearestST_list(1,0.2);
stop_id stop_list dist_list
1 1; 142; 143; 145; 171; 368; 775 0.00; 0.11; 0.12; 0.20; 0.08; 0.11; 0.13
(1 row)

APPENDIX 47

Function MN_R_Closest_stops

This is a function that returns full information about valid routes to the
closest stops for a given date.

Syntax
MN_R_Closest_stops(<stop_id>,<date>)
MN_R_Closest_stops(<stop_id>,<date>,<service_ON|OFF>)

Parameters

Term Type Definition
stop_id int The given bus stop id from where we start

search of neighbour stops
date text The given date to check valid services

on that day
service_ON|OFF Boolean The service usage is on/off

Return Value
A record set of stop_source int, stop_target int, edge_id int, bn_node_source
int, bn_node_target int, route_id int, service_id int, link Boolean>

• Important
If the service parameter is FALSE, the valid date of service will be disre-
garded.

Examples
The following queries show the usage of the function with different param-
eters:

SELECT * FROM MN_R_Closest_stops(1,’20160415’);
SELECT * FROM MN_R_Closest_stops(1,’20160415’,FALSE);

Table A.12. The result of query with the function MN_ST_NearestST_list.

SELECT * FROM MN_R_Closest_stops(1,’20160415’,FALSE);

stop_source stop_target edge_id bn_node_source
1 11 2185 10
1 11 8127 10
1 11 8587 10
1 11 6710 10
1 12 2455 7
1 12 5009 7
bn_node_target route service link
48 96 723 f
48 96 724 f
48 96 725 f
48 96 727 f
56 85 722 f
56 85 723 f
(6 rows)

APPENDIX 48

Function MN_ClosestPoint

This is a function that returns a projection on the closest street edge to a bus
stop.

Syntax
MN_ClosestPoint(<stop_id>)

Parameters

Term Type Definition
stop_id int The given bus stop id, whom we search for

the closest edge

Return Value
A record set of point text, edge text.

Example
The query below shows the usage of the function with different parameters:

SELECT * FROM MN_ClosestPoint(1);

Table A.13. The result of query with the function MN_ClosestPoint.

SELECT * FROM MN_ClosestPoint(45);

point edge_id edge
POINT(11.193 46.608) 12814 LINESTRING(11.193 46.608,11.193 46.608,. . .)
(1 row)

Function MN_SplitEdge

This is a function that splits a street edge into 2 fragments through a given
point for a bus stop.

Syntax
MN_SplitEdge(<stop_id>,<point>)

Parameters

Term Type Definition
stop_id int The given bus stop id
point text Point coordinates on the edge, which we want to split

Return Value
A record set of point text, edge1 text, edge2 text.

APPENDIX 49

Example
The query below shows the usage of the function with different parameters:

SELECT * FROM MN_SplitEdge(1,’POINT(11.150 46.673)’);

Table A.14. The result of query with the function MN_SplitEdge.

SELECT * FROM MN_SplitEdge(45,’POINT(11.193 46.608)’);

point edge, edge1, edge2
POINT(11.198 46.608) LINESTRING(11.174 46.696,11.174 46.696,11.174 45.696,. . .)

POINT(11.174 46.696)
LINESTRING(11.174 46.696,11.174 46.696,. . .)

(1 row)

Bibliography

[1] J. Arz, D. Luxen, and P. Sanders. Transit node routing reconsidered. In
V. Bonifaci, C. Demetrescu, and A. Marchetti-Spaccamela, editors, Ex-
perimental Algorithms 12th International Symposium, SEA 2013 Rome,
Italy, June 5–7, 2013. Proceedings, Lect. Notes Comput. Sci., Vol. 7933,
pages 55–66. Springer, Berlin, Heidelberg, 2013.

[2] H. Bast, D. Delling, A.V. Goldberg, M. Müller-Hannemann, T. Pajor,
P. Sanders, D. Wagner, and R.F. Werneck. Route planning on trans-
portation network. Technical Report MSR-TR-2014-4, Microsoft Re-
search, Microsoft Corporation, Redmond, WA, 2014.

[3] J. Booth, P. Sistia, O. Wolfson, and I.F. Cruz. A data model for trip
planning in multimodal transportation system. In Proceedings of the
12th International Conference on Extending Database Technology: Ad-
vances in Database Technology, Saint-Petersburg, Russia, March 23–26,
2009, pages 994–1005, 2009.

[4] D. Delling, T. Pajor, and D. Wagner. Engineering time-expanded graphs
for faster timetable information. In Robust and Online Large-Scale
Optimization, Lect. Notes Comput. Sci., Vol. 5868, pages 182–206.
Springer, Berlin, Heidelberg, 2009.

[5] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route
planning algorithms. In Algorithmics of Large and Complex Networks:
Design, Analysis, and Simulation, Lect. Notes Comput. Sci., Vol. 5515,
pages 117–139. Springer, Berlin, Heidelberg, 2009.

[6] W. Edsger. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[7] R. Geisberger. Contraction Hierarchies: Faster and Simpler Hierarchi-
cal Routing in Road Networks. PhD thesis, Institut für Theoretische
Informatik, Universität Karlsruhe, 2008.

[8] R.F. Mahrous. Multimodal transportation systems: Modelling chal-
lenges. Master thesis, University of Twente, 2012.

50

BIBLIOGRAPHY 51

[9] R.H. Möhring, H. Schillingand, B. Schütz, D. Wagner, and T. Will-
halm. Partitioning graphs to speed up dijkstra’s algorithm. In S.E.
Nikoletseas, editor, Experimental and Efficient Algorithms. 4th Inter-
national Workshop, WEA 2005, Santorini Island, Greece, May 10–13,
2005. Proceedings, Lect. Notes Comput. Sci., Vol. 3503, pages 189–
202. Springer, Berlin, Heidelberg, 2005.

[10] T. Pajor. Multi-Modal Route Planning. PhD thesis, Institut für Theo-
retische Informatik, Universität Karlsruhe, 2009.

[11] E. Pyrga and C. Zaroliagis. Efficient models for timetable information
in public transportation systems. Journal of Experimental Algorithmics,
12, Article No. 2.4, 2008.

[12] A.L. Rosenberg and L.S. Heath. Graph Separators, with Applications.
Front. Comput. Sci. Kluwer Academic, New York, 2002.

[13] W. Roush. Welcome to Google transit: How (and why) the search
giant is remapping public transportation. Community Transportation,
3:20–29, 2012.

[14] J. Zhang, F. Liao, T. Arentze, and H. Timmermans. A multimodal
transport network model for advanced traveler information systems.
Procedia – Social and Behavioral Sciences, 20:313–322, 2011.

[15] OpenStreetMap. http://www.openstreetmap.org.

[16] Osm2po is both, a converter and a routing engine. http://osm2po.de.

[17] PostgreSQL 9.4.8 Documentation. https://www.postgresql.org/
docs/9.4/static/tutorial-sql.html.

[18] The General Transit Feed Specification. https://developers.
google.com/transit/gtfs/.

[19] Verband Deutscher Verkehrsunternehmen. http://www.vdv.de/
oepnv-datenmodell.aspx.

	Blank Page

