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Abstract

The aim of this thesis is to design and develop a system for the computation of
isochrones in multimodal spatial networks that can be used to conduct various
types of geospatial reachability analysis. Such kind of analysis provide an im-
portant tool in many application areas, including environmental and life sciences,
epidemiology, social sciences, medicine, emergency management or city planning.

We introduce and formally define isochrones for multimodal networks, which
can be classified as continuous or discrete along the space and the time dimension
respectively. An isochrone in a multimodal spatial network is defined as a possibly
disconnected subgraph that covers all space points in the network from where a
query point q is reachable within a given time span and by a given arrival time
at q. Isochrones are a new query type in spatial network databases and provide a
useful instrument to perform reachability analysis.

We propose efficient and scalable algorithms that mainly differ in the trade-off
between memory consumption and runtime performance. The completely main-
memory based algorithm MDijkstra loads the entire network in memory and is
therefore limited by the available memory. To make the computation scalable in
terms of memory usage, we propose the incremental network expansion algorithm
MINE. The space complexity of MINE is independent of the network size and
depends only on the size of the isochrone. The runtime is determined by the incre-
mental loading of the relevant network portions. In terms of data transfer, MINE
is optimal because only those network portions are loaded in memory that even-
tually will be part of the isochrone. To further reduce the memory requirements,
we introduce the concept of vertex expiration, which eagerly expires the isochrone
and keeps in memory only the minimal set of expanded vertices that is necessary
to avoid cyclic expansions. Vertex expiration is implemented in the algorithm
MINEX, which reduces the memory requirements from O(|V iso|) to O(

√
|V iso|)
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for grid and O(1) for spider networks, respectively. To improve the runtime ef-
ficiency of MINEX, we propose a hybrid approach, termed MRNEX. Instead of
loading the network edge by edge during network expansion, the algorithm reads
small chunks of the network and performs network expansion in main memory.
MRNEX significantly reduces the I/O costs, whereas the memory usage is thanks
to vertex expiration only slightly higher than for MINEX. Thus, MRNEX is a
good trade-off between memory complexity and runtime efficiency.

We conduct a detailed empirical evaluation of our algorithms using both syn-
thetic data and real-world data with different network topologies, covering city
networks that have a more regular structure as well as skewed regional networks.
The experiments confirm the analytical results on synthetic data and show that
for real-world data the memory requirements are very small indeed.

Finally, we implemented a client-server system, termed ISOGA, which uses
the isochrone algorithms in combination with a statistical component to conduct
various types of geospatial analysis. The use of ISOGA is illustrated in various
real-world application scenarios, such as in urban planning to analyze the coverage
of a city with public services. We plan to deploy the ISOGA system to local
institutions with the aim to get feedback for further improvements.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Konzeption und Entwicklung eines Systems für die
Berechnung von Isochronen in multimodalen räumlichen Netzwerken, welche für
verschiedene räumlichen Erreichbarkeitsanalysen eingesetzt werden können. Solche
Analysen bieten ein wichtiges Anwendungsinstrument in vielen Bereichen, wie et-
wa in Umwelt-und Biowissenschaften, Epidemiologie, soziale Naturwissenschaften,
Medizin, Zivilschutz oder Städteplanung.

Zuerst werden Isochrone in multimodalen Netzwerken eingeführt, welche kon-
tinuierlich oder diskret bezüglich der Raum-Zeit Dimensionen sein können. Ei-
ne Isochrone in einem multimodalen räumlichen Netzwerk ist definiert als ein
möglicherweise entkoppelter Untergraph, der jene räumlichen Punkte beinhaltet,
die einen gewissen Anfragepunkt q, innerhalb einer gewissen Zeitspanne und zu ei-
nem bestimmtem Zeitpunkt erreichen. Eine Isochronenanfrage kann als eine neue
Art von Anfrage in räumlichen Datenbanken angesehen werden. Nebenbei bietet
sie ein nützliches Instrument für Erreichbarkeitsanalysen.

Wir präsentieren effiziente und skalierbare Algorithmen, welche sich hauptsächlich
im Trade-off zwischen Speicherbedarf und Laufzeit unterscheiden. Der Algorithmus
MDijkstra, eine auf den Hauptspeicher basierte Implementierung, lädt das gesamte
Netzwerk in den Hauptspeicher und wird daher durch den zu verfügbaren Speicher
begrenzt. Um die Berechnung von Isochronen skalierbar im Speicherverbrauch zu
machen, wurde der netzwerk-basierte, inkrementelle Expansionsalgorithmus MINE
entwickelt, dessen Speicherbedarf unabhängig vom Netzwerk ist und nur von der
Größe der Isochrone abhängt. MINE ist optimal, dadurch dass nur jener Bereich
des Netzwerkes in den Speicher geladen wird, der die Isochrone repräsentiert.

Zur weiteren Reduzierung des Speicherbedarfs führen wir das Konzept der Ver-
tex Expiration (Erlöschen eines Knotens) ein, in welchem eifrig untersucht wird,
welche Knoten aus der Isochrone in zukünftige Expansionsschritten nicht mehr
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erreicht werden können und infolgedessen als erloschen markiert werden. Dadurch
wird im Hauptspeicher nur eine minimale Anzahl von Knoten gehalten, um zu
garantieren, dass keine Expansionszyklen auftreten können, ohne dabei die Kor-
rektheit des Ergebnisses zu verletzen. Die Speicherkomplexität des Algorithmus
(MINEX) entspricht O(|V iso|) bis O(

√
|V iso|) für gitter-förmige Netzwerke und

O(
√
|V iso|) bis O(1) für spinnen-förmige Netzwerke, wobei V iso| die Anzahl der

Knoten in der Isochronen ist.
Um die Laufzeit des Algorithmus von MINEX zu verbessern, wird ein hybrider

Ansatz vorgeschlagen namens MRNEX. Anstatt in jedem Expansionschritt nur
die Netzwerkinformationen der benachbarten Knoten zu laden, lädt MRNEX mit
einem einzigen Datenbankzugriff grös̈sere Teile des Netzwerks, um diese dann im
Hauptspeicher zu expandieren. Dadurch reduzieren sich drastisch die I/O Kosten,
während die Speicheranforderungen nur geringfügig höher ausfallen. Deswegen ist
MrneX ein guter Kompromiss zwischen Speicher Komplexität und Laufzeit Per-
formance.

Es wurde eine detaillierte empirische Studie durchgeführt, in welcher die unter-
schiedlichen Algorithmen mit synthetischen und Realdaten hinsichtlich Laufzeit-
verhalten und Speicherbedarf ausgewertet wurden. Die Experimente, welche auf
den synthetischen Daten ausgeführt worden sind, bestätigen die analytischen Er-
gebnisse über den Speicherbedarf. Auch der in den Realdaten erforderte Speicher-
bedarf ist nur geringfühgig höher.

Schlussendlich wird eine Client-Server Anwendung mit der Bezeichnung ISOGA
entwickelt, in welchem diese Algorithmen gemeinsam mit einer statistischen Kom-
ponente für die Analyse von räumlichen Erreichbarkeitssuchen eingesetzt werden
können. Die Verwendung des Systems ISOGA kann in verschieden Anwendungs-
szenarien eingesetzt werden, so z.B. in der Städteplanung, um die Abdeckung von
wichtigen öffentlichen Gebäuden zu analysieren. In Zukunft soll ISOGA lokalen
Körperschaften, wie Gemeinde oder Provinz zu Verfügung gestellt werden, um
Feedback über Verbesserungsvorschläge und eventuell neue Anwendungsszenarien
zu erhalten.

x



Riassunto

Lo scopo di questa tesi è di progettare e sviluppare un sistema per il calcolo di
isocrone in reti spaziali multimodali che possa essere utilizzato per effettuare di-
versi tipi di analisi di raggiungibilità geospaziale. Tale tipo di analisi fornisce un
importante strumento per molti settori applicativi, tra cui le scienze ambienta-
li e della vita, l’epidemiologia, le scienze sociali, la medicina e la gestione delle
emergenze nell’ambito dell’urbanistica. In questa tesi sono introdotte e definite in
modo formale le isocrone per reti multimodali, che vengono classificate come con-
tinue o discrete lungo le dimensioni spaziali e temporali. Una isocrona in una rete
multimodale spaziale è definita come un sottografo possibilmente disconesso che
copre tutti i punti nello spazio della rete da cui un punto di interesse q è raggiun-
gibile in un dato lasso temporale e non oltre ad un orario di arrivo specificato. Le
isocrone possono essere viste come un nuovo tipo di query nell’ambito delle banche
dati spaziali; in quanto esse forniscono uno strumento utile per eseguire analisi di
raggiungibilità. Questo tesi propone diversi algoritmi, efficienti e scalabili, che si
differenziano nel trade-off tra il consumo di memoria e le prestazioni di runtime.

L’algoritmo MDijkstra carica l’intera rete in memoria ed è quindi limitato dal-
la memoria disponibile. Per rendere il calcolo scalabile in termini di utilizzo di
memoria, viene introdotto l’algoritmo MINE il quale carica ed espande la rete in
memory in modo incrementale.

La complessità di memoria di MINE è indipendente dalla dimensione della rete
e dipende esclusivamente dalla dimensione dell’isocrona. La complessità di runtime
è determinata dal caricamento incrementale delle porzioni di rete rilevanti. MINE
è ottimale nel senso che vengono caricate in memoria solo le porzioni di rete che
alla fine formeranno l’isocrona.

Per ridurre ulteriormente i requisiti di memoria, si introduce il concetto di ver-
tex expiration (scadenza dei vertici), implementato nell’algoritmo MINEX. Questo
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algoritmo identifica e marca come scaduti i vertici che in future iterazioni non pos-
sono essere più raggiunti e mantiene in memoria solamente il minimo insieme di
vertici necessario per evitare espansioni cicliche. L’algoritmo MINEX riduce la me-
moria richiesta da O(|V iso|) a O(

√
|V iso|) per reti di tipologia in forma a griglia e

da O(
√
|V iso|) a O(1) per reti di forma di ragnatela.

Per un miglioramento della runtime performance di MINEX, viene proposto
l’approccio ibrido MRNEX, nel quale invece di caricare in memoria la rete arco
per arco durante l’espansione, vengono caricate piccole porzioni di rete e l’espan-
sione è eseguita in memoria principale. Con questo approccio si riesce a ridurre
significativamente i costi di I/O, mentre il consumo della memoria grazie alla ver-
tex expiration è solo leggermente superiore. Quindi l’algoritmo MRNEX è un buon
compromesso tra complessità di memoria ed efficienza di runtime. In questa tesi
viene eseguita una dettagliata valutazione empirica nella quale vengono analizzati
l’utilizzo di memoria e i tempi di esecuzione dei vari algoritmi, sia con dati sintetici
sia con dati reali. Gli esperimenti confermano i risultati analitici sui dati di sintesi
e dimostrano che con i dati reali l’utilizzo di memoria è molto efficiente. Infine, vie-
ne presentato ISOGA, un sistema client-server che è stato implementato. ISOGA
utilizza gli algoritmi sviluppati in combinazione con una componente statistica per
effettuare diversi tipi di analisi geospaziale. L’uso di ISOGA è illustrato in vari
campi d’applicazione, come ad esempio nella pianificazione urbanistica dove è sta-
to usato per analizzare la copertura di una città con i servizi pubblici. Abbiamo in
programma di distribuire il nostro sistema ISOGA ad enti locali altoatesini, con
l’obiettivo di ottenere un feedback per ulteriori miglioramenti e per utilizzarlo in
nuovi campi applicativi.
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CHAPTER 1

Introduction

The growing popularity of online mapping services such as Google Maps, Bing
Maps, or Microsoft MapPoint has led to an increasing interest in offering various
types of queries on spatial networks in real time. Typical examples are finding
the shortest route between locations or finding the nearest neighbor objects for
important facilities (hospitals, schools, etc.). More recently, routing in so-called
multimodal networks has received much attention, where multiple means of trans-
portation (e.g. walking in combination with buses, cars, trains, etc.) are con-
sidered. While computing the shortest path is a basic building block in almost
all kinds of queries in spatial networks, with the broader availability of data and
technologies more advanced queries have been studied. In particular, there is a
growing focus on reachability queries and analysis.

In this thesis we study isochrones as a powerful instrument to conduct various
types of reachability analysis in spatial network databases. The term isochrone
derives from the Greek words iso (ισo) = same and chronos (χρóνoς) = time.
Generally, an isochrone is defined as a line drawn on a map that connects all points
at which something occurs or arrives at the same time [65, 67]. In the context of
reachability analysis or transportation geography, an isochrone is defined as the
set of all space points (i.e. an area) that are reachable from a query point in a
given timespan, or vice versa all points from where the query point is reachable in
a given timespan. When schedule-based networks are taken into account, such as
the public transport system, the arrival/departure time becomes important, and
the shape of an isochrone is a possibly disconnected set of areas around the query
point (reachable by walking) and around the public transport stops (reachable by
a combination of walking and using public transport). Isochrones as an instrument

1
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for reachability analysis were first discussed by Armstrong [1] in 1972 in a study
about the accessibility of the airport Hampshire in South East England, where he
created time-based travel maps for private motor transport.

Figure 1.1 shows five isochrones (0-15 min, . . . , 60-75 min) at 09:00 am with
query point q in the center of Edinburgh (black circle)1. The red area represents
an isochrone in which every location reaches q in less than 15 minutes. The
turquoise areas represent peripheral regions from which it takes 60-75 minutes
to reach q. There exist also areas that are part of a smaller isochrone, though
they are geographically more distant from q. For instance, the town Inverkeithing
north-west of Edinburgh belongs to the 15− 30 min isochrone, because there is a
train connection at 08:35 am that arrives in Edinburgh at 08:59 am. In contrast, the
district Buckstone south of Edinburgh, though geographically closer to q, belongs
to the 30 − 45 min isochrone; the area is not well covered by public transport
systems.

Figure 1.1: Five Isochrones in Edinburgh.

The goal of this thesis is to study isochrones and their computation in multi-
modal spatial network databases. In particular, we will formally define isochrones
and devise efficient algorithms for the computation of isochrones.

1source: http://mapumental.com
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1.1 Introductory Examples

We motivate the thesis by discussing three real-world scenarios that emerged from
the eBZ 2015 umbrella initiative in collaboration with the local municipality. More
specifically, the project “Bolzano – 10 minuti da tutto” had the high level objective
that citizens should reach all important services (schools, hospitals, etc.) in less
than ten minutes using the public transport system. In this project, isochrones
have been used to perform various kinds of reachability analysis.

Isochrones for Accessibility Analysis. In this example, we analyze how well
the primary schools in Bozen/Bolzano are reachable by walking in combination
with city buses. Figure 1.2(a) illustrates such a scenario. The query points are
formed by all primary schools in the city. The gray shaded area represents the
10-minutes isochrone for these query points, i.e. the parts of the city from where
the kids reach the closest school in ten minutes or less. By joining the isochrone
with the inhabitants database and filtering out the schoolchilds, we can determine
the number of kids living in this area, and hence to what degree certain areas are
served or not. The small circles in Figure 1.2(a) indicate the buildings in which
schoolchilds live who reach their nearby school in less than ten minutes.

Figure 1.2(b) illustrates the result of the opposite query, i.e. areas in which
kids do not reach the closest school in less than ten minutes, hence areas that are
not well served.

(a) Within 10 minutes (Served Area) (b) Not within 10 minutes (Underserved Area)

Figure 1.2: Reachability Analysis of Primary Schools.

The benefit of such a tool is to easily identify areas with low reachability, where
the public transport system needs to be improved, e.g. by incrementing the bus
frequency, modifying the bus schedules, or adding additional facilities.
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Isochrones for House Hunting Services. In this example in Figure 1.3 we
consider a person who is looking for a suitable apartment that is in a specific
price range and less than 25 minutes away from his/her working place by using
the public transport system. The query point (symbol ’*’) represents the working
place, and the gray area represents the isochrone, where he/she should look for an
apartment.

Figure 1.3: Apartments within a 25 minutes Isochrone.

The right-hand side of the screenshot shows the interface that allows the user to
formulate an SQL query to select objects that shall be joined with the isochrone.
In this example, the query retrieves all apartments/houses with a rent between
600 and 800 Euros (small circles inside the isochrone). It shows also a summary
statistics, i.e. the number of apartments that are located in the isochrone, the total
number of apartments in the specified price range, and the resulting percentage.
The popup on the left-hand side shows additional information about one of the
qualifying apartments, such as the indication on how to reach the working place:
walk on food for four minutes to the closest bus station and then take the bus
line 5 at 8:39 am; the total distance is 21 minutes.

Isochrones for the Analysis of Evacuation Scenarios. The third applica-
tion scenario emerged from a collaboration with the Civil Defence Department of
the Autonomous Province of Bozen/Bolzano. In the case of a natural disaster in
urban areas, it is very important to be able to carry a large number of people in a
short time to the closest safe refuge place. To develop an emergency plan for such
situations, the following aspects need to be considered: Which type of buildings
can be used as refuge places? Where should they be located? How many new
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refuges must additionally be set up in order to guarantee a 100% or close to 100%
coverage?

Figure 1.4 illustrates such a scenario, where the buildings in the map acts as
refuge places. The gray area denotes a 15 minute isochrone in which 67% of the
total inhabitants live. To guarantee a higher coverage additional buildings in the
upper left and in the lower part of the map must be set up to approach a maximal
coverage.

Figure 1.4: Evacuation Scenario for Natural Disasters.

1.2 Contributions

The overall goal of this thesis is to design and develop a system for the computation
of isochrones in multimodal spatial networks, which can be used for various types
of geospatial reachability analysis. More specifically, the technical contributions
are as follows:

• We provide a formal definition of isochrones for multimodal spatial networks
with different transport modes that can be discrete or continuous in space
and time, respectively. Isochrone queries form a new query type in spatial
network databases.
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• We developed three different algorithms for the computation of isochrones.
They all use an incremental network expansion strategy, but differ in the
memory structure (disk vs. memory based). The first algorithm, MDijkstra
(Multimodal Dijkstra Network Expansion), requires O(|V |) memory since the
entire network is loaded in memory.

• To reduce the memory requirements, the second algorithm MINEX (Multi-
modal Incremental Network Expansion) incrementally loads only those parts
of the network that will eventually form the isochrone. The algorithm is in-
dependent of the network size and depends only on the size of the isochrone,
i.e. requires O(

√
|V iso|) memory, where |V iso| is the number of vertices in

the isochrone. To avoid to keep the entire isochrone in memory, we propose
vertex expiration that identifies a minimal set of vertices that need to be
kept in memory in order to avoid cyclic expansions. Vertex expiration re-
duces the memory requirements from O(|V iso|) to O(

√
|V iso|) for grid and

O(1) for spider networks, respectively.

• To improve the runtime efficiency, the algorithm MRNEX (Multimodal Range
Network Expansion) adopts a hybrid approach. Instead of loading the net-
work edge by edge during network expansion, the algorithm reads small
chunks of the network and performs network expansion in memory. When-
ever during network expansion a vertex is not in memory, a small chunk of
the network around the expanding vertex is loaded. MRNEX significantly
reduces the I/O costs, while the memory usage is only slightly higher than
in MINEX, and it can be controlled by specifying the size of the chunks
in combination with vertex expiration. MRNEX provides a good tradeoff
between memory complexity and runtime efficiency.

• We conducted detailed empirical evaluations both on synthetic as well as
real-world datasets, representing urban, regional, and national networks.
The experiments confirm the analytical results about the scalability of our
solutions in terms of memory and runtime complexity.

• We implemented a Web-based prototype system which combines the com-
putation of isochrones with a statistics component and provides a useful
instrument to perform various kinds of geospatial reachability analysis.
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1.3 Publications

Most of the scientific results presented in this thesis have been published in the
following conferences:

M. Innerebner, M. H. Böhlen, and I. Timko. A Web-enabled Extension of a
Spatio-temporal DBMS. In Proc. of the 15th ACM International Symposium
on Geographic Information Systems (ACM-GIS 2007), pages 34–41. ACM,
2007.

J. Gamper, M. H. Böhlen, W. Cometti, and M. Innerebner. Defining
Isochrones in Multimodal Spatial Networks. In Proc. of the 20th ACM Con-
ference on Information and Knowledge Management (CIKM 2011), pages
2381–2384, 2011.

J. Gamper, M. H. Böhlen, and M. Innerebner. Scalable Computation of
Isochrones with Network Expiration. In Proc. of the 24th International Con-
ference on Scientific and Statistical Database Management (SSDBM 2012),
pages 526–543, 2012.

M. Innerebner, M. H. Böhlen, and J. Gamper. ISOGA: A System for Ge-
ographical Reachability Analysis Enhanced with Statistics. In Proc. of the
12th International Symposium on Web and Wireless Geographical Informa-
tion Systems (W2GIS 2013), pages 180–189, 2013.

1.4 Thesis Organizations

Chapter 2. This chapter discusses related research work in the area of query
processing in spatial, time-dependent, and multimodal networks. Since our proto-
type system is an essential part of the thesis, we investigate also state-of-the-art
implementations with similar functionalities.

Chapter 3: In this chapter, we first introduce basic concepts about multimodal
networks which allow to represent several transport systems with different trans-
portation modes in a single network. Then, we provide a formal definition of
isochrones in such networks.

Chapter 4: This chapter presents three algorithms for the computation of isochrones
in multimodal networks: the memory-based MDijkstra algorithm, the disk-based
MINEX algorithm with vertex expiration, and the hybrid MRNEX algorithm. The
concept of vertex expiration is described in detail, and we provide analytical results
about the memory complexity for various types of network structures.
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Chapter 5: In this chapter we perform a detailed empirical evaluation on syn-
thetic and real-world data. We measure the memory and runtime requirements
of our algorithms. The experiments confirm the analytical results and show the
scalability of the proposed algorithms.

Chapter 6: This chapter presents a prototype implementation, termed ISOGA,
which combines the computation of isochrones with a statistical component to
provide a tool for geospatial analysis. We describe the system architecture of the
Web-based client-server system and discuss several application scenarios.

Chapter 7: This chapter summarizes the achieved results and points out some
interesting directions for future research work.



CHAPTER 2

Related Work

In this chapter we discuss related research work, which we divide in four parts. The
first part in Section 2.1 reviews research about query processing in spatial network
databases, where different types of queries have been proposed and studied. The
second part in Section 2.2 is dedicated to time-dependent networks, where the
edge costs depend on the time. While most of the research in the past has been
done on unimodal networks, the third part in Section 2.3 discusses work on routing
algorithms that consider different transportation modalities. Finally, Section 2.4
provides an overview about open source and commercial routing applications.

9
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2.1 Spatial Network Queries

Different query types have been studied for spatial network databases, in which the
network distance is used as metric instead of the Euclidean distance [15, 16, 49].
The most studied problem is the shortest path problem (SP), with Dijkstra’s
influencing SP algorithm [16]. The algorithm finds the shortest path from a given
source vertex vs to a given destination vertex vd and works as follows: each vertex
is assigned a tentative cost, which is initially zero for the source vertex and ∞ for
all other vertices in the network. Starting from the source vertex, the algorithm
visits all outgoing edges. For each outgoing edge, it checks weather by traversing
the current edge the adjacent vertex can be reached with a lower cost. If this is the
case, the cost computed so far is updated to the new cost. Once all outgoing edges
are visited, the vertex is called expanded. In the next round, denoted expansion
phase, the vertex with the smallest tentative cost that has not yet been expanded
is examined. The expansion terminates when the target vertex is encountered.

There exist different search techniques to accelerate Dijkstra’s SP algorithm.
The most straightforward optimization is the bidirectional search [12]. An addi-
tional search is started from the destination vertex that can be run in parallel.
The algorithm stops as soon as both searches meet each other.

A∗-search [26] is a goal directed search strategy that improves over Dijkstra’s
algorithm by using a lower bound estimate of the shortest path, which is computed
as the actual network distance from vs to the current vertex plus the Euclidean
distance from the current vertex to vd. This yields a more informed and directed
search towards the target vertex.

A very efficient form of goal directed search is the Arc-Flags technique [64,
37, 43] that partitions the graph into cells and attaches a label to each edge. A
label contains a flag for each cell. The flag indicates whether a shortest path
starting with this edge exists to the corresponding cell. As a result, a bidirectional
Arc-Flags-Dijkstra visits only those edges that lie on the SP of a long-range query.

Approximation techniques based on precomputed distances to so-called land-
marks [62, 20, 21, 52, 23] have been widely studied. The ALT algorithm introduced
by Goldberg et al. [20, 21] precomputes the distances using the A∗-algorithm (A)
from a set of selected landmark vertices (L) to all other vertices and uses then the
triangle inequality (T) to estimate the SP between two queried vertices. Tretyakov
et al. [63] improved the accuracy of the SP landmark estimation by introducing
shortest path trees for each landmark, instead of simply storing the distances to
landmarks.

Contraction hierarchies [19, 5, 55] are an extension of Arc-Flags. This approach
uses a routine that iteratively removes unimportant nodes and adds new edges to
preserve the correct distances between the remaining nodes. By visiting a much
smaller amount of vertices, fast results are achieved in directional SP searches.
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Hierarchical search methods [33, 34, 35] structure a large network into smaller
subgraphs. To reduce the memory consumption of storing the shortest path be-
tween all pairs of vertices, the network is divided in partitions and only the shortest
path between the boundary vertices of each partition are stored. Based on these
shortcuts, a second subnetwork is built in which the cardinality of connections is
much smaller. It consists of the shortcuts and edges that connect vertices of differ-
ent hierarchies. However, finding an optimal network partitioning is known to be
an NP-hard problem [18]. Lee et al. [40] improve the space complexity by storing
the subnetworks in a flattened structure rather than storing them in a hierarchical
structure.

Other techniques rely on space-driven SP precomputation. Examples are the
partitioning into Voronoi regions and precomputing distances within and across
regions. A Voronoi diagram divides the space into a number of regions such that in
each region there exist a specific point, called generator point, which is the nearest
neighbor for all other points in that region. VN3 [38] computes a Voronoi diagram
that consists of several Voronoi cells, where each of them represents the region of
the nearest neighbor in the network. Xuan et al. [71, 70] extend previous work
Voronoi diagrams to answer range queries.

For the computation of k-nearest neighbor queries in a spatial network, Samet
et al. [56] use a space-driven materialization technique for storing the shortest
path in quadtrees. In a quadtree the search space is recursively divided into
quadrants until the number of data points in each quadrant fits in a single page.
The algorithm is based on precomputing the shortest paths between all possible
vertices in the network and using an encoding that takes advantage of the fact that
the shortest paths from vertex u to all of the remaining vertices can be decomposed
into subsets, based on the first edges on the shortest paths to them from u. By
taking advantage of their spatial coherence, which is captured by the aid of a
shortest path quadtree, the amount of storage to keep track of it is reduced to
O(N), where N is the number of vertices.

Papadias et al. [49] present a storage model for spatial network databases to-
gether with a number of evaluation algorithms for the most popular queries, in-
cluding nearest neighbor, range, and closest pair queries. Given a source point q
and an entity dataset S, a k nearest neighbor (kNN) query retrieves the k objects
of S that are closest to q according to the network distance, e.g. find the ten closest
restaurants. A range query retrieves all objects of S that are within distance d
from q. A closest-pairs query finds for two given datasets S and T the k pairs
(s, t), s ∈ S, t ∈ T , that are closest in terms of network distance. For instance,
find the hotel, restaurant pair with the smallest driving distance.

For kNN queries, two different solutions are proposed [49]. The Incremental
Euclidean Restriction (IER) algorithm uses the Euclidean distance to iteratively
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prune the search space for candidate objects, for which then the network distance
can be computed using a more directed search. The Incremental Network Ex-
pansion (INE) algorithm is an adaptation of Dijkstra’s algorithm and performs
network expansion in all directions starting from the query point q.

For range queries, the Range Network Expansion (RNE) algorithm starts from
q and computes first the set of all qualifying segments (QS) within the network
range d. Then, the data objects are retrieved that are located on these segments.
RNE uses two disk-based index structures (R-tree [28]) for indexing edges and
data objects. After identifying the qualifying segments, an intersection join is
performed that returns all objects in S that are within distance d. The Range
Euclidean Restriction (RER) algorithm retrieves first a set S ′ of candidate objects
that are within Euclidean distance d. Next, a network expansion is performed
starting from q by examining all edges that are within the network distance d.
Objects in S ′ that are within d are removed from S ′ and collected in the result
set. The process terminates, when all edges in the range are exhausted or when
S ′ becomes empty. The data structure for accessing the network is a disk-based
extension of the connectivity-clustered access method CCAM [58] that stores the
lists of neighbor nodes together in the same cluster. This search pruning strategy
is not applicable in multimodal networks, where the Euclidean distance does not
determine an upper bound of the network distance.

Deng et al. [15] improve over the work in Papadias et al. [49] by performing less
network distance calculations and therefore accessing less network data. A major
problem of INE is that the search expands in all directions, hence it requires many
data accesses. Though IER improves the strategy using directional search, the
network distance is still computed for all candidates, including those which will
not appear in the final result. The new algorithm maintains a separate heap for
each candidate and adopts the A∗ search strategy. Expanding the vertex v with
the smallest distance lower bound over all heaps, the 1st NN is computed first,
then the 2nd NN, etc. Thus, the network distance is only computed for candidates
that appear in the final result.

Almeida and Güting [13] present a storage schema with index structures to-
gether with a modified version of Dijkstra’s algorithm for the incremental compu-
tation of kNN queries to allow a one-by-one retrieval of the objects on an edge. The
algorithm can stop before retrieving k objects or continue to retrieve the k+1th
NN. The algorithm is shown to outperform INE [49] and the VN3 [38] approach.

Jensen et al. [31] include in spatial networks the temporal dimension for com-
puting spatial queries between moving objects. The distance between two moving
points depends on several characteristics of a road (length, maximum speed, etc.).
Since the provided abstract data model is specifically designed for moving objects
in networks, it does not directly apply in multimodal networks.
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Conceptually, isochrone queries are closest to range queries. A range query
retrieves all objects within a given network distance d. In contrast, an isochrone
query retrieves all network points within network distance d, thus the result is
a portion of the network covering all space points within d rather than all data
objects within d. Another difference concerns the algorithmic solution. The algo-
rithms for the computation of isochrones presented in this thesis adapt Dijkstra’s
incremental network expansion strategy and are similar in spirit to INE, but they
are generalized to switch between and to expand in different networks. Third,
pruning techniques such as the Euclidean restriction can not be easily adopted and
applied for isochrones in multimodal networks due to the schedule-based networks
and the need to explore each individual pedestrian edge. Isochrone queries are
more flexible than range queries: by intersecting the area covered by an isochrone
with an object relation, all objects within an isochrone can be determined without
the need to compute the distances to the individual objects.

2.2 Time-dependent Networks

Time dependency in spatial networks has been introduced to handle settings when
the cost to traverse an edge changes over time, e.g. changing traffic conditions in
road networks. Most existing work on time-dependent networks is on the shortest
path problem, where two classes of solutions have been proposed. Discrete time
models discretize the timeline and compute an instance of the traditional shortest
path for each possible starting time [10, 47]. This approach effectively captures
networks with few scheduled start times for which the cost of each edge is then
fixed. It falls short in networks, where the starting time can be any time in a given
interval and the edge cost is therefore a function of time. Since a discretization
approach introduces inaccuracy and is inefficient if many possible starting times are
considered, solutions based on a continuous time model have been proposed [17,
36]. Kanoulas et al. [36] adopt a continuous time model and investigate the problem
of finding the fastest path (FP) from a source vertex vs to a destination vertex
vd, when the starting time at vs can be any time point in a given interval I and
the travel time on an edge is specified as a piece-wise constant function over time,
termed speed pattern. The result is a starting interval with a single fastest path
(single FP ) or a set of starting intervals covering I with the corresponding fastest
path (all FP ). The proposed solution is a novel extension of the A∗ algorithm.
Ding et al.[17] present a novel solution for the single FP problem, which they call
time-dependent shortest path (TDSP) problem. An edge-delay function specifies
how much time it takes to traverse an edge from u to v depending on the starting
time at u, and waiting on vertices is allowed to minimize the travel time. The
proposed algorithm is based on Dijkstra and requires less time and space than
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previous work [36].

In the field of public transportation networks, researchers have recently turned
the attention to schedule-based systems in multimodal transportation networks [68,
45]. Public transportation networks can be modeled as graphs just like road net-
works, except that besides spatial information also schedules have to be considered.

Müller-Hannemann et al. [45] summarize three different models for modeling
time dependency in schedule-based networks. In the condensed model a node is
introduced for each station and an edge is inserted if there is a direct connection
between two stations. The weight of the edge is set to be the minimum travel time
over all possible connections between these two stations. The benefit of this model
is the relatively small size of the resulting graph. There are also several drawbacks.
The model does not incorporate the actual departure time from a given station.
Travel times highly depend on the time of the day, and the time needed to change
to another type of transportation system is not taken into account. As as result,
the calculated travel time between two arbitrary stations is only a lower bound on
the real travel time.

The time-dependent-model [48, 47, 9] is an extension of the condensed model
and uses time-dependent edges. Each station is modeled by a single node, and an
edge between two vertices exists if there is a direct connection. Several weights are
assigned to each edge. Each weight represents a travel time for a mean of transport
running from one station to another. The specific edge that is used in query
answering is then picked according to the departure time from the station. The
advantages of this model are its small size, delay times can easily be incorporated,
and the obtained travel time is feasible. However, adapting speed up techniques
to time-dependent graphs is more complicated [14, 53].

In the time-expanded-model [46, 44] a vertex is used for each departure and
arrival event. An edge is inserted for each connection between two events. The
main drawback of this approach is that the resulting graphs are much bigger
than for the time-dependent models. The benefit is the large flexibility in adding
additional constraints.

Based on the time-expanded model, Huang [30] suggests a schedule-based
shortest path finding algorithm for transit networks. The algorithm investigates
the network by following route patterns based upon a pattern-centered spatio-
temporal transit network model, which extends the time-expanded-model. A pat-
tern represents a specific route. The backward PFS algorithm computes the fastest
path from a destination vertex with an expected arrival time back to the origin
vertex. The forward PFS algorithm does the opposite.

Bast [3] presents an overview of public transportation networks. The work
highlights that the algorithmic problem of computing the shortest path between
a source and a destination point is surprisingly different between road networks
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and public transportation networks. Bauer et al. [6] show in their experimen-
tal study that speed up techniques, developed for static road networks [20, 37],
perform significantly worse on time-expanded models. As a consequence running
a simple time-dependent Dijkstra is faster than any speed up technique on the
corresponding time-expanded graph.

Google has released a specification named General Transit Feed Specification
(GTFS) [22] that proposes a general model designed for public transportation
systems. The most relevant entities are schedules, trips, routes, and stops. Since
many other routing applications have started to use this model, GTFS tends to
become a de facto standard for modeling multimodal transportation systems.

2.3 Multimodal Networks

Florian et al. [68] investigate multimodal networks. They provide a general frame-
work for a multimodal network in which events act as space-time elements. An
event represents the arrival at a vertex and the corresponding time. The transition
from one event to another is achieved by executing an activity (e.g. walking, wait-
ing and boarding, riding). The presented algorithm computes the shortest path
from a source vertex to a destination vertex within a given time range. Events are
stored in a priority queue. The work is kept general and there is no formalization
of events and transitions. Furthermore, the switching between different networks
is not discussed.

Trip planning algorithms have been intensively investigated both in Euclidean
space and road networks [32, 29, 57, 41, 61]. The aim is to provide an optimal and
precise route according to user defined constraints. In the work of Li et al. [41], the
user specifies a set of points of interest that belong to a specific category. Then the
system computes the best route from the source to the destination location. Sev-
eral approximation techniques are suggested to provide near-optimal answers with
approximation ratios that depend on either the number of categories or the maxi-
mum number of points per category. The k -stops shortest path problem [57] seeks
for the optimal path between two locations passing through exactly k intermediate
points in the Euclidean space.

A data model presented by Booth et al. [8] introduces a framework of an ad-
vanced transportation system. The model provides a trip consisting of several
transportation modes that are applied for multimodal shortest path queries. In a
graph model each vertex represents a place in a transportation network. Places
are annotated with a label and a geometric representation, i.e. point, line or poly-
gon. Every edge is associated with a particular transportation mode. A vertex
that consists of different adjacent edges is denoted as a transfer station. A trip is
defined as a sequence of legs, where each leg represents a path in the same trans-
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portation mode. Besides returning a path with minimum costs of time or distance,
respectively, the result can have more constraints and choices, e.g. different motion
modes, specifying the maximal number of transfers, etc.

Multi-geography route panning is investigated by Balasubramanian et al. [2]
with the goal to determine the least cost weighted paths from source to destination
locations residing in different geographies. A least cost path from a source to a
destination retrieves that path with minimum resources, e.g. mileage. Geographies
are described in multiple representations, e.g. raster vs. vector data or data with
different projection systems. The primary motivation of this paper is to study
real-time and safely routing through unknown spaces where an emergency event
occurs.

Xu [69] proposes a system for managing moving objects with multiple trans-
portation modes build on top of the SECONDO database management system [24].

2.4 Routing Applications and Systems

The growing popularity of online mapping services has activated a large develop-
ment in online routing services for answering shortest path queries in multimodal
networks.

OpenTripPlanner1, as an alternative to Google Transit2 is an open source mul-
timodal trip planner that uses SP algorithms to compute the shortest trip between
a source and a destination location. The routing is based on the directed search
algorithms A∗ [26] and contraction hierarchies [19]. The implementation is de-
signed and optimized for SP queries. In June 2012, OpenTripPlanner released an
extension, named OpenTripPlanner Analyst, that provides a service to compute
isochrones in multimodal networks. The basic routing functionality was extended
to enable one-to-many and many-to-one routing.

The project pgRouting [51] (PGR) extends the spatial DBMS PostGIS with
network routing functionalities that are implemented as user-defined functions on
top of PostgreSQL. The driving distance (isoline) SQL operator expects as input
an edge relation, a query point that must be a vertex, and a maximal range. The
edge relation must project a vertex identifier, the start vertex, the end vertex and
the cost of an edge. Dynamic costs can only be specified before the computation
starts. Therefore PGR can not be used for multimodal routing characterized by
time-dependent costs, in which the transfer time to traverse an edge depends on
the time t when the start vertex is visited. Since t is not know at the beginning
of the computation, PGR can not manage time-dependent costs.

Oracle Spatial provides similar methods [66, 39] in Java, termed withinCost,
as an alternative to the Euclidean distance operator SDO WITHIN DISTANCE .

1www.opentripplanner.org 2www.google.com/transit
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The withinCost method returns a set of paths, from where each vertex in the path
is reachable from q within the given costs.

Similar functionalities are provided also by other commercial GIS software.
ESRI offers Network Analyst as an extension of the ARCGIS software product, and
ERDAS provides the product RouteFinder 3 as an extension of the desktop product
Intergraph. All these products are restricted to perform reachability analysis in a
single, unimodal network. The company Hacon has implemented for the German
railway agency “Deutsche Bahn” the timetable information system. Their product
Hafas [25] – primarily used for trip advisory services – uses an efficient algorithm
for range queries applied on the railway transportation network.

There exist a few applications that compute isochrones in multimodal networks.
Mapnificient4 uses a simple heuristic based on the Euclidean distance to determine
the closure of an isochrone. The expansion is only performed in the transportation
networks, while the distances covered in walking mode are approximated with a
circle having as radius the remaining distance. The British company Mapumen-
tal5 developed a similar commercial product that uses isochrones in house hunter
services.

2.5 Summary

There has been a lot of research work in the area of spatial network databases,
investigating various types of queries, different networks such as time-dependent
networks, as well as different transportation modalities. Conceptually, isochrones
are closest to range queries. While range queries retrieve all objects within a given
network distance, isochrone queries return all network points within this distance.
Thus, the result of an isochrone query is a portion of the network rather than a
set of data objects. Another difference concerns the algorithmic solutions. For
the computation of isochrones the network needs to be explored in all possible
directions to identify all qualified space points, whereas the computation of range
queries can be optimized by search space pruning techniques and driving the search
towards candidate objects. Existing systems to compute isochrones either use
approximation techniques or work only for unimodal networks.

3http://www.routeware.dk/routefinder/
4www.mapnificent.net
5http://mapumental.com/





CHAPTER 3

Isochrones in Multimodal Spatial Networks

In this chapter we first introduce and define basic concepts about multimodal
networks and routing. We define a multimodal path that is characterized by a
composition of edges that represent different transport networks. We propose a
generic cost function that computes the cost for traversing an arbitrary edge in
a multimodal network. We define a multimodal path characterized by its time-
dependency. Given a multimodal network, we finally introduce and formally define
an isochrone as the minimal and possible disconnected subgraph that covers exactly
those locations from where a query point is reachable within given time constraints.
We provide also a second definition of isochrones, which cover all the locations that
are reachable from the query points.
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3.1 Multimodal Spatial Networks

We begin with the definition of a multimodal network that allows to represent
several transport systems in a single network.

Definition 3.1.1. (Multimodal Network) A multimodal network is a eight-tuple
N = (G,Θ, S, θ, µ, λ, τ, ω). G = (V,E) is a directed multigraph with a set V
of vertices and a multiset E of ordered pairs of vertices, termed edges. Θ is
a set of transport systems. S = (Θ,TID ,W, σa, σd) is a schedule, where TID
is a set of trip identifiers, W ⊆ V , and σa : Θ × TID × W 7→ T and σd :
Θ × TID × W 7→ T determine arrival and departure time, respectively (T is
the time domain). Function µ : Θ 7→ {’csct ’, ’csdt ’, ’dsct ’, ’dsdt ’} assigns to each
transport system a transport mode, and the functions θ : E 7→ Θ, λ : E 7→ R+,
τ : E × T 7→ R+, and ω : E × T 7→ {(0, 1],∞} assign to each edge transport
system, length, transfer time, and weight, respectively.

A multimodal network allows to represent several transport systems, Θ, with
different modalities in a single network. For the transport modalities we distinguish
between continuous and discrete in space and time, respectively. This gives the
following four different transport modes:

• continuous space and time mode (µ(.) = ’csct ’), e.g. pedestrian network;

• discrete space and time mode (µ(.) = ’dsdt ’), e.g. the public transport sys-
tem, such as trains and buses;

• discrete space continuous time mode (µ(.) = ’dsct ’), e.g. moving walkways
or moving stairs;

• continuous space discrete time mode (µ(.) = ’csdt ’), e.g. regions or streets
that can be passed by pedestrians or cars only in specific time slots.

Vertices represent crossroads of the street network and/or stops of the public trans-
port system. Edges represent street segments, transport routes, moving walkways,
etc. For an edge (u, v) we denote u as the start vertex and v as the end vertex.

Example 3.1.1. Figure 3.1 shows a multimodal network with two transport sys-
tems, Θ = {’P’, ’B’}, representing the pedestrian network with mode µ(’P’) =
’csct ’ and bus network with route number ’B’ with mode µ(’B’) = ’dsdt ’, re-
spectively. Solid lines are street segments of the pedestrian network, e.g. edge
e = (v1, v2) with θ(e) = ’P’. Pedestrian edges are annotated with the edge length,
which is the same in both directions, e.g. λ((v1, v2)) = λ((v2, v1)) = 300. Dashed
lines represent edges of the bus network.
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v0 v1 v2 v3 v4

v5v6v7v8
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200 300

250

260 440

250

200

300500200

Pedestrian ’P’
Busline ’B’

Figure 3.1: Multimodal Network.

The schedule stores for discrete time (’dsdt ’, ’csdt ’) transport systems(T-Sys)
the arrival and departure time at the stop stations for the individual trips of
a certain route. An excerpt of a schedule is shown in Table 3.1, e.g. TID =
{1, 2, . . . }, σa(’B’, 1, v6) = σd(’B’, 1, v6) = 05:33:00.

T-Sys (Θ) Trip (TID) Stop (V ) Arrival (σa) Departure (σd)
B 1 v7 05:31:30 05:32:00
B 1 v6 05:33:00 05:33:00
B 1 v3 05:34:00 05:34:30

...
...

...
...

B 2 v7 06:01:30 06:02:00
B 2 v6 06:03:00 06:03:00
B 2 v3 06:05:00 06:05:30

Table 3.1: Example of a Schedule.

The schedule follows a time-dependent model [14, 54, 4], where the cost of an
edge is not just a scalar value, but a piece-wise linear function that maps each
possible arrival time from the start vertex of the edge to a travel cost. For an edge
e = (u, v), the function τ(e, t) computes the time-dependent transfer time that is
required to traverse e, when starting from u as late as possible and arriving at v no
later than time t. Pyrga et al. [54] term this the latest-departure problem (LDB),
in which the optimization criterion is to maximize the actual departure time at the
departure station among all connections that arrive at the arrival station by the
given arrival time. This problem occurs when we compute an isochrone as the set
of points from where the query point is reachable within the given time constraints.
The opposite problem is termed earliest-arrival problem (EAP) [54], in which the
optimization consists in minimizing the difference between the arrival time and
the given departure time. This problem occurs when isochrones are defined as the
set of all space points that are reachable from the query point.

In order to define a multimodal path, which is an essential part of an isochrone,
we first introduce the transfer time for an arbitrary edge in a multimodal network.
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Definition 3.1.2 (Transfer time). Given a multimodal network N with edges E
and time domain T. Furthermore, let t ∈ T be either the arrival time at v or the
departure time at u. The transfer time of an edge (u, v) for the transport modes
’dsdt ’, ’dsct ’, and ’csct ’ is determined by a function τ : E×T→ R+ that is defined
as follows:

τ((u, v), t) =



λ((u,v))
s
∗ ω(t) µ(θ((u, v))) ∈ {’csct ’, ’dsct ’},

t− t′ µ(θ((u, v))) = ’dsdt ’ ∧
t is arrival time at v ∧
t′=max{σd(r, tid, u) | σa(r, tid, v) ≤ t},

t′ − t µ(θ((u, v))) = ’dsdt ’ ∧
t is departure time at u ∧
t′=min{σa(r, tid, u) | σd(r, tid, v) ≥ t}.

For continuous space and time edges (µ((u, v)) = ’csct ’), the transfer time is
modeled as a time-dependent function specified with a weight function w. The
weight is a function that assigns to each edge in dependency of the time a value
from the interval (0, 1], e.g. to afford for different traffic conditions during rush
hours, or∞ if the edge cannot be traversed during some time periods. For discrete
time edges (µ((u, v)) = ’dsdt ’) the arrival or departure time must be considered.
If the departure time is given, the transfer time is difference between the earliest
arrival time t′ at v minus t. If the arrival time at v is given, the transfer time is
the difference between the current time t and the latest departure time t′ at vertex
u. For the transport modes ’csdt ’ the transfer time can be specified in a similar
way.

Example 3.1.2. We assume a constant walking speed of s = 2 m/s and a constant

weight ω(t) = 1, which yields a transfer time τ(e, t) = λ(e)
2 m/s

for pedestrian edges.
In Figure 3.2 with a given arrival time 06:04:00, the transfer time on the pedestrian
edge (v7, v6) is 500m

2 m/s
= 250 s. The transfer time on the bus edge (v7, v6) is 06:04:00−

06:02:00 = 120 s, including a 60 s waiting time for the next bus.

A continuous in space edge allows to start or stop a trip not only at the vertices
but also at any point along the edge. We refer to such positions as locations.

Definition 3.1.3 (Location). A location in a multimodal network N is any point
on an edge e = (u, v) ∈ E that is accessible. We represent it as l = (e, o), where
0 ≤ o ≤ λ(e) is an offset that determines the relative position of l from u on edge
e.
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A location represents vertex u if o = 0 and vertex v if o = λ(e); any other
offset refers to an intermediate point on edge e. In continuous space networks all
points on the edges are accessible. Since a pedestrian segment is modeled as a
pair of directed edges in the opposite direction, any point on it can be represented
by two locations, ((u, v), o) and ((v, u), λ((u, v))−o), respectively. For instance, in
Figure 3.2 the location of q is lq = ((v2, v3), 180) = ((v3, v2), 80). In discrete space
networks only vertices are accessible, thus o ∈ {0, λ(e)} and locations coincide
with vertices. An edge segment, (e, o1, o2), with 0 ≤ o1 ≤ o2 ≤ λ(e) represents the
contiguous set of space points between the two locations (e, o1) and (e, o2) on edge
e. We generalize the length function for edge segments to λ((e, o1, o2)) = o2 − o1.

After having introduced the basic components of a multimodal network, we are
now ready to define a multimodal path and its costs.

Definition 3.1.4 (Path). A path from a source location ls = ((v1, v2), os) to a
destination location ld = ((vk, vk+1), od) is defined as a sequence of connected edges
and edge segments, p(ls, ld) = 〈x1, . . . , xk〉, where x1 = ((v1, v2), os, λ((v1, v2))),
xi = (vi, vi+1) for 1 < i < k, and xk = ((vk, vk+1), 0, od)).

The first and the last element in a path can be edge segments, whereas all other
elements are entire edges. Edges along a path may belong to different transport
systems. This implies a switch into a different transport system.

Example 3.1.3. In Figure 3.2, a path from v7 to q is to take bus ’B’ from v7 to v3

and then walk to q, i.e. p(v7, lq) = 〈x1, x2, x3〉, where x1 = (v7, v6) and x2 = (v6, v3)
are complete edges and x3 = ((v3, v2), 0, 80) is an edge segment.

q

v0 v1 v2 v3 v4

v5v6v7v8

v9

σd(B, 2, v7) = 06:02:00 σd(B, 2, v6) = 06:03:00

σa(B, 2, v3) = 06:05:00

Pedestrian ’P’
Busline ’B’

80

Figure 3.2: Multimodal Path.

Definition 3.1.5 (Path Cost). The cost of a path p(ls, ld) = 〈x1, . . . , xk〉 with t
as arrival time at location ld or departure time at location ls is the sum of the
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individual transfer times of all edges/edge segments in the path, i.e.

γ(〈x1, . . . , xk〉, t) =



τ(xk, t) k=1,

τ(xk, t) + γ(〈x1, . . . , xk−1〉, t−τ(xk, t)) k > 1 ∧
t is arr. time at ld,

τ(x1, t) + γ(〈x2, . . . , xk〉, t+τ(x1, t)) k > 1 ∧
t is dep. time at ls.

The above definition is recursive. If the path consists of a single edge or edge
segment (k = 1), function τ computes the cost of traversing this edge, depending
on whether t is arrival or departure time. If the path, 〈x1, . . . , xk〉, contains more
than one edge or edge segments, the transfer time for the last edge (segment), xk,
is determined if t is arrival time at ld and the cost of the first edge (segment), x1, if
t is departure time at ls. For the remaining path, function γ is called in a recursive
way with a new arrival/departure time. The recursion terminates when the path
contains a single edge (segment).

Example 3.1.4. We continue the previous example and consider path p(v7, lq) =
〈(v7, v6), (v6, v3), ((v3, v2), 0, 80)〉 with arrival time t = 06:06:00 at location lq and
a constant walking speed of 2m/s. Then, the cost of traversing this path is

γ(p(v7, lq), 06:06:00) = τ(((v3, v2), 0, 80), 06:06:00) + γ(p(v7, v3), t′),

where t′ is the latest arrival time at v3 to reach lq in time. The transfer time on
the last edge segment is determined as τ(((v3, v2), 0, 80), 06:06:00) = 80m

2m/s
= 40 s,

which gives

γ(p(v7, lq), 06:06:00) = 40 s+ γ(p(v7, v3), 06:06:00− 40 s)

= 40 s+ γ(p(v7, v3), 06:05:20)

= 40 s+ τ((v6, v3), 06:05:20) + γ(p(v7, v6), t′).

We calculate now the transfer time on the discrete edge (v6, v3) with arrival time
at v3 no later than 06:05:20. Since the latest bus that matches this constraint
departs at 06:03:00 and arrives at 06:05:00, we have a waiting time of 20 s at v3,
and the transfer time is τ((v6, v3), 06:05:20) = 06:05:20 − 06:03:00 = 140 s. This
gives

γ(p(v7, lq), 06:06:00) = 40 s+ 140 s+ τ((v7, v6), 06:05:20− 140 s)

= 40 s+ 140 s+ τ((v7, v6), 06:03:00).
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We compute the transfer time on the bus edge (v7, v6) in a similar way as above
and get the final path cost as:

γ(p(v7, lq), t) = 40 s+ 140 s+ 40 s = 220 s.

Notice that with a different arrival time at q, e.g. t = 06:05:00, the path cost might
be significantly different.

Next, we introduce network distance as the cost of the shortest path from a
source location to a destination location.

Definition 3.1.6 (Network distance). The network distance, d(ls, ld, t), from a
source location, ls, to a destination location, ld, with t being the arrival time at ld
(the departure time at ls), is defined as the minimum cost of any path from ls to
ld with arrival time t at ld (departure time t at ls) if such a path exists, and ∞
otherwise.

We measure the network distance in terms of transfer time that is required
from a source to a destination.

3.2 Definition of Isochrones

We proceed with the definition of an isochrone as the minimal subgraph of a
multimodal spatial network that covers all locations from where a query point q
is reachable under the given time constraints if the direction of the reachability is
incoming. Otherwise the isochrone covers all locations reachable from q.

Definition 3.2.1 (Isochrone). Let N = (G,Θ, S, µ, θ, λ, τ, ω) with G = (V,E) be a
multimodal network, Q be a set of query points with arrival time (departure time)
t, and dmax > 0 be a maximum time span. An isochrone, N iso = (V iso, Eiso), is
defined as the minimum and possibly disconnected subgraph of G that satisfies
the following conditions:

• V iso ⊆ V ,

• ∀l(l = (e, o) ∧ e ∈ E ∧ ∃q ∈ Q(d̂(l, q, t) ≤ dmax)

⇔ ∃x ∈ Eiso(x = (e, o1, o2) ∧ o1 ≤ o ≤ o2)),

where d̂(l, q, t) = d(l, q, t) is the network distance from l to q if t is the arrival
time at q, and d̂(l, q, t) = d(q, l, t) is the network distance from q to l if t is the
departure time at q.
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The first condition requires the vertices of the isochrone to be a subset of the
vertices of the multimodal network. The second condition constrains an isochrone
to cover exactly those locations l with a network distance d(l, q, t) to its closest
q ∈ Q (from its closest q ∈ Q) that is smaller than or equal to dmax. Notice the
usage of edge segments in Eiso for representing partially reachable edges. Whenever
an edge e is entirely covered by an isochrone, we use e instead of (e, 0, λ(e)).

Example 3.2.1. In Figure 3.3, the subgraph in bold represents the isochrone for
dmax = 5 min and arrival time t = 06:06:00 at q. The numbers in parentheses are
the network distance to q. Edges close to q are entirely reachable, whereas edges
on the isochrone border are only partially reachable. Partially reachable edges are
labeled with the offset of the reachable portion from the edge’s start vertex. For
instance, on edge (v0, v1) only locations after an offset of 80 meters reach q within
the given time constraints.

q

v0(340s) v1(240s) v2(90s) v3(40s) v4(260s)

v5(330s)v6(180s)v7(240s)v8(340s)

v9(360s)

80

130
170

120

6026038080

Figure 3.3: Isochrone with dmax=5min, s=2m/s and t = 06:06:00 .

More formally, the isochrone subgraph is represented by the following set of
vertices and edges:

V iso = {v3, v2, v6, v1, v7, v4},
Eiso = {((v0, v1), 80, 200), ((v8, v1), 130, 250), ((v2, v1), 180, 300),

((v1, v2), 0, 300), ((v3, v2), 0, 260),

((v2, v3), 0, 260), ((v4, v3), 0, 440),

((v3, v4), 360, 440), ((v5, v4), 170, 250), ((v9, v4), 120, 200),

((v5, v6), 60, 300), ((v7, v6), 260, 500),

((v6, v7), 380, 500), ((v8, v7), 80, 200)}.

3.3 Summary

In this section we introduced and formally defined isochrones in multimodal spatial
networks. We begun with the definition of basic concepts of multimodal spatial
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networks that can be continuous or discrete along, respectively, the time and space
dimensions. More specifically, we introduced a general time-dependent cost func-
tion to compute the time-dependent transfer time of an edge. Thereby, the time
can be specified as starting time at the source location or as arrival time at the
destination location.





CHAPTER 4

Algorithms for the Computation of Isochrones

In this chapter we propose three different algorithms for the computation of
isochrones in multimodal spatial networks. While all three algorithms apply an
incremental network expansion strategy, they differ mainly in the way they load
the network in main memory during network expansion and in the overall memory
requirements. The first algorithm, MDijkstra, is completely memory-based and
initially loads the entire network in memory, where network expansion is then per-
formed. The second algorithm, MINEX, loads the network from disk during the
network expansion process — one node with incoming edges on each expansion
step. Thus, the algorithm keeps only the isochrone in memory. To further reduce
the memory requirements, we introduce the concept of vertex expiration, which al-
lows to keep in memory only a minimal portion of the isochrone that is required to
avoid cyclic network expansions. The third algorithm, MRNEX, adopts a hybrid
approach. The network is loaded in small chunks, which significantly reduces the
number of DB accesses. With vertex expiration, the memory requirements can be
minimized similar to the previous algorithm.

29
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4.1 Memory-based Algorithm MDijkstra

A memory-based algorithm for the computation of isochrones has first been intro-
duced in [7]. We improved this algorithm in several directions as will be described
below.

The overall strategy of computing isochrones using network expansion a la
Dijkstra works as follows. Consider a multimodal network N, query point q with
arrival time t at q, maximal duration dmax, and walking speed s. The network
expansion starts from query point q and propagates backwards along the incoming
edges in all directions. When a vertex v is expanded, all incoming edges e = (u, v)
are considered. The network distance of vertex u to query point q, when traversing
e is computed incrementally as the network distance of v to q plus the transfer time
to traverse edge e. The expansion terminates when all locations with a network
distance to q that is smaller than dmax have been visited. In order to avoid cyclic
expansion, two sets of vertices are maintained:

• Closed vertices, C: They have already been expanded and the network dis-
tance to q is known. C is maintained in a hash table.

• Open vertices, O: They have been encountered, but are not yet expanded.
The set O is maintained in a priority queue.

For each vertex v ∈ O∪C, we keep the network distance, dv (abbrev. for d(v, q, t))
to q. On each iteration of network expansion, the vertex in O with the smallest
distance to q is expanded.

Algorithm 1 shows the pseudocode of algorithm MDijkstra, which implements
this strategy. First the entire network is loaded in main memory, and the set O of
open vertices is initialized to the set of all vertices together with an initial distance
of∞. The set C of closed vertices is initialized to the empty set. Next, the position
of q in the network is located. If q coincides with a vertex v, the distance of v in
O is updated to 0. Otherwise, q is on an edge (u, v). The distance of vertex u and
v in O is updated by considering the walking distance from q to these vertices, i.e.
the time it takes to reach q. The traversed edge segments are output.

After this initialization, vertex expansion starts (line 10). The vertex v with
the smallest distance is dequeued from O and marked as closed by moving it to the
set C. Then, all incoming edges, e = (u, v), to v are examined. Since a discrete
time edge always implies a disk access to query the schedule, we do this only if
it is really required, i.e. if vertex u is not yet closed. In this case its distance to
q when traversing edge e is incrementally computed as the distance of v plus the
time to traverse e starting from the end vertex v. If this distance, d′u, is smaller
then the one in O, du is updated (lines 16). Otherwise, when u is already closed
and the edge is a discrete edge, there is no need to compute the distance of u via
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Algorithm 1: MDijkstra(q, dmax, s, t,N)
input : q, dmax, s, t,N
output: Eiso, V iso

1 load network in main memory;
2 O ← {(vi,∞) | vi ∈ V };
3 C ← ∅;
4 if q coincides with v then
5 Update the distance of v in O to 0 ;
6 else// q = ((u, v), o) = ((v, u), o′)
7 Update the distance of u in O to o/s ;
8 Update the distance of v in O to o′/s ;
9 Output ((u, v),max(0, (o−dmax/s), o) and ((v, u),max(0, (o′−dmax/s), o′);

10 while O 6= ∅ ∧ (v, dv)← dequeue(O) ∧ dv ≤ dmax do
11 O ← O \ {v};
12 C ← C ∪ {v};
13 foreach e = (u, v) ∈ E do
14 if u /∈ C then
15 d′u ← τ(e, t− dv) + dv ;
16 du ← min(du, d′u);

17 else
18 if µ(θ(e)) ∈ {’csct’, ’csdt’} then
19 d′u ← τ(e, t− dv) + dv ;

20 if µ(θ(e)) ∈ {’csct’, ’csdt’} then
21 if d′u ≤ dmax then
22 Output (e, 0, λ(e));
23 else
24 Output (e, o, λ(e)), where d((e, o), q, t) = dmax;

25 V iso ← V iso ∪ {(v, dv))};

e. If, however, e is continuous in space (e.g. a pedestrian edge), the distance d′u
is computed to determine the segment of e that is included in the isochrone. The
last step on each iteration adds the reachable portions of continuous space edges
to the result. Discrete space edges do not produce an output, since they have no
accessible locations except their start and end vertices, which are added when the
incoming continuous space edges are processed. The algorithm terminates when
O is empty or the network distance of the first vertex in O exceeds dmax.

Complexity. Cormen et al. [11] suggest for sufficiently sparse networks, where
the number of edges is O(|V |2/ log(|V |)), to implement the min-priority queue O
with a binary min-heap. Building the binary heap takes O(|V |) time. The dequeue
operation requires O(log |V |) time. Updating a vertex in the binary heap takes
O(log |V |), and there are at most |E| such operations. The total running time is
therefore O((|V |+ |E|) log |V |).

Since the schedule is kept on disk, each traversal of a discrete edge requires
a database lookup on the schedule to determine the latest departure time of the
start vertex. Overall, this algorithm suffers from the high initialization (loading)
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cost and the memory requirements, which makes the algorithm not scalable (in
terms of memory usage) for very large networks.

4.1.1 Extensions

As already mentioned, we improved the basic isochrone algorithm in [7] in several
directions. First, we did a complete reengineering and made the implementa-
tion independent from the underlying spatial database. The Oracle specific Java
classes [66] were replaced by more general classes that support all features of a
multimodal network as described in Chapter 3 and makes the algorithm indepen-
dent of the underlying database system. Our classes provide a clear separation
of the logical network from the physical information such as geometries. For the
computation of the isochrones the algorithm needs only the logical network, which
is comparably small. The geometries, which can be very large, are only needed
for the rendering of the result. This separation reduced the initial loading time of
MDijkstra by more than a factor of two.

Second, we changed the underlying model of the schedule from an instant-
based representation to an interval-based representation. The instant represen-
tation stores in every tuple a single stop with arrival and departure time (see
Table 4.1(a)). In contrast, in the interval representation in Table 4.1(b), each
entry stores an edge of the network with departure time at the source vertex an
arrival time at the target vertex. The interval representation is more efficient since
less database accesses are required. For instance, to determine the transfer time
along the discrete edge (v7, v6) in our running example, we first have to calculate
the latest arrival time σa(’B’, 1, v6) at v6. In a second database access we can then
determine the corresponding departure time at vertex v7 (marked in boldface).
Even if this operation is implemented with a self-join, it has first to read the tuple
of vertex v6 and then the tuple of v7. In contrast, in the interval representation
only one tuple needs to be fetched (marked in boldface). The change from an
instant to an interval representation brought performance improvements of up to
30% in networks with a large public transport system.

Θ TID V σa σd
...

...
...

...
B 1 v7 05:31:30 05:32:00
B 1 v6 05:33:00 05:33:00
B 1 v3 05:34:00 05:34:30

...
...

...
...

(a) Instant-based

Θ TID Vs Ve σd(Vs) σa(Ve)
...

...
...

...
...

B 1 . . . v7 . . . 05:31:30
B 1 v7 v6 05:32:00 05:33:00
B 1 v6 v3 05:33:00 05:34:00
B 1 v3 . . . 05:34:30 . . .

(b) Interval-based

Figure 4.1: Schedule Representations.
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Third, when using the interval-based representation, we can additionally reduce
the number of database lookups. Instead of determining for each single discrete
edge the latest departure time for the currently expanded vertex v, it is sufficient
to determine for all adjacent vertices that are connected to v the latest departure
time over all edges that share the same start vertex. This modification improved
the runtime for the schedule lookups by another 20-25% in networks with dense
and large schedules.

4.2 Multimodal Incremental Network Expansion

To overcome MDijkstra’s memory limitation, we propose a multimodal incremental
network expansion strategy. Similar to the INE algorithm of Papadias et al. [49],
we adopt an on-demand main-memory loading strategy. We present two algo-
rithms. The algorithm MINE (Multimodal Incremental Network Expansion) loads
the relevant edges incrementally from the database in every expansion cycle and
keeps only the actual isochrone in memory. The algorithm MINEX (Multimodal
Incremental Network Expansion with network Expiration) additionally applies ver-
tex expiration to remove from memory network portions that are no longer needed
to avoid cyclic expansion.

4.2.1 Algorithm MINE

Algorithm 2 shows the MINE algorithm. The major difference to the memory-
based MDijkstra is that the network is not initially loaded in memory. Instead,
during each step of network expansion the incoming edges of the expanded vertex
are loaded from disk. Thus, only the open and closed vertices, O and C, are stored
in main memory.

First, the closed vertices C are initialized to the empty set. O is initialized to v
with dv = 0 if q coincides with vertex v. Otherwise, q = ((u, v), o) = ((v, u), λ(v)u−
o) is an intermediate location on a pedestrian edge, and C is initialized with vertices
u and v in the same way as in MDijkstra. The reachable edge segments are output
to the result.

During the expansion phase, vertex v with the smallest network distance is
dequeued from O and added to C. All incoming edges, e = (u, v), are retrieved
with a multi-point query from the database and considered in turn. If vertex u
is visited for the first time, it is added to O with a distance set to ∞. Then, the
distance d′u of u when traversing e is computed according to the edge type, and
the distance du is updated. If e is a ’csct ’ or ’csdt ’ edge, the reachable part of e is
added to the result.
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Algorithm 2: MINE(q, t, dmax, s,N).
input : q, dmax, s, t,N
output: Eiso, V iso

1 C ← ∅;
2 if q coincides with v then
3 O ← {(v, 0)};
4 else// q = ((u, v), o) = ((v, u), o′)
5 O ← {(u, o/s), (v, o′/s)};
6 Output ((u, v),max(0, (o−dmax/s), o) and ((v, u),max(0, (o′−dmax/s), o′);

7 while O 6= ∅ ∧ (v, dv)← dequeue(O) ∧ dv ≤ dmax do
8 O ← O \ {v};
9 C ← C ∪ {v};

10 foreach e = (u, v) ∈ E do
11 if u 6∈ O ∪ C then
12 O ← O ∪ {(u,∞, cntu)};

13 if u /∈ C then
14 d′u ← τ(e, t− dv) + dv ;
15 du ← min(du, d′u);

16 else
17 if µ(θ(e)) ∈ {’csct’, ’csdt’} then
18 d′u ← τ(e, t− dv) + dv ;

19 if µ(θ(e)) ∈ {’csct’, ’csdt’} then
20 if d′u ≤ dmax then
21 Output (e, 0, λ(e));
22 else
23 Output (e, o, λ(e)), where d((e, o), q, t) = dmax;

24 V iso ← V iso ∪ {(v, dv))};

Example 4.2.1. Figure 4.2(a) shows the situation after the initialization phase.
The bold edge segments, ((v2, v3), 0, 188) and ((v3, v2), 0, 80), have been traversed
so far. The gray vertices are open, i.e. O = {(v3, 40), (v2, 90)}. Only the open
vertices, v2 and v3, and the connecting edges, (v2, v3) and (v3, v2) have been loaded
and are stored in memory.

Network expansion starts, and Figure 4.2(b) illustrates the situation after ex-
panding vertex v6, which has a network distance of 180s. The incoming edges are
loaded and traversed. After traversing the pedestrian edge (v7, v6), the vertex v7

gets assigned the network distance dv7 = 430s. Only a part of the edge is reachable
within the given time constraints (edge segment in bold). Next, we traverse the
bus edge (v7, v6) with a smaller transfer time that updates the distance of v7 to
240s. Finally, after examining the pedestrian edge (v5, v6), the distance of v5 is
updated to dv5 = 330s.

Complexity. The runtime complexity of MINE due to network expansion is the
same as in MDijkstra. The only difference is that the size of the min-priority
queue grows with the size of the isochrone and is independent of the network
size. The total runtime is dominated by the number of database accesses during
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v2(90s) v3(40s)

q

v0 v1 v4

v5v6v7v8

v9

180
80

(a) Initialization

v2(90s) v3(40s)

v6(180s)

q

v0 v4(260s)

v5(330s)v7(240s)v8

v9

260 60

(b) Vertex expansion v6

Figure 4.2: Network Expansion in MINE.

the expansion, which is linear in the isochrone size, i.e. O(V iso). The memory
complexity, however, is different. MINE holds in main memory only the isochrone,
yielding a complexity of O(|V iso| + k + l). V iso is the size of the isochrone, k is
the number of open vertices in memory that have not been expanded, and the
constant l is the maximum out-degree of all closed vertices.

4.2.2 Algorithm MINEX

Though MINE does not load the entire network at the beginning, the memory
requirements grow with the size of the isochrone, which in the worst case can
be the entire network for very large isochrones. In this section we present an
improved algorithm, termed MINEX, which applies vertex expiration to eagerly
remove vertices from memory when they are no longer needed to avoid cyclic
expansions. We present here the algorithm and leave a more detailed discussion
for the next section.

Intuitively, vertex expiration works as follows. Whenever a vertex is expanded
and will not be visited again during network expansion, it can be removed from
memory. To keep the memory requirements low, we eagerly expire the isochrone
and hold in memory only the minimal set of expanded vertices that is necessary
to avoid cyclic expansions. A cyclic expansion occurs when an already expanded
vertex is visited for a second time. The isochrone, which is stored in memory,
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does not contain sufficient information to identify expired vertices. Therefore we
introduce a strategy that counts for each vertex the outgoing edges that have not
yet been traversed.

Algorithm 3 shows the algorithm MINEX which applies vertex expiration. It
works similar to MINE, except that every vertex is annotated with a counter cnt.,
which keeps track of the number of outgoing edges that have not yet been traversed.
When a vertex u is added to O, its counter cntu is initialized with the number of
outgoing edges (lines 3,5 and 12). Whenever an edge e = (u, v) is examined, the
counter of its start vertex u (of which e is an outgoing edge) is decremented by
1 (line 18). If u is closed and cntu = 0, vertex u is expired and removed from C
(line 20). Once all incoming edges of v are processed, the expiration and removal
of v is checked (line 26).

Algorithm 3: MINEX(q, t, dmax, s,N)
input : q, dmax, s, t,N
output: Eiso, V iso

1 C ← ∅;
2 if q coincides with v then
3 O ← {(v, 0, cntv)} ;
4 else// q = ((u, v), o) = ((v, u), o′)
5 O ← {(u, o/s, cntu), (v, o′/s, cntv)} ;
6 Output ((u, v),max(0, (o−dmax/s), o) and ((v, u),max(0, (o′−dmax/s), o′);

7 while O 6= ∅ ∧ (v, dv , cntv)← dequeue(O) ∧ dv ≤ dmax do
8 O ← O \ {v};
9 C ← C ∪ {v};

10 foreach e = (u, v) ∈ E do
11 if u 6∈ O ∪ C then
12 O ← O ∪ {(u,∞, cntu)};

13 if u /∈ C then
14 d′u ← τ(e, t− dv) + dv ;
15 du ← min(du, d′u);

16 if µ(θ(e)) ∈ {’csct’, ’csdt’} then
17 d′u ← τ(e, t− dv) + dv ;

18 cntu ← cntu − 1 ;
19 if u ∈ C ∧ cntu = 0 then
20 C ← C \ {u} ;

21 if µ(θ(e)) ∈ {’csct’, ’csdt’} then
22 if d′u ≤ dmax then
23 Output (e, 0, λ(e)) ;
24 else
25 Output (e, o, λ(e)), where d((e, o), q, t) = dmax ;

26 if cntv = 0 then
27 C ← C \ {v} ;

28 V iso ← V iso ∪ {(v, dv))};

Example 4.2.2. Figure 4.3 shows the complete network expansion of MINEX us-
ing our running example, where dmax = 5 min, tq = 06:06:00, and s = 2 m/s. Bold
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lines indicate reachable network portions which at the end make up the isochrone.
Solid black nodes are closed, gray nodes are open, bold white nodes are expired,
and white nodes with a thin border are not yet loaded. Only open and closed
vertices are actually kept in memory. The numbers in parentheses are the network
distance and the counter of a vertex. To simplify the illustration, pedestrian edges
are represented by undirected lines, where each such line represents a pair of edges
in opposite directions.

Figure 4.3(a) shows the isochrone after the initialization step with C = {}
and O = {(v3, 40, 3), (v2, 90, 3)}. Vertex v3 has the smallest distance to q and is
expanded next (Figure 4.3(b)). The distance of the visited vertices is dv4 = 40 s
+440m

2m/s
= 260 s and d′v2 = 40 s +260m

2m/s
= 170 s, which does not improve the old

value dv2 = 90 s. For the distance of v6, we determine the required arrival time
at v3 as t = tq − dv3 = 06:06:00 − 40 s = 06:05:20 and the latest bus depar-
ture at v6 as 06:03:00, yielding dv6 = 40 + (06:05:20 − 06:03:00) = 180 s. After
updating the counters (v2, v4, v6), the new vertex sets are C = {(v3, 40, 3)} and
O = {(v2, 90, 2), (v6, 180, 2), (v4, 260, 2)}. Next, v2 is expanded as shown in Fig-
ure 4.3(c), where (v1, 240, 2) is added to O. Since vertex v3 is closed, we output
the reachable (continuous) edge (v3, v2). In the successive iteration shown in Fig-
ure 4.3(d) vertex (v6, 180, 1) is expanded. Its neighbors are updated with their
distances to (v7, 240, 1) and (v5, 330, 2). Next, we expand in Figure 4.3(e) vertex
v1, add (v8, 365, 2) and (v0, 340, 2) to O, and decrement the counter of the closed
neighbor v2 by 1. The next vertex to expand is v7 as illustrated in Figure 4.3(f).
The network distance of the neighbor v8 is updated to (v8, 340, 1) and the counter
of v6 is decremented by 1. Finally, Figure 4.3(g) shows the isochrone after expand-
ing vertex v6, when the algorithm terminates. The gray vertex v3 is expired, since
the counter of outgoing edges is zero. In fact, it is easy to see that vertex v3 would
not be visited anymore in future expansion steps, since all adjacent vertices are
already closed. They only way to visit v3 again would be to expand an adjacent
vertex.

Notice that an algorithm that alternates between first (completely) expanding
in the discrete network and then from each reachable vertex start a complete
expansion in the continuous network is sub-optimal in most of the cases. The
reason is that portions of the network might be loaded and expanded several
times.

4.2.3 Vertex Expiration

Closed vertices are needed to avoid cyclic network expansion. In this section we
introduce expired vertices (Definition 4.2.1) which allow us to limit the number of
closed vertices that need to be kept in memory. Expired vertices are never revisited
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Figure 4.3: Step-by-step Network Expansion of MINEX for dmax = 5 min, s =
2 m/s, and tq = 06:06:00.

in future expansion steps, hence they are not needed to prevent cyclic expansions
and can be removed (Lemma 1). Isochrones contain insufficient information to
handle vertex expiration (Lemma 2). Therefore, MINEX uses a counter-based
solution to correctly identify expired vertices and to eagerly expire vertices during
the expansion (Lemma 3).

To facilitate the discussion we introduce a couple of auxiliary terms. For a
vertex v, the term in-neighbor refers to a vertex u with an edge (u, v). The term
out-neighbor refers to a vertex w with an edge (v, w). The term in-degree denotes
the number of incoming edge and the term out-degree represents the number of
outgoing edges. Recall that the status of vertices changes from open (O) when
they are encountered first to closed (C) when they are expanded, and finally to
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expired (X) when they are expired; the sets O, C, and X are pairwise disjoint.

Definition 4.2.1 (Expired Vertex). A closed vertex, u ∈ C, is expired if all its
out-neighbors are either closed or expired, i.e. ∀v((u, v) ∈ E ⇒ v ∈ C ∪X).

Example 4.2.3. Consider the isochrone in Figure 4.3(g). Vertex v3 is expired
since v2 and v4 are closed, and v3 has no other out-neighbors. In contrast, v2 is
not yet expired since the out-neighbor v0 is not yet closed (and the expansion of
v0 leads back to v2).

Lemma 1. An expired vertex u will never be revisited during the computation
of the isochrone and can be removed from C without affecting the correctness of
MINEX.

Proof. There is only one way to visit a vertex u during network expansion: u has
an out-neighbor v (that is connected via an edge (u, v) ∈ E) and v ∈ O; the
expansion of v visits u. Since according to Definition 4.2.1 all of u’s out-neighbors
are closed or expired, and closed and expired vertices are not expanded (line 11 in
Algorithm 3), u cannot be revisited.

The identification of expired vertices according to Definition 4.2.1 has two
drawbacks: (1) it requires a database access to determine all out-neighbors since
not all of them might already have been loaded, and (2) the set X of expired
vertices must be kept in memory, which we want to avoid.

Lemma 2. If the isochrone is used to determine the expiration of a closed vertex,
u ∈ C, the database must be accessed to retrieve all of u’s out-neighbors, and X
needs to be stored in memory.

Proof. According to Definition 4.2.1, for a closed vertex u to expire we have to
check that all out-neighbors v are closed or expired. The expansion of u loaded
all out-neighbors v that have also an inverse edge, (v, u) ∈ E. For out-neighbors v
that are not connected by an inverse edge, (v, u) 6∈ E, we have no guarantee that
they are loaded. Therefore, we need to access the database to get all adjacent
vertices. Next, suppose that X is not maintained in memory and there exists an
out-neighbor v of u without an inverse edge, i.e. (v, u) 6∈ E. If v is in memory,
its status is known. Otherwise, either is v already expired and has been removed,
or it has not yet been visited. In the former case, u shall expire, but not in the
latter case, since the expansion of v (re)visits u. However, with the removal of
X we loose the information that these vertices already expired, and we cannot
distinguish anymore between not yet visited and expired vertices.
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Example 4.2.4. The isochrone does not contain sufficient information to deter-
mine the expiration of v2 in Figure 4.3(c). While v1 and v3 are loaded and their
status is known, the out-neighbor v0 is not yet loaded (and actually violates the
condition for v2 to expire). To ensure that all out-neighbors are closed, a database
access is needed. Next, consider Figure 4.3(g), where v3 is expired, i.e. X = {v3}.
To determine the expiration of v2, we need to ensure that v3 ∈ C ∪ X. If X is
removed from memory, the information that v3 is already expired is lost. Since v3

will never be revisited, v2 will never expire.

To correctly identify and remove all expired vertices without the need to ac-
cess the database and explicitly store X, MINEX maintains for each vertex, u, a
counter, cntu that keeps track of the number of outgoing edges of u that have not
yet been traversed.

Lemma 3. Let cntu be a counter associated with vertex u ∈ V . The counter is
initialized to the number of outgoing edges, cntu = |{(u, v) | (u, v) ∈ E}|, when u
is encountered for the first time. Whenever an out-neighbor v of u is expanded,
cntu is decremented by 1. Vertex u is expired iff u ∈ C and cntu = 0.

Proof. Each vertex v expands at most once (when it is dequeued from O), and the
expansion of v traverses all incoming edges (u, v) and decrements the counter cntu
of vertex u by 1. Thus, each edge in the network is traversed at most once. When
cntu = 0, vertex u must have been visited via all of its outgoing edges. From this
we can conclude that all out-neighbors have been expanded and are closed, which
satisfies the condition for vertex expiration in Definition 4.2.1.

Example 4.2.5. In the isochrone in Figure 4.3(g), vertex v3 is expired and can be
removed since cntv3 = 0 and v3 ∈ C. Vertex v2 expires only when v0 is expanded
and counter cntv2 is decremented to 0. Similar, vertex v6 expires when v5 is
expanded.

Lemma 4. Vertices cannot be expired according to a Last Recently Used (LRU)
strategy.

Proof. We show a counter-example in Figure 4.4, which illustrates a multimodal
network expansion that started at q. Although q has been expanded and closed
first, it cannot be expired because an edge from vertex v, which will be expanded
later, leads back to q and would lead to cyclic expansions. In contrast, the white
vertices that are expanded and closed after q can be expired safely.
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q v

Figure 4.4: LRU Strategy.

4.2.4 Properties

Vertex expiration ensures that the memory requirements of the algorithm MINEX
are reduced to a tiny fraction of the isochrone. Figures 4.5(a) and 4.5(b) illustrate
the isochrone size and MINEX’s memory complexity for grid and spider networks,
respectively. Solid black vertices (C) and gray (O) are stored in memory, whereas
white vertices with vertices with a bold border are expired (X) and removed from
memory. The other vertices are not yet visited and loaded.

q

(a) Grid

q

(b) Spider

Figure 4.5: Network Expiration.

The following two lemmas provide a bound for the isochrone size and MINEX’s
memory complexity for grid and spider networks. Only the pedestrian mode is
considered, though the results can easily be extended to multimodal networks.

Lemma 5. The size of an isochrone, |V iso|, is O(d2
max) for a grid network and

O(dmax) for a spider network and a central query point q.

Proof. Consider the grid network in Figure 4.5(a). Without loss of generality, we
measure the size of an isochrone as the number of its vertices (i.e. open, closed,
and expired vertices), and we assume a uniform distance of 1 between connected
vertices. The size of an isochrone with distance d = 1, 2, . . . is given by the
recursive formula |V iso|d = |V iso|d−1 + 4d with |V iso|0 = 1; 4d is the number of
new vertices that are visited when transitioning from distance d−1 to d (i.e. the
number of vertices at distance d that are visited when all vertices at distance d−1
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are expanded). This forms an arithmetic series of second order (1, 5, 13, 25, 41,
61, . . . ) and can also be written as |V iso|d = 1 +

∑d
i=0 4i = 2d2 + 2d + 1, which

yields |V iso| = O(d2
max).

Next, consider the spider network in Figure 4.5(b). Without loss of generality,
we assume a uniform distance of 1 between all adjacent vertices along the same
outgoing edge from q. It is straightforward to see that the size of the isochrone is
|V iso| = deg(q) · dmax + 1 = O(dmax), where deg(q) is the degree of vertex q.

Lemma 6. The memory complexity of MINEX is |O∪C| = O(dmax) = O(
√
|V iso|)

for a grid network and O(1) for a spider network with a central located query point
q.

Proof. Recall that MINEX keeps in memory only the open and closed vertices,
O ∪ C. Consider the grid network in Figure 4.5(a). By referring to the proof of
Lemma 5, the cardinality of the open vertices at distance d can be determined as
|O|d = 4d and the cardinality of the closed vertices as |C|d = 4(d− 1). Thus, the
memory requirements in terms of dmax are |O ∪ C| = O(dmax).

To determine the memory requirements depending on the size of the isochrone,
|V iso|, we use the formula for the size of an isochrone from the proof of Lemma 5
and solve the quadratic equation 2d2 +2d+1−|V iso|d = 0, which has the following
two solutions:

d1,2 =
−2±

√
22 − 4 · 2 · (1− |V iso|d)

2 · 2
=
−1±

√
2|V iso|d − 1

2
.

Since the result must be positive,

d =
−1 +

√
2|V iso|d − 1

2

is the only solution. By substituting d in the above formulas for open and closed
vertices we get, respectively,

|O|d = 4d = 4
−1 +

√
2|V iso|d − 1

2

and

|C|d = 4(d− 1) = 4(
−1 +

√
2|V iso|d − 1

2
− 1),

which proves |O ∪ C| = O(
√
V iso).

Next, we consider the spider network in Figure 4.5(b) with the query point q in
the center. It is straightforward to see that the cardinality of the open and closed
vertices is |O ∪C| = 2 · deg(q) = O(1), where deg(q) is the degree of vertex q.
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Theorem 4.2.1. Algorithm MINEX is optimal in the sense that all loaded vertices
and ’csct ’/’csdt ’ edges are part of the isochrone, and each of these edges is loaded
and traversed only once.

Proof. When a vertex v is expanded, all incoming edges e = (u, v) are loaded and
processed (Algorithm 3, line 11). If e is a ’csct ’/’csdt ’ edge, the reachable portion
of e (including the end vertices u and v) is added to the isochrone (line 25). While
u might not be reachable, v is guaranteed to be reachable since dv ≤ dmax. In
contrast, ’dsct ’/’dsdt ’ edges are not added since they are not part of the isochrone;
only the end vertices u and v are accessible, which are added when the incoming
’csct ’/’csdt ’ edges are processed. Therefore, since each vertex is expanded at most
once each edge is loaded at most once, and all loaded edges except ’dsct ’/’dsdt ’
edges are part of the isochrone.

From this theorem we can conclude that search space pruning techniques as
applied for shortest path computation are not applicable for isochrones.

Complexity. The runtime complexity of MINEX is the same as MINE. However,
thanks to the vertex expiration the size of the min-heap does not grow with the
size of the isochrone, but remains a small fraction of the isochrone.

4.3 A Hybrid Approach

Thanks to vertex expiration, MINEX has a very small memory footprint which
is almost constant even for very large isochrones. However, it is not scalable in
terms of runtime for several reasons. First, the number database accesses is very
large, since each expansion step loads only the incoming vertices to the expanded
vertex. Second, since the algorithm follows a greedy expansion strategy, in which
the vertex with the shortest distance is expanded next, space locality is generally
not guaranteed. That is, two consecutive expanded vertices may reside on totally
different places on the disk. Third, the full capacity of a disk block is not utilized
since the incoming edges do not fill up the entire transferred block, and caching
might not be very effective due the lack of spatial locality during the expansion.
As a result, the algorithm has large I/O costs, which significantly decrease the
runtime of MINEX for large isochrones.

To improve the runtime scalability, we propose a solution, termed Multimodal
Range Network Expansion with network eXpiration (MRNEX), which decreases
the I/O costs by taking advantage of spatial locality on the disk and reducing
the number of disk accesses in combination with filling up transferred blocks with
data that is needed next. Spatial locality on disk can be obtained by adding a
primary index on the table based on the spatial property. A maximal filling of the
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blocks can be gained by transferring the data as chunks clustered on their spatial
property. We propose two algorithms that differ mainly in the way how the size
of the network chunks are determined that are loaded in each database access. In
the first solution, the size of the junk is determined by the radius of the residual
distance (assuming that there is sufficient memory). The second solution allows
to control the size of the chunks depending on the available memory capacity.

4.3.1 Multimodal Range Network Expansion

During the network expansion, the vertices pass through different states. An open
vertex is loaded in memory, but not yet expanded. A open vertex changes to
closed, when it is expanded. Finally, a closed vertex expires, when it is guaranteed
that it cannot be revisited again during network expansion. For range network
expansion an additional state is needed for open vertices, which we called stalled.

Before we describe the multimodal range expansion we introduce the concept
of stalled vertices and range queries.

Definition 4.3.1 (Stalled Vertex). A open vertex, v ∈ O, is stalled if none of its
incoming edges is loaded in memory.

A stalled vertex essentially blocks network expansion in main memory and
signals that the next chunk of the network needs to be loaded.

Definition 4.3.2 (Range query). Let N be a multimodal network, vq ∈ V be a
vertex in the network and R be a range that covers vq. A range query Q with
vertex vq and query range R retrieves all edges (u, v) such that v is located inside
R, i.e.

Q = {(u, v) ∈ E | v ∈ R}.

Multimodal range network expansion adopts the same incremental expansion
strategy as MINEX with the important difference that each database access is a
range query that loads a larger chunk of the network rather than only the incoming
edges of the expanded vertex. Let N be a multimodal network with query point
q, arrival time t at q, maximal duration dmax, and walking speed s. Network
expansion starts at the query point q, which either coincides with a vertex or is
mapped to the closest edge.

Then, network expansion starts with expanding a stalled vertex v. A range
query with the center point v and a radius that is determined as (dmax− dv) ∗ s is
issued to load the network portion that is within walking distance to v.

If q coincides with a vertex and only the pedestrian mode is considered or there
are no public transport stops in this area, the query range is an upper bound for
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the isochrone. If public transport systems are present, network expansion might
exceed the query range and encounter a stalled vertex, which blocks the expansion
since no incoming edges are yet loaded. Therefore, a new range query is needed
to load the next chunk from disk in order to continue the expansion process. The
range is determined by the time that is still available, i.e. dmax − d(v, q, tq). In
order to avoid overlapping between range query and hence multiple loading of the
same network portions, we intersect each new query range with the ranges of the
previous queries.

Every range query requires a DB lookup using a spatial operator that retrieves
all edges whose target vertex is inside the query range. The range is defined as a
geometry of type polygon having initially the shape of a circle. In order to avoid
that edge are loaded multiple times, the intersected areas from previous loaded
ranges are not considered.

Example 4.3.1. Figure 4.6(a) illustrates the initial situation after mapping the
query point q to the edges (v0, v1) and (v1, v0). The two edges are loaded in memory
and vertices v0 and v1 are marked as stalled.

q

v0

v1

(a) Initialization

q

v0

v1

v2

v4

v6

(b) Range query for v0

Figure 4.6: Multimodal Range Network Expansion.

Vertex v0 has the smaller distance to q and is expanded first. Since v0 is stalled,
a range query is performed. Figure 4.6(b) illustrates the result of the network after
executing the range query with radius rv0 = (dmax − dv0) ∗ s, i.e. the remaining
time multiplied with the walking speed. Black lines represent edges that have been
loaded, since their end vertex is inside the query range. Gray vertices represent
the loaded vertices, which are all marked as open. Notice the vertices outside
the query range, which are connected to a target vertex which is inside the query
range. For instance, vertex v4 is loaded because v1 (i.e. the target of the bus edge
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(a) Range query for v4
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(b) Range query for v5

Figure 4.7: Multimodal Range Network Expansion.

(v4, v1)) is in the query range. In contrast, v6 is not loaded, because it is outside
the query range and has no outgoing edge to a vertex inside the range.

After completing the range query, network expansion proceeds with the ex-
pansion of vertex v0. The expansion of v1 drives the expansion outside the query
range to vertex v4, which is marked as stalled. When v4 becomes the vertex to be
expanded next, a new range query is executed as illustrated in Figure 4.7(a). The
radius is set on the remaining distance of v4 multiplied with s and the intersecting
part with the range of the previous range query is subtracted.

Figures 4.7(b) shows the situation after a range query for the stalled vertex v5

has been executed. For instance, edge (v3, v7) is loaded because v7 is within the
query range, but the closed vertex v3 is not added to O. Note that since v3 is
not in the loaded range, none of its incoming edges are loaded. This guarantees
that every edge is loaded at most once. The vertices in the query range of v0 that
are represented by white circles are expired and have already been removed from
memory.

Algorithm 4 shows the algorithm MRNEX. The initialization part until line 5
is identical to MINEX and maps the query point to a vertex or an edge in the
network. The auxiliary set Rier tracks the areas of the range queries by storing
the center and the radius of each query range. Rier is initialized to the empty
set. At line 7 the network expansion starts by retrieving the vertex v with the
shortest distance from the set O of open vertices. If v is a stalled vertex, i.e.
the in-degree is zero, a new range query needs to be issued. The query range
is determined as a circle R with centre v and radius rv (line 10), which is the
maximal walking distance with the available time. To avoid that network portions
are loaded multiple times, the overlapping parts with previous query ranges in Rier
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are subtracted from R. The resulting range R that forms either circle or a polygon
is passed to the range query (line 15). The returned edges are added in memory
and only vertices that are neither open nor closed are inserted in O (lines 18 and
20). Since only incoming edges of the vertices that reside in that range are loaded
in memory, this guarantees that expired vertices are not reloaded. The rest of the
algorithm is identical to MINEX, including vertex expiration.

Algorithm 4: MRNEX(q, t, dmax, s,N).
input : q, dmax, s, t,N
output: Eiso, V iso

1 if q coincides with v then
2 O ← {(v, 0, cntv)};
3 else// q = ((u, v), o) = ((v, u), o′)
4 O ← {(u, o/s, cntu), (v, o′/s, cntv)};
5 Output ((u, v),max(0, (o−dmax/s), o) and ((v, u),max(0, (o′−dmax/s), o′);

6 Rier ← ∅;
7 while O 6= ∅ ∧ (v, dv , cntv)← dequeue(O) ∧ dv ≤ dmax do
8 if indegree(v) = 0 // v is stalled then
9 rv ← (dmax − dv) ∗ s;

10 R← create circle with center v and radius rv ;

11 foreach (v′, rv′ ) ∈ Rier do
12 if dε(v, v′) < rv + rv′ then
13 R← R \R ∩ ρ(v′, rv′ );

14 Rier ← Rier ∪ {(v, rv)};
15 Q← issue range query on R ;
16 foreach (u′, v′) ∈ Q do
17 if u′ /∈ O ∪ C then
18 O ← ∪{(u′,∞, cntu′ )} ;

19 if v′ /∈ O ∪ C then
20 O ← ∪{(v′,∞, cntv′ )} ;

// ...proceed expansion as MINEX

Example 4.3.2. Figure 4.8 illustrates the expansion strategy of MRNEX for two
isochrones on the two datasets Italy (IT) and South Tyrol (ST). The query range
is decreasing as network expansion proceeds. It is easy to see that not all ver-
tices/edges that are loaded in the range queries are also part of the final isochrone.
For instance, dataset IT contains 13% false positives and ST has 18%.

In the experimental evaluation in Chapter 5 we show that MRNEX significantly
improves the runtime, but the memory consumption is also slightly higher. That
is, MRNEX is not space optimal, because the range queries may retrieve false
positive vertices, i.e. vertices that are loaded in main memory, but are not part
of the isochrone. In the experimental evaluation we analyze in detail the ratio of
false positive vertices.
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(a) IT dataset: 300 min isochrone (b) ST dataset: 150 min isochrone

Figure 4.8: Illustrating Range Query Expansion on two Real-world Data Sets.

Complexity. MRNEX has the runtime complexityO((|V |+|E|) log |V |)+klog|V |,
where k is the number of stalled expanded vertices. However, the loading of small
chunks reduces the number of database accesses, which significantly improves the
runtime. The memory complexity is larger than for MRNEX since the adjacency
list is in memory and O is larger because of the false positives.

4.3.2 Setting an Upper Bound for Range Queries

The eager loading strategy of MRNEX, i.e. to load network chunks that are as
large as possible, determined only by the available timespan, turned out to perform
bad in some situations. We observed in experiments that for large isochrones the
memory consumption can become quite high. Already the first range query can
load a very large portion of the network. Moreover, if high speed public transport
systems are present, the expansion along these lines is done very early and exceeds
the network portions that have already been loaded. As a consequence, many
range queries are issued very early in the expansion process, although large parts
of the loaded network portions are only visited later on.

To tackle this problem, we propose to consider the available memory in addition
to the available timespan for the calculation of the query range. Instead of eagerly
loading maximal ranges, the loaded network chunks should be upper bounded by
a percentage of the available memory. Such a strategy allows to better use the
memory for range queries in areas where the expansion is actually active.

To implement this strategy efficiently, we precompute for each vertex different
ranges that include a different number of vertices. That is, we precompute different
query ranges for different sets of k vertices (or network portions). Figure 4.9
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V k Radius
v1 500 1.7
v1 1000 2.5
v1 2000 3.7
v1 3000 5.3
v1 4000 6.8
v1 5000 8.5
...

...
...

(a)

(b)

Figure 4.9: Precomputed Query Ranges for Vertices.

illustrates this idea. In the table in Figure 4.9(a), each entry is a precomputed
range. The first column contains the vertex identifier, the second column the
number of vertices k in the range, and the third column the radius of the range.
When a range query is issued, the radius is determined by the largest k that fits
in memory. More specifically, let v be a stalled vertex, m be the maximum size for
the result of a range query, and k with radius rk be the maximum range (i.e. the
maximum number of vertices) that fit in m. Then, the radius of the range query
is determined as

rv = min(rk, (dmax − dv) ∗ s).

Efficient Preprocessing

A naive algorithm to precompute the query range for a junk of size k is to scan
the entire table and sort the vertices according to the Euclidean distance in order
to determine the distance of the k-th vertex. This naive approach is very time
consuming. For example, the computation of all query ranges for the IT dataset
takes approximately 54 days. By starting with a predefined, small range and
adapting the range until it contains at least k elements, we were able to reduce
the precomputation time to 14 days, which is still not acceptable.

To improve the precomputation time, we developed a more efficient solution
shown in Algorithm 5 that computes all query ranges for the IT dataset in less
than five hours. The algorithm works as follows. The vertices are loaded into
an array V and sorted by the x-coordinate. To determine the query ranges for a
vertex V [i], the Euclidean distance needs to be computed only for a reduced set



50 Chapter 4. Algorithms for the Computation of Isochrones

of vertices. Assume that we want to compute the query range for the k closest
vertices to the first vertex V [0]. We use a max-priority queue H of fixed size k to
keep the k-nearest neighbors. The Euclidean distance of the first element in the
queue determines the query range. We fill H with the first k elements of V . To
guarantee that there are no other vertices that are closer than the top element in
H, the array V is scanned until a vertex is encountered that has an x-coordinate
which is larger than the Euclidean distance of the top element in H. If during this
scan a vertex v is found that is closer to V [0] than the top element in H, the top
element is removed and v inserted in the priority queue.

To determine the query range for an intermediate vertex V [i], i > 0, we have to
scan both forward and backward until we encounter vertices that are more distant
from V [i] (along the x-axis) than the Euclidean distance of the top element in H.
This strategy is implemented in the algorithm in while loop at line 5, which iterates
as long as the x-range between the outermost vertices V [l] and V [r] becomes
smaller than the diameter of the circle with center V [i]. When the loop terminates,
the elements in the queue are the k closest elements to V [i], and the query radius
corresponds to the Euclidean distance of the top element in the queue.

Algorithm 5: Precomputation of the Query Ranges.
input : V,K[]
output: M

1 V []← sort vertices by x coordinate;
2 H ← ∅; i← 1; M ← ∅;
3 foreach v ∈ V do
4 k ←∞; l← i ; r ← i; idx← 1;
5 while V [r].x− V [l].x ≤ min(2k, k + min(V [i].x− V [1].x, V [|V |].x− V [i].x)) ∧ idx ≤ |V | do
6 if l = 0 then // left out of range check

7 idx← ++r;
8 else if r = |V | then // right out of range check

9 idx← --l;
10 else // select next closest element

11 if V [i].x− V [l − 1].x < V [r + 1].x− V [i].x then
12 idx← --l;
13 else
14 idx← ++r;

15 if |H| < K[|K|] // fill heap until its size reaches largest measurement point then
16 insert(H, dε(V [i], V [idx]));
17 else if findmax(H) > dε(V [i], V [idx]) then
18 deletemax(H);
19 insert(H, dε(V [i], V [idx]));

20 D[]← ∅; j ← |H|;
21 while H 6= ∅ do
22 D[j--]← findmax(H); deletemax(H);

23 foreach k ∈ K do
24 M ←M ∪ {(v, k,D[k])};

25 i++;

26 return M ;
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Example 4.3.3. The algorithm is illustrated in Figure 4.10. Assume that we want
to compute the 4-NN for vertex v0, which is the first vertex in the array. First,
the queue is filled with the first four vertices, i.e. H = 〈v1, v2, v4, v3〉. Then, the
scan of the array continues, and v5 is encountered. Since v5 is closer to v0 than the
top element v1, vertex v5 is inserted in the queue and the top element is removed,
yielding H = 〈v5, v2, v4, v3〉. The next vertex in the array is v6, which along the
x-axis is more distant from v0 than the Euclidean distance of v5. The while loop
terminates, and 〈v3, v4, v2, v5〉 are the four nearest neighbors to v0.

Rx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10
v11

v12

Figure 4.10: Precomputing the 4-NN for Vertex v0.

Note that in the neighbor search both predecessors and successors have to be
considered. The x-difference is at most twice the largest Euclidean distance in the
queue. The dimension along which the array V shall be sorted depends on the
density of the data. That is, if the vertices are closer along the y-axis, the array
should be sorted along the y-coordinate of the vertices.

4.4 Summary

In this chapter we introduced three implementations for computing isochrones
in a multimodal network. MDijkstra algorithm works well for large dmax where
the size of the isochrone becomes equal to the network. However it suffers in
the high initializations costs to load the entire network in main memory. We
proposed the MINEX algorithm, which is independent of the actual network size
and depends only on the size of the isochrone. MINEX is optimal regarding that
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only those network portions are loaded that eventually will be part of the isochrone.
The concept of expired vertices reduces MINEX’s memory requirements to keep
in memory only the minimal set of expanded vertices that is necessary to avoid
cyclic expansions. To identify expired vertices, we proposed an efficient solution
based on counting the number of outgoing edges that have not yet been traversed.
However, MINEX is not scalable in runtime because of the large number of DB
lookups O(V iso), which depends on the vertex size of the isochrones. MRNEX and
its extension MRNEXIM drastically reduced the number of DB lookups by loading
the network in main memory in chunks. This approach is a good trade-off between
scalability in runtime and scalability in memory. The empirical evaluation in the
following chapter confirms this statement.



CHAPTER 5

Experimental Evaluation

In this chapter we describe the results of a detailed empirical evaluation of our
algorithms both on synthetic as well as on real-world datasets. We analyze the
runtime and the memory consumption of the algorithms presented in the previous
section. The evaluation confirms the analytical results and the scalability in terms
of runtime and memory consumption.

53
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5.1 Data Sets

In our evaluation we use four real-world datasets that vary in the network topolo-
gies, in the network density, in the number of transportation modes, and in the
frequency of active transportation systems. These datasets are summarized in Ta-
ble 5.1. The second column (Size) denotes the network size in Megabytes, whereas
the other columns are using as cardinality the number of tuples in the correspond-
ing relation. |V | represents the total number of vertices, |E| the total number of
edges, |E’csct ’| the number of continuous (pedestrian) edges, |E’dsdt ’| the number of
discrete edges, and |S| the size of the schedule table.

Data Size |V | |E| |E’csct ’| |E’dsdt ’| |S|
IT 2,128 1, 372.0 3, 633.7 3, 633.1 0.6 1.3
ST 137 77.7 197.8 182.4 9.4 179
SF 138 33.6 96.4 90.0 6.4 1, 112
BZ 21 3.2 8.3 6.5 1.9 118

Table 5.1: Real-World Data Sets: Italy (IT), South Tyrol (ST), and San Francisco
(SF), and Bozen-Bolzano (BZ).

The BZ dataset represents a small urban network and contains the street net-
work in combination with the public transport network of Bozen-Bolzano, by cour-
tesy of the Municipality of Bozen-Bolzano and the local transportation company
SASA. If not specified otherwise, the default query point is a central square in the
city with arrival time 10:10 am on a weekday. At that time the frequency of the
means of transport is high: in general every 10-15 minutes a bus of the same line
passes to a certain stop station.

The ST dataset represents a regional network and contains the South-Tyrolean
street network in combination with different means of transport (train, bus, funic-
ular and cable car), by courtesy of the Province of Bozen-Bolzano and the local
transportation companies SAD and SII. The default query point is close to the
railway station of Bozen-Bolzano with arrival time 10:30 am on a weekday, which
allows to catch a large number of transportation systems.

The SF dataset represents an urban network and contains the street network
of San Francisco (imported as sample data from NAVTEQ1) and the schedules
of all public means of transport that are available in Google Transit format from
SFMTA. The default query point is the San Francisco public library with arrival
time 09:15 pm on a weekday. The library is located in the center of the city.

The IT data set represents a large skewed network and contains the Italian
street network in combination with the national train network that connects more

1http://sampledata.navteq.com



5.2. Setup 55

than 2200 cities. The street data were imported from OpenstreetMaps2, and the
train schedules were extracted automatically from the web page of Trenitalia3.
The default query point is close to the railway station of Bologna with arrival time
3:00 pm on a weekday. The chosen query points and arrival times ensure a high
frequency of the public transport systems.

For the evaluation we also generated two categories of synthetic data. One
category has a grid topology (Figure 5.1(b)), the other a spider topology (Fig-
ure 5.1(a)). The grid relation consists of 10.000 vertices (100×100 matrix), 39.600
edges and every edge has a length of 60 meters. The spider relation has 6 outgoing
axis starting from the innermost vertex and 1000 rings, which results in a total
of 6001 vertices and 24.000 edges. The length of those edges that connects two
rings is set to 60 meters too. The length of the edges that form a ring grows
with the distance from the central vertex. All synthetic datasets represent a single
continuous (pedestrian) network without any public transport systems.

(a) Spider (b) Grid (c) San Francisco

Figure 5.1: Network Topologies Used in the Experiments.

Figure 5.1(c) illustrates the network topology of the San Francisco (SF) dataset
which resembles a grid network. The authors in [50] denote grid networks as raster
road pattern and spider networks as radial/concentric pattern. The topology of
the datasets IT, ST, and BZ resemble a branching road pattern [50].

5.2 Setup

All experiments were performed in the same environment: a 64bits virtual machine
with a Intel Dual Core Xeon processor with 2.67 GHz and 3 GB RAM memory
running under Ubuntu Linux (Kernel 2.6.32). All algorithms were implemented in
Java, version 6.0. The communication between application and the database is es-
tablished with a JDBC 4.0 driver. We use as relational database PostgreSQL 8.4

2hosted on http://download.gfoss.it/osm 3http://www.viaggiatreno.it
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with the spatial extension PostGIS, version 2.0. We configure the DB as fol-
lows: shared buffers that represents the reserved memory for data caching is set to
650MB, work mem that is the reserved memory for complex queries and sorting
is set to 512MB, and effective cache size that is reserved memory for disk caching
by the operating system is set to 500MB.

Non-spatial attributes are indexed with a B-Tree [11] and spatial data with
a generalized search tree (GiST) [27]. In the edge and vertex tables a primary
(clustered) index is set on the spatial attribute.

To generate stable measurements for the runtime experiments, each experiment
was run 50 times, over which we compute the average runtime.

5.3 Memory Experiments

In this set of experiments, we measure first the memory consumption by varying
the duration dmax and then the memory consumption by varying the size of the
isochrone. As measurement criterion, the number of vertices in main memory is
used.

5.3.1 Synthetic Data

The first experiment evaluates the memory consumption in synthetic networks,
when varying dmax and the size of the isochrone, respectively. To better illus-
trate the benefit of vertex expiration, we compare only the algorithms MINE
and MINEX. The space complexity of MDijkstra is independent of dmax and the
isochrone size, since the entire network is loaded. MRNEX in a unimodal network
behaves similar to MINE, and we analyze the difference in a later experiment but
considering the multimodal network.

The results are shown in Figure 5.2 and confirm Lemma 5 and 6. For grid
networks, MINEX’s memory requirements grow linearly in dmax and with square
root in |V iso|. MINE’s memory consumption corresponds to the isochrone size, i.e.
|V MM | = |V iso|, and grows quadratically in dmax. In spider networks, the memory
complexity is constant for MINEX and linear in dmax for MINE for a central query
point.

In the second memory experiment in Figure 5.3 the query point q is varied,
starting from the central vertex and moving outwards. The upper index on the
name of the algorithm indicates the number of rings distant from the central vertex.
For example, MINEX60 means that q is located on an edge that is 60 rings away
from the central vertex. Figure 5.3(a) shows that MINEX’s memory requirements
are only a small fraction of the memory requirements of MINE (which is equal to
the isochrone size). Moreover, the variation of the query point has only a minor
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Figure 5.2: Memory Requirements in Synthetic Networks with Central q.

impact on the memory. In Figure 5.3(b) we zoom in on MINEX. It shows the linear
dependency from dmax and the square root dependency from |V iso|. As expected,
the memory consumption slows down or even decreases when the isochrone reaches
the network border. Consequently, for the outermost query point (i.e. MINEX60)
the memory consumption is least, whereas the central query point (MINEX0)
consumes most memory.
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Figure 5.3: Memory Depending on the Location of q.

Figures 5.3(c)-5.3(d) show the results for the spider network. While the mem-
ory is constant for the central query point (i.e. MINEX0), for decentral query
points the memory requirements initially grow. The closer the expiration front
reaches the innermost vertex, the more the memory size converges to this constant
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factor. For example, in the experiment MINEX30 the expiration front reaches after
30 minutes the central vertex with the maximal memory consumption; then the
memory requirements decrease.

5.3.2 Real World Data

In the following experiments we measure the memory complexity of the algorithms
MDijkstra, MINE, MINEX, and MRNEX using the four real-world datasets. As
expected, MINEX’s memory consumption is only a tiny fraction of the isochrone
size, and it further decreases when the isochrone reaches the sparse network bound-
ary. This behaviour is not visible in the figures, because we measure the maximal
memory usage for each individual isochrone.

Memory Usage. Figure 5.4 illustrates the memory consumption for the real-
world datasets. The memory requirement of MDijkstra is equal to the size of the
entire network, and is independent of the actual size of the isochrone. Notice that
the algorithm needs to keep in memory both the vertices and the edges. The
memory of MINE grows quadratically in dmax until the isochrone approaches the
network border, where the growing begins to slow down. Thus, the memory is
independent of the network size and depends only on the isochrone size. Thanks
to vertex expiration, MRNEX grows much slower than MINE. The reason for the
comparably smaller difference between MINE and MRNEX for the BZ dataset in
Figure 5.4(d) is that for larger dmax the initial range query loads a major part
of the entire isochrone. MINEX shows almost constant memory requirements,
independent of the size of the isochrone. Vertex expiration is much more effective
in MINEX than in MRNEX, since the latter tends to load large areas at the
beginning, although they are examined only later on. By loading minimal chunks
(i.e. only the incoming vertices to the current vertex), MINEX keeps locality and
loads only those edges which are immediately processed.

Vertex Expiration. Figure 5.5 illustrates vertex expiration using three subse-
quent screenshots of our prototype system ISOGA that are taken after 10, 20,
and 30 minutes, respectively. Gray vertices are open, black vertices are closed,
and white vertices are expired. Only gray and black vertices are stored in mem-
ory, while the white vertices have already been removed. In Figure 5.5(a), only
a pedestrian network is used. The expansion front starts from q and grows in all
directions. Hence, expired vertices are surrounded by a ring of closed vertices in
main memory. In a multimodal network, as illustrated in Figure 5.5(b), every dis-
connected subgraph around a bus stop has its own expansion front with an internal
area of expired vertices. Moreover, we have sometimes a few interior vertices with
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Figure 5.4: Memory Requirements on Real World Data.

incoming edges from vertices that are far away, which hampers such vertices to
expire (or they expire only very late in the expansion process). This happens, for
example, if a high speed public transport systems are present.

Number of Loaded Tuples. The experiment in Figure 5.6 measures the to-
tal number of tuples (edges) that are transferred from disk (database) into main
memory. MINEX and MINE load the same minimal number of tuples, which cor-
responds exactly to the size of the isochrone. In other words, all edges that are
loaded will eventually be part of the isochrone. In MRNEX the number of loaded
tuples exceeds the size of the isochrone, since the range queries load false posi-
tive tuples that will not be part of the isochrone. For the national and regional
networks IT and ST with a sparse transportation network and a skewed network
topology, the number of false positives is slightly higher than for the urban net-
works SF and BZ. In urban networks with a dense transportation network and a
regular network topology, the difference is rather small.

Figure 5.7 illustrates the false positive edges that are loaded by MRNEX but
are not part of the isochrone for the datasets IT and ST. The totally loaded
network portions are colored in yellow, the actual isochrone is in green, and the
false positive edges are in red. Both figures show that the number of false positives
in MRNEX is rather small.

5.4 Runtime Experiments

In this series of experiments we analyze in detail the runtime of MDijkstra, MINEX,
and MRNEX. MINE is not included since its runtime is essentially the same as
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(a) Pedestrian Network

(b) Multimodal Network

Figure 5.5: Vertex Expiration — 10/20/30 min.

for MINEX.

Varying the Size of the Isochrone. Figure 5.8 shows the runtime depending
on the maximum duration dmax and the isochrone size. For small dmax values and
small isochrones, MDijkstra has the worst performance due to the initial loading
of the entire network which can be very expensive. For large dmax and isochrones,
MDijkstra (though limited by the available memory) is more efficient since the
initial loading of the network using a full table scan is faster than the incremental
loading in MINEX and MRNEX. Comparing MINEX with MRNEX, we see that
the latter is much faster. The break-even point between MDijkstra and the other
two algorithms is smaller for city networks and higher for regional networks.

Figure 5.8(a) shows the result for the IT dataset, which is a large skewed net-
work with few and distantly located train stations. The break-even point between
MRNEX and MDijkstra is rather high at a dmax that generates isochrones which
cover large parts of the network. MINEX is four times slower than MRNEX be-
cause of the larger number of DB accesses (one access for each vertex expansion),
but still more efficient than MDijkstra for small isochrones. Figure 5.8(b) shows
the runtime in the regional network ST. MDijkstra outperforms MINEX after a
dmax of 45 minutes and MRNEX after 100 minutes. Figure 5.8(c) and 5.8(d) show
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Figure 5.6: Number of Loaded Tuples.

(a) IT: 300 min Isochrone. (b) ST: 150 min Isochrone.

Figure 5.7: False Positive Edges in Ranges Queries.

the runtime in urban networks with a duration of one hour. Both figures show a
similar runtime behavior, with a quadratic increase in the beginning and a more
moderate increase when the isochrone size approaches the network size.

Break-even Points. In Figure 5.9(a) we analyze the break-even point between
the three algorithms. The break-even point occurs when the runtime of MINEX
(MRNEX) exceeds the runtime of MDijkstra.

The break-even point depends mainly on the size of the network. The larger
the network is, the more expensive is the initial loading in MDijkstra. In the large
dataset IT, the break even point for MINEX occurs when the size of the isochrone
is equal to 12% of the network size. For MRNEX, the break-even point is around
70% of the total network size. In the second largest network, ST, the break-even
point for MINEX is at 7%, whereas for MRNEX it is at 31% of the total network
size. In the urban network SF, MINEX is faster than MDijkstra as long as the
size of the isochrone is smaller then 8% of the network size, whereas MRNEX
outperforms MDijkstra with isochrones smaller than 23%. For the dataset BZ, the



62 Chapter 5. Experimental Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 0  100  200  300  400  500  600

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MDIJK
MINEX

MRNEX

 0

 50

 100

 150

 200

 250

 300

 350

0K 200K 400K 600K 800K 1000K

ru
n

ti
m

e
 [

s
]

|V
iso

|

MINEX
MDIJK

MRNEX

(a) IT

 0

 5

 10

 15

 20

 25

 0  50  100  150  200

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MINEX
MRNEX

MDIJK

 0

 5

 10

 15

 20

 25

0K 10K 20K 30K 40K 50K 60K

ru
n

ti
m

e
 [

s
]

|V
iso

|

MINEX
MDIJK

MRNEX

(b) ST

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  10  20  30  40  50  60

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MINEX
MRNEX

MDIJK

 0

 1

 2

 3

 4

 5

 6

 7

 8

0K 2K 4K 6K 8K 10K 12K 14K

ru
n

ti
m

e
 [

s
]

|V
iso

|

MINEX
MDIJK

MRNEX

(c) SF

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  10  20  30  40  50  60

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MINEX
MRNEX

MDIJK

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0  500  1000  1500  2000

ru
n

ti
m

e
 [

s
]

|V
iso

|

MINE
MRNEX

MDIJK

(d) BZ

Figure 5.8: Runtime on Real World Data.

break-even point for MINEX and MRNEX is at 20% and 30%, respectively.

We learn from this experiment that in large datasets the break-even point
moves towards the size of the isochrone. This is because the data loaded initially
in MDijkstra do not fit into the cache of the database, whereas for smaller datasets
they do.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

IT ST SF

n
e
tw

o
rk

 s
iz

e
 [
%

]

MINEX
MRNEX

(a) Break-even Point.

 0

5

10

15

20

ru
n
ti
m

e
 [
s
]

MDIJK
MINE MRNEX

IT
ST
SF

(b) Network Independence.

Figure 5.9: Break-even Point and Network Independence.

Figure 5.9(b) confirms that MINEX and MRNEX do not depend on the network
size. We compute an isochrone of a fixed size |V iso| = 3.000 for the different real-
world data sets. The runtime of MINEX and MRNEX is almost the same for all
data sets. In contrast, the runtime of MDijkstra depends directly on the network
size: for the IT dataset the runtime is 54 s, in ST after 2.6 s , and in the urban
networks SF and BZ after 1.9 s and 0.85 s, respectively.
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5.4.1 Varying the Location of the Query Points

In this section we analyze the impact of varying locations of the query point on
the runtime behavior. For each dataset, we randomly generated 20 central and 50
peripheral query points. In urban networks, a central query point is located in the
central area of a city, whereas a peripheral query point is located in the peripheral
areas with a minor appearance of transportation systems. In regional networks,
central query points are set in major cities, whereas peripheral query points are
positioned in smaller towns and villages with some distance to large cities. In the
IT dataset, railway stations of the large cities belong to central points and small
town railway stations to peripheral points. The runtime depending on dmax is
measured, and we take the average over all central query points and the average
over all peripheral query points.

Figure 5.10 shows the results for the central query points. As expected, there
is not much difference to Figure 5.8, where the default query point in the centre
of the network is used.
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Figure 5.10: Central Query Points.

In contrast, in the experiments with peripheral query points in Figure 5.11, the
runtime grows slower. The reason is in the lower frequency of the transportation
systems and in the sparseness of the network. MRNEX outperforms MDijkstra
for all but very large isochrones. As usual, MINEX initially behaves like MRNEX,
but becomes slower for larger isochrones.

0

50

100

 0  100  200  300  400  500  600

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MDIJK
MINE

MRNEX

(a) IT

0

2

4

6

8

10

 0  50  100  150  200

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MINE
MRNEX

MDIJK

(b) ST

1

2

3

 0  10  20  30  40  50  60

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MINE
MRNEX

MDIJK

(c) SF

0.2

0.4

0.6

0.8

1

 0  10  20  30  40  50  60

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MDIJK
MINE

MRNEX

(d) BZ

Figure 5.11: Peripheral Query Points.
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5.4.2 Varying the Arrival Time at the Query Point

In this experiment we analyze the runtime when varying the arrival time at the
query point. We grouped the arrival times in three different clusters (low, medium,
high), depending on the frequency of the available transport systems. Figure 5.12
shows the histograms that measure the frequency of transport systems in different
time slots.
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Figure 5.12: Frequency Histograms of Transportation Systems.

Table 5.2 shows the three interval clusters with the chosen time intervals. For
example, the column low lists the time intervals, where the frequency of public
transport systems is low.

Data Low Medium High

IT [02 : 00− 04 : 00] am [07 : 00− 09 : 00] am [09 : 30− 11 : 00] pm
ST [02 : 30− 04 : 00] am [10 : 00− 12 : 00] pm [08 : 00− 10 : 00] am
SF [02 : 00− 03 : 00] am [10 : 00− 00 : 00] pm [04 : 30− 07 : 00] pm
BZ [02 : 30− 04 : 30] am [09 : 30− 10 : 30] pm [08 : 00− 10 : 00] am

Table 5.2: Clustering of Arrival Time Intervals.

The first experiment in Figure 5.13 measures the runtime when the arrival time
is set to a time point in the interval with a low frequency of the public transport
systems. In all datasets, MRNEX outperforms the competing algorithms. The
reason for the huge difference for the IT dataset is the very small number of
active public transport systems in this time range. As a consequence of this, the
isochrones are very small compared to the whole network, which needs to be loaded
by MDijkstra.

Figure 5.14 shows the results for arrival times that are in the medium range.
MRNEX outperforms MDijkstra for the large IT dataset. For the smaller datasets,
the break-even is approximately the same as in previous experiments.
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Figure 5.13: Low-frequent Time Intervals.
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Figure 5.14: Medium-frequent Time Intervals.

Finally, Figure 5.8 shows the results when the arrival time at the query point
is in the range of a high frequency of public transport systems. The runtime for
all datasets is similar to previous experiments.

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MDIJK
MINE

MRNEX

(a) IT

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  50  100  150  200

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MINE
MRNEX

MDIJK

(b) ST

 0

 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50  60

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MINE
MRNEX

MDIJK

(c) SF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  10  20  30  40  50  60

ru
n

ti
m

e
 [

s
]

dmax [minutes]

MINE
MRNEX

MDIJK

(d) BZ

Figure 5.15: High-frequent Time Intervals.

Overall, the break-even point is lower when a dense transportation system with
high frequencies is present, and it increases with a sparse public transport system
and/or low frequencies.

5.5 Summary

The memory experiments in Section 5.3 measured the memory requirements and
confirm that vertex expiration is effective and leads to memory requirements that
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are only a tiny fraction of the isochrone size. MDijkstra keeps the entire net-
work in memory. MRNEX’s memory requirements primarily depend on the initial
loaded range. MINEX depends only on a minimal set of expanded vertices that is
necessary to avoid cyclic network expansions.

The runtime experiments in Section 5.4 show that for large datasets, MRNEX
outperforms all other algorithms for medium as well as for large isochrones. MINEX
performs well on small isochrones, but since the number of DB lookups depends
on the size of the isochrone, it is not scalable in terms of runtime. Thus, MRNEX
is a good trade-off between memory usage and runtime performance.



CHAPTER 6

A System for Geographic Reachability Analysis

Geospatial analysis covers various approaches to perform statistical analysis on
data with a geographical or geospatial dimension and provides an important tool
in many application areas, including environmental and life sciences, epidemiology,
social sciences, medicine, emergency management or city planning.

This chapter presents ISOGA (ISOchrones for Geospatial Analysis), a system
for reachability analysis enhanced with statistical analysis in spatial networks.
The basis for computing geographical reachability are isochrones. ISOGA adopts
a service-oriented, three-tier architecture and uses components that are compliant
with standards from the Open Geographic Consortium (OGC). The client, a Web
application, allows to compute and to visualize isochrones within a graphical user
interface and to perform geospatial analysis on it. The server embeds the algo-
rithms for the computation of isochrones presented in Chapter 4. After computing
the isochrone, the system allows to join it with an arbitrary relation that contains
geo-referenced objects, e.g. people, houses or hotels. The set of geo-referenced
objects can be specified by the user as a general SQL query. As a result, the
system shows a simple summary statistics together with a list of all objects that
are located within the isochrone. The objects can be visualized on the interactive
map and by clicking on an object a popup shows additional information.

67
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6.1 System Components

The core components of the ISOGA system are the following:

1. The algorithms presented in Chapter 4 for the efficient computation of isochrones,
where an isochrone is represented as a subgraph of the network consisting
only of logical (non spatial) data.

2. An algorithm for calculating the surface of each disconnected subgraph that
belongs to the isochrone. The surface representation provides the basis for
joining it with object relations for the geospatial analysis.

3. A module for the statistical analysis which joins the isochrone surface with
the user-specified relation of geo-referenced objects and computes the statis-
tics.

6.1.1 Computing Isochrones

The algorithms MDijkstra, MINEX and MRNEX for the computation of isochrones
have been described in detail in Chapter 4. Here, we discuss how to assign the
logical representation of an isochrone with the real geometries.

The algorithms we presented produce as output an isochrone that is repre-
sented as a logical network. For visualization purposes and in order to do statis-
tics, we need to extend the logical model with the real geometries that repre-
sent the vertices and edges of the isochrone, i.e. assign the geometric points of
the vertices and the (poly)lines representing the geometry of the edges. This
process is executed when the isochrone is inserted and stored in the database.
When the vertices of the isochrone are inserted, the geometry is fetched from
the vertex and edge tables of the network. If edges are only partially reached,
we apply a clipping operation to subtract from the complete geometry of an
edge only the part that is not reachable. For this we use the spatial function
ST Line Substring(geometry, start fraction, end fraction). The function ex-
pects as input parameters a linestring geometry and the start-offset and end-offset
specified as a fraction of the edge length.

Since every insert operation of an edge or a vertex requires a lookup in the
original network tables to retrieve the geometry, the writing of the output is im-
plemented in a separate thread that uses a bulk insert strategy. A bulk-insert
process inserts several SQL-insert statements in a single block, i.e. sends them
from the client to the database server.
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6.1.2 Creating a Surface Around Isochrones

An isochrone with associated geometries as described in the previous subsection
covers all space points on the edges and vertices that are included in the isochrone.
We call this a network representation. Such a network representation is not always
sufficient to determine all objects that are within an isochrone. Many application
are not only interested in the objects that are not on the edges, but also in objects
that are in the immediate vicinity of edges or vertices, e.g. houses that are along
the streets but not on the streets. Thus, the spatial areas that are covered by an
isochrone need to be considered. We call this an area representation of isochrones.

Marciuska and Gamper [42] propose two algorithms to construct isochrone
areas, but they are limited to work only for isochrones in a pedestrian network.
The Link-Based Approach (LBA) simply computes a buffer around each edge
in the isochrone, while the Surface-Based Approach approach (SBA) computes
a minimum bounding polygon around the outermost edges in the isochrone. We
improved these two approaches to become more efficient and applicable for general
isochrones.

In LBA [42], the creation of a separate buffer around each edge in the isochrone
produces a large number of intersecting areas, one for each edge. Thus, joining an
isochrone with an object relation required to join each of these buffers with the
relation, which produces a large overhead, and due to the overlapping, a single
object may fall into several buffers. To remedy this problem, we aggregated all
overlapping buffers into a single geometry. This modification improved the runtime
for the join even in the small dataset BZ by 20%. For larger isochrones and a larger
size of spatial objects it will be considerably more.

(a) Graph representation (b) Area representation

Figure 6.1: Isochrone Area Generation Using LBA Approach.

Figure 6.1(b) shows the screenshot of an isochrone area that is generated by
the LBA approach from the isochrone in Figure 6.1(a). The isochrone consists of
five disconnected subgraphs.

Algorithm 6 shows SBA∗, which extends SBA [42] for isochrones that are
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composed of disconnected subgraphs, which is typically the case if public transport
systems are present in addition to the pedestrian network. The input parameters
to the algorithm are a set of edges Eiso that represents an isochrone network and a
parameter size that represents the margin of the buffer that is created around the
outermost edges. SBA∗ iterates over the set Eiso, and in each iteration it computes
an area around a single subgraph of the isochrone. It determines the leftmost edge
in Eiso and calls the function DFS which traverses the outermost edges of the
subgraph in a recursive way. The parameter P returns the ordered list of points
that represent the geometry of the outermost edges. Then, P is transformed into
a polygon and a buffer with a margin of size size is created around the polygon.
Finally, all edges that are within the isochrone area are removed from Eiso.

Once the leftmost edge of a subgraph is found, function DFS recursively com-
putes the outermost edges of that subgraph and collects their geometry in an
ordered set of points P . DFS has as input the leftmost edge root, the current
visited edge e, the isochrone edges Eiso, the ordered set of points P , and the re-
cursion level l. DFS examines in a depth-first-search the subgraph until it either
returns to the root edge or when no other edges are found. If e = root and l > 0,
the edge traversal is returned to the root edge. The geometry of the current edge
is added to P (line 2 after inverting the order of the points) and the recursion
terminates (line 3). If the root edge e is visited the first time (l = 0), we first add
its geometry to P . Then, we consider all incoming edges to v, ordered by the angle
to e, by recursively calling DFS with that edge and a recursion level that is incre-
mented by one. If l > 0, the edges are processed in a similar way (line 11). The
only difference is that we have to consider the case that an edge is only partially
reachable; o(e) is the reachable segment from the start vertex of e and o(e−1) is
the reachable edge segment from the end vertex of e. If o(e) + o(e−1) ≤ λ(e), the
two edge segments cover the entire edge, hence the recursive traversal of the edges
continues (line 15). If this is not the case, only the inverted points current edge
segment are added (line 18), the recursion stops (line 19) by returning false.

Algorithm 6: SBA∗(Eiso, size)
input: Eiso, size

1 while Eiso 6= ∅ do
2 P ← ∅;
3 e = (u, v)← leftmost edge in Eiso;

4 DFS(e, e, Eiso, P, 0);
5 g ← ST Buffer(ST MakePolygon(P ), size) ;

6 Eiso ← Eiso \ ST Within(Eiso.geo, g);
7 Output ST Multi(g);

If DFS returns true, we stop the recursion; otherwise, we add the geometry of
e to P and consider the next incoming edge to v. Once the root edge is reached
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Function DFS(root, e, Eiso, P, l)
1 if e = root ∧ l > 0 then
2 P ← P ∪ geom(e)−1 ;
3 return true ;

4 (u, v)← e;
5 if l = 0 then
6 P ← P ∪ geom(e);

7 foreach (u′, v) ∈ Eiso sorted by angle α((u, v), (u′, v)) do
8 if DFS(root, (u, v), Eiso, P, l + 1) then return true;
9 else P ← P ∪ geom(e);

10 return false;

11 else
12 if o(e) + o(e−1) ≤ λ(e) then
13 P ← P ∪ geom(e)−1 ∪ geom(e−1));

14 foreach (t, u) ∈ Eiso sorted by angle α((u, v), (t, u)) do
15 if DFS(root, (t, u), Eiso, P, l + 1) then return true ;
16 else P ← P ∪ geom(e) ;

17 else
18 P ← P ∪ geom(e)−1 ;

19 return false ;

the recursion terminates and by returning true DFS prevents that any other edge
is examined. Next, in the main algorithm the points in P are transformed into a
polygon, around which a buffer with a margin of size size is created (line 5). A
polygon is valid, if it shares in common only the first and the last point. Since
during the backtracking DFS (line 18) adds same points of the geometry in re-
versed order, the final constructed polygon becomes invalid. The SQL function
ST MakeV alid(geometry) remedies this misbehaviour by transforming an invalid
polygon geometry into a valid geometry collection, on which a buffer is created.

Next, we illustrate the algorithm SBA∗ using a small example and compute
the area step-by-step.

Example 6.1.1. The leftmost edge (v0, v1) in Figure 6.2 is passed as root edge
to the function DFS. Since the level of recursion is zero, the geometry is added
to P and all incoming edges to the end vertex v1 are determined and sorted
by the angle relative to the current visited edge. This results the order set
{((v2, v1), α21),((v8, v1), α81), ((v0, v1), α01)}. Note the angle to the edge itself is
set to 360◦. As next edge DFS is called with (v2, v1).

Since we are examining edge (v2, v1) in the first recursive call (l > 0) we have
to determine the incoming edge relating to the start vertex v2. This returns the set
{((v3, v2), α32),((v7, v2), α72), ((v1, v2), α12)}. And we proceed the recursion with
edge (v3, v2) until examining edge (v4, v3) as shown in Figure 6.3(a). At this point,
when entering into the next level of recursion with edge (v9, v4) and traversing a
partial edge, the inverted geometry is added to P and the recursion is interrupted
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qv0
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v2 v3
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α01

Figure 6.2: Intialization: visit edge (v0, v1).

by returning false. Returning false indicates that the root edge was not found.
Next, after appending the geometry or edge (v9, v4), the recursion proceeds with
(v5, v4) as illustrated in Figure 6.3(b).

qv0

v1

v2 v3

v4

v5v6v7v8

v9
α94

α54

α34

(a) Visting (v9, v4)

qv0
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v2 v3

v4

v5v6v7v8

v9

α54

α34

(b) Visting (v5, v4)

Figure 6.3: Illustration of SBA∗ algorithm (1).

The final surface is shown in Figure 6.4(a) as the light-gray area. Note that the
edges (v3, v6), (v6, v3) do not belong to border edges and were consequentially not
examined in DFS. Finally all edges that are enclosed by the buffer are extracted
from Eiso.
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(a) Isochrone as single graph.

qv0 v1 v2 v3 v4

v5v6v7v8

v9

(b) Isochrone as disconnected graph.

Figure 6.4: Illustration of SBA∗ algorithm (2).

Typically in multimodal networks an isochrone consists of several disconnected
graphs. This implies that after the first iteration of the while loop, Eiso is not
empty and DFS is launched again with the leftmost edge of the next subgraph. In
Figure 6.4(b), that represents a different isochrone consisting of three subgraphs,
after creating the polygon with root edge (v0, v1), DFS is called with edge (v8, v7)
and later with (v7, v6). DFS terminates when no more edges reside in Eiso.
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Since the algorithm performs a network examination to identify the outermost
edges, the requirement is that the isochrone represents a planar graph. That means
an edge can cross another edge only at the start or at the end vertex.

(a) Graph representation (b) Area representation)

Figure 6.5: Isochrone Area Generation Using SBA∗ Approach.

Figure 6.5(b) shows the screenshot of an isochrone area that is generated by
the SBA∗ approach from an isochrone consisting of multiple subgraphs.

6.1.3 Computing Statistics with Isochrones

The area representation of an isochrone allows us to perform spatial operations
such as joining the isochrone with other geo-referenced objects and to compute
statistics about the reachability. Figure 6.6 illustrates the workflow of the sta-
tistical component. The user creates an arbitrary SQL expression Q, where one

Q

ISO R

1

R’

Statistics (S)

Statistics (S’)

ST Within(R.geom, ISO.geom)

Figure 6.6: Query Tree with Workflow.

can specify the objects of interest for the analysis (e.g. houses, people, museums)
and a predicate that defines the spatial relationship (intersection, disjoint, . . . )
between these objects and the isochrone. In order to join the selected relation
with the isochrone, one of the projected attributes must have a spatial property.
That can be a geometry of type point, linestring, or polygon. The query expres-
sion Q is parsed, and the spatial attribute is extracted. Then, Q is passed to
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the DB and executed. This returns an intermediate result R, from which the
total number of tuples and/or an aggregated attribute value (e.g. SUM) are com-
puted. Next, the intermediate relation R is joined with the isochrone area ISO,
i.e. R′ = πR.∗(σST Within(R.geom,ISO .geom)=true(R 1 ISO)). Relation R′ contains all
tuples with a geometry that is inside the area of the isochrone. Again, on R′ basic
statistics are computed. As a final result, the user gets relation R′ and a summary
statistics about the reachability (see Sec. 6.4 for some examples).

6.2 Architecture

From a technical perspective, ISOGA adopts a service-oriented, three-tier archi-
tecture composed of a presentation tier, logical tier, and data tier, and it uses
standardized OGC services for exchanging spatial data between client and server
(see Figure 6.7). The system can be accessed at www.isochrones.inf.unibz.it/
isoga.

Client

MINEX

Geo Builder

Map Builder

Geo Analysis

Server

Schedule
Street netw.

Isochrone

external
Mapserver

external DB

Database

1©

2©, 3©

4©

json

png,json

Figure 6.7: Architecture.

6.2.1 Presentation Tier

The presentation tier is a WebGIS client, implemented in JSP and JavaScript.
It uses Comet1 as Web application model for asynchronous data sending and for
managing long polling requests. Openlayers2 is used as Web mapping framework
and GeoExt3 as framework for building interactive WebGIS applications. A long

1www.cometd.org
2www.openlayers.org

3www.geoext.org

www.isochrones.inf.unibz.it/isoga
www.isochrones.inf.unibz.it/isoga
www.cometd.org
www.openlayers.org
www.geoext.org
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polling request is an Internet-based communication that allows the emulation of
an information push from a server to a client.

The main tasks of the client are the interaction with the map, the input of the
query parameters, and the visualization of the results. The client communicates
with the server over the HTTP protocol using the following standardized OGC4

services:

• Web Map Service (WMS ) for serving geo-referenced map images;

• Web Feature Service (WFS ) for requesting geographical features.

The client submits asynchronously four different types of HTTP requests. An
isochrone request 1© invokes MINEX for the computation of an isochrone with the
user defined parameters. Figure 6.8 exemplifies such a request.

http : / / . . / i s o S e r v l e t ? r eque s t=GetIsochrone
&arr iva lTime =’2010−09−01T21:20 ’& poi = ’1263595 ,5860641 ’
&speed=2&durat ion=20&networks=’P,B’

Figure 6.8: Isochrone Request.

A map request 2© (see Figure 6.9) retrieves the isochrone in form of a binary im-
age format and includes it as a separate layer in the map. Vertices, edges and areas
are added as three different layers in the map. Similar, the base layer images (e.g.

http : / / . . / i s o S e r v l e t ? r eques t=GetMap
&format=image : png&l a y e r s=edges&width=800&he ight =600
&bbox =1263657 ,5860274 ,1263963 ,5860580 ’

Figure 6.9: Map(WMS) Request.

the street network or orthophoto) that come from different external geographic
map providers (for instance, Google Maps, OpenStreetMaps or Microsoft Bing)
are fetched via WMS requests. The request is triggered during the initialization
of the map, or after that the algorithms have produced their output or whenever
there is an interaction with the map (zoom, pan, identify).

A feature request 3© retrieves detailed information about a selected feature and
returns as response the information in textual format. An example is shown in
Figure 6.10: The parameters specify the selected bounding box that represents the
spatial range in which the feature is located, the name of the layer, and the format
of the response. For instance, in Figure 6.14 the returned feature is visualized in

4http://www.opengeospatial.org/
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http : / / . . / i s o S e r v l e t ? r eque s t=GetFeature
&format=text : j son&typeName=v e r t i c e s
&bbox =1263657 ,5860274 ,1263659 ,5860275

Figure 6.10: Feature(WFS) Request.

a pop up and represents a vertex that is annotated with information on how to
reach the query point (e.g. distance, walking time, bus line, and departure time).
The request is triggered by clicking on an object on the map.

6.2.2 Logical Tier

The logical tier (i.e. the server in Figure 6.7) accepts requests via a Java Servlet.
During an isochrone request first the coordinate of the query point is mapped to
the closest continuous edge and its offset and then invokes the algorithms presented
in Section 6.1.

In order to enable the client to access the isochrone via WMS and WFS, the
three output tables, i.e. (iso)vertices, (iso)edges and (iso)areas are registered as
vector layers in the map builder module. As map builder we use the rendering
engine Geoserver 5 which provides standardized OGC services to access to the
spatial information of these layers and acts as a rendering engine. For a WMS
request, Geoserver reads the spatial data from the DB and creates an image that
is sent back to the client. For a WFS request, the information is retrieved from
the DB and sent to the client as a feature in textual format. The map builder
serves also as proxy for providing base layers from external maps servers.

The network representation of the isochrone is passed to the GeoBuilder mod-
ule, which performs two tasks. First, the isochrone is annotated with geometry
information and stored in vector format in a spatial relation in the DB. Second,
the network representation of the isochrone is transformed into a spatial area
(polygon).

The third main task of the logical tier is to perform the geospatial analysis as
described in the previous section. Once an isochrone is computed, the user can
specify an arbitrary SQL expression that is sent to the server via a geoAnalysis
request 4©. The query is processed as described in Section 6.1.3.

Figure 6.11 illustrates an analysis request that returns a relation with all build-
ings in the specified price range, that reside in the previous computed isochrone.

The final result is converted from a relational format into a Java Script Object
Notation (JSON) format and sent back to the client.

5www.geoserver.org

www.geoserver.org
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http : / / . . / i s o S e r v l e t ? r eque s t=GeoAnalysis
&format=text : j son&typeName=area
&query=’ s e l e c t id , avg rent , geom from b u i l d i n g s

where avg rent between 600 and 800 ’

Figure 6.11: Analysis Request.

6.2.3 Data Tier and Data Model

The data tier uses a relational DBMS with a spatial extension to perform spatial
operations, such as edge clipping if an edge is only partially reached, mapping the
query point to the closest edge, area buffering, spatial intersection, or other spatial
operations.

The multimodal network is stored in five different tables. The vertex table
contains all crossroads of a street network and all stop stations belonging to public
transport systems. It consists of a unique identifier and a spatial attribute of type
point. This geometry is used for rendering the vertices as a geographical point in
the map. In addition this attribute is required in the range queries of the MRNEX
algorithm. Table 6.1 shows an excerpt of the vertex table.

id geometry
5025 POINT(680386 5152168)
5027 POINT(680455 5152044)

2000542 POINT(680393 5152167)
...

...

Table 6.1: Vertex Table.

The edge table contains a unique identifier, the id of the start vertex, the id of
the end vertex, the length of the edge (e.g. in terms of meters), a transport system
to which the edge is associated, the in-degree of the start vertex, the out-degree
of the end vertex and the geometry of type linestring. The in- and out-degree are
used in the algorithms MINEX and MRNEX. Table 6.2 shows an excerpt of the
edge table. Note that discrete edges are not annotated with a geometry and the
edge length is undefined.

id start end length t sys t mode s indeg e outdeg geometry
270 5027 5025 null 28 ’dsdt ’ 12 14 null
270 5027 5025 null 32 ’dsdt ’ 12 14 null
2006436 5025 2000542 8 0 ’csct ’ 12 4 LINESTRING(680386

5152168,680393 5152167)
...

...
...

...
...

...
...

...
...

Table 6.2: Edge Table.
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The table of the schedules represents the interval representation described in
Chapter 4. It consists of a trip identifier, an identifier of the transport system, a
start vertex, departure time at the start vertex, an end vertex, arrival time at the
end vertex, and an id of the day when the transport system is active. Departure
and arrival time are expressed in seconds after midnight. An example relation is
illustrated in Table 6.3.

trip id t sys start departure end arrival active day
4559 28 5027 17820 5025 17880 11
4563 28 5027 20220 5025 20280 11
4572 28 5027 23220 5025 23280 11
. . . . . . . . . . . . . . . . . . . . .
475 32 5027 21420 5025 21480 24
482 32 5027 24720 5025 24780 24
485 32 5027 25620 5025 25680 24

...
...

...
...

...
...

...

Table 6.3: Schedule Table.

The daymarker table specifies codes for groups of days on which a trip is active.
For instance, the first tuple in Table 6.4 specifies the code for trips of a mean of
transport that is available on weekdays only, while the second tuple specifies the
code for trips that run only on the weekend.

day id mo tue wed thu fri sa su
11 1 1 1 1 1 0 0
24 0 0 0 0 0 1 1
...

...
...

...
...

...
...

...

Table 6.4: Daymarker Table.

Finally, the transport system table illustrated in Table 6.5 contains all types
of means of transport that are available in the multimodal network.

t sys short name long name agency
0 ’Ped’ ’Pedestrian Network BZ’ ’Municipality BZ’
28 ’3 BZ’ ’Bus Route Nr 3 Area BZ’ ’SASA’
34 ’5 BZ’ ’Bus Route Nr 5 Area BZ’ ’SASA’
...

...
...

...

Table 6.5: Transportation System Table.

The ISOGA system works with PostGIS 2.0 as well as with Oracle Spatial 11g.
Only OGC-standardized spatial operators (OGC/SQL-MM [60]) are used on the
DB level. This implies an easy migration to any other OGC-compliant spatial DB,
such as SpatiaLite6. Figure 6.6 lists the spatial SQL operations used in the system
ISOGA.

6www.gaia-gis.it/spatialite/

www.gaia-gis.it/spatialite/
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Functionality Operator Description

Mapping ST Line Locate Point
(E.geom,Q.geom)

Maps the coordinate of q to its closest edge
in E

Clipping ST Line Substring
(geom, from, to)

Creates a line segment from the origin ge-
ometry determined by the two fraction off-
sets (from,to)

Buffering ST Buffer
(geom, size)

Constructs around a geometry
(point,line,polygon) a buffer of type
polygon with a specific size

Casting ST Multi(geom) Casts a single geometry
(point,line,polygon) to a collection of
geometry from the same type. Used for
creating the isochrone area formed by the
outermost edges.

Conversion ST MakeV alid(geom) Converts an invalid polygon into a valid
one

Inclusion ST Within
(R.geom, S.geom)

Spatial predicate returns all tuples from
relation R whose geometry resides within
the geometry of S

Table 6.6: Spatial SQL Operations.

6.3 Conceptual Design for Mobile Devices

The current version of ISOGA is deployed as a client-server Web application.
In principle, the client would run on a mobile device within a Web browser, but
the graphical components are not designed and optimized for such small screens.
Moreover, running the client on such devices with a small bandwidth may cause
long response times, and when no network connection is available the client will
not work. Also, high roaming costs might occur if the user accesses the service
from a foreign country. For all these reasons, ISOGA has to be reengineered to
work in offline mode and as a native mobile application. In this section, we propose
an adaption of the ISOGA architecture that is suitable for mobile applications.

In typical client-server applications the server has a large amount of memory
and a fast connection with the client, so the data can often completely be loaded
in main memory and the major workload is performed by the server. Contrary, in
mobile phones memory is still a critical issue. For instance, a state of the art mobile
smart phone, such as the Android device Sony Ericsson XPERIA arcS [59], has a
limited amount of RAM (512MB), where at least half of the memory is reserved
for the operating system or other internal services. However, these devices have a
large capacity in secondary memory. For example, the model XPeriaARCS has a
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phone storage of 1GB and an expansion slot for a microSD card up to 32GB [59].

Figure 6.12 shows a preliminary design of an architecture for mobile devices.
The system is divided in two blocks: the mobile application and the download
server. The first block is an application that works independent from the server.
A communication between these blocks is only established, when spatial data is
synchronized (e.g. a new schedule is published) or when new data is added.

GUI

MINEX

Geo Builder

Map Builder

Geo Analysis

Application

Schedule
Street netw.

Isochrone

Maps

Geo DB

Database

Mobile App

1©

2©, 3©

4©

Download Server

Network

Schedules

OSM

Geo Obj.

Figure 6.12: Design of a Mobile Architecture.

The presentation layer is a GUI developed with the Android User Interface
Widgets. It communicates with the application layer over service methods to in-
voke the requests that we described in the previous section. The computation of
the isochrone will be done by the MRNEX algorithm, since it offers the best trade-
off between memory usage and runtime performance. The code in GeoBuilder
remains untouched, since the DB calls are identical for a database on the mo-
bile device. The MapBuilder part will be modified by replacing Geoserver with
Tilemill 7. Tilemill uses Mapnik as a renderer and supports various spatial for-
mats, such as shapefiles, rasters, etc. Since Tilemill is an open source product, it
can be extended to use the light-weighted DBMS SQLite with its spatial extension
SpatiaLite. SpatiaLite provides a limited set of spatial data types and operators,
but all the spatial operators used in ISOGA listed in Table 6.6 are implemented.
Therefore the data tier loads the used tables from the secondary memory (MMC
card), where space is not a problem.

7http://mapbox.com/tilemill/
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6.4 Application Scenarios

We present two application scenarios that emerged from a collaboration with the
Municipality of Bolzano-Bozen and one example that shows network expiration
to illustrate the low memory requirements of MINEX. All of these application
scenarios are online available under the following URL: www.isochrones.inf.

unibz.it. The client was tested with the Web browsers Mozilla, Chrome, and
Safari.

Flat Search. In this use case we want to seek cheap apartments that are close
to the working place. As illustrated in Figure 6.13, the user specifies a single
query point by clicking on the map that represents her/his working place and the
other input parameters shown on the right-hand side of the figure. As a result,
the isochrone together with the vertices that are visited with public means of
transport, the edges, and the isochrone area are added as overlays to the map.

Figure 6.13: Using Isochrones in a Flat Search Scenario.

In the second step, the user specified SQL query shown in the upper right
corner in Figure 6.14 retrieves a subrelation with all flats in the specified price
range that is joined with the isochrone using the spatial relationship within. All
available flats that are located inside the isochrone are visualized as circles on
the map. On the right-hand side some statistics about the flats that are located
inside the isochrone are shown, and the table in the lower right corner shows the
corresponding prices. By clicking on the bus icon, the path and the traveling time
to the working place is shown.

Reachability of Schools. In this use case we want to analyze how well the
primary schools in the city Bozen-Bolzano are reachable in less than 15 minutes

www.isochrones.inf.unibz.it
www.isochrones.inf.unibz.it
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Figure 6.14: Joining Flats and Isochrones.

by using public transport systems in addition to walking. For this we issue an
isochrone query with multiple query points as shown in Figure 6.15. More specifi-
cally, we select the category primary school which selects and displays the locations
of all urban primary school buildings together with the beginning of the school,
e.g. 08:00 am.

Figure 6.15: Reachability of Primary Schools.

Next, we specify an SQL query that retrieves from the inhabitants database all
houses in which school kids with an age between 6 and 11 years live. This relation
is joined with the isochrone. By specifying in the projection the SUM aggregation
function the statistics shows in the lower right side of Figure 6.16 the number and
the percentage of school kids that reach the closest school in less than 15 minutes.
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Figure 6.16: Percentage of Schools Kids in a 15 min. Isochrone.

If we change in the input parameters the time to 01:00 pm and the direction
from the query points outwards, we get the number of kids who reach their home
after school ending in less than 15 minutes.

6.4.1 Vertex Expiration.

The last scenario illustrates network expiration of MINEX (see Figure 6.17). The
user can select different datasets. Currently, the cities of Bolzano-Bozen, and San
Francisco as well as the regional networks of South Tyrol and Italy are available.
All datasets have different network topologies and different types of transport
systems. After computing an isochrone, the user can open the Layers panel and
activate the visualization of the status of the vertices during the computation of
the isochrone. Black circles represent the vertices that are kept in memory to
avoid cyclic expansions (the expansion frontier). Gray circles represent vertices
in memory that were not expanded). White circles represent expired vertices
that have already been removed from memory in order to minimize the memory
requirements of the algorithm.
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Figure 6.17: Vertex Expiration in MINEX.

6.5 Summary

In this chapter, we presented ISOGA, a prototype system for computing, querying,
and visualizing isochrones in combination with statistical analysis. The system
allows to join an isochrone with an arbitrary relation that contains geo-referenced
objects, e.g. people, houses, or hotels. The set of geo-referenced objects can be
specified by the user as a general SQL query. As result of a query, the system shows
a simple summary statistics together with a list of all objects that are located
within the isochrone. The system is subdivided in three major components: the
first component is responsible for an efficient computation of the isochrone that
forms a disconnected subgraph of the origin network. The second component cares
about the correct surfacing of the isochrone in such a way to make it queryable
with other spatial objects. The third component is responsible for joining an
isochrone with an arbitrary, user defined spatial relation with the aim to perform
geospatial reachability analysis. From a technical perspective, ISOGA adopts
a service-oriented three-tier architecture and uses standardized OGC services for
exchanging spatial data.



CHAPTER 7

Conclusions

7.1 Summary

In this thesis we introduced, defined, and provided algorithmic solutions for the
computation of isochrones in multimodal spatial networks. We further investigated
the use of isochrones for geospatial analysis and developed a prototype system that
shows the usefulness of such analysis in different real-world application scenarios.

We begun with the definition of multimodal spatial networks that can be contin-
uous or discrete along the time and space dimensions, respectively. We introduced
a general time-dependent cost function to compute the time-dependent transfer
time on network edges. We then defined an isochrone as a possibly disconnected
subgraph that covers all space points in the network from where a query point is
reachable within a given time span and by a given arrival time.

We developed three different algorithms for the computation of isochrones,
where each of them is suitable in different computational environments. The first
algorithm MDijkstra, though it is very efficient, has a high memory cost and shall
be used if a powerful server with a large memory is available. The second algo-
rithm MINEX has a very low memory footprint and is suitable in a computational
environment where memory is more important than runtime. The third algorithm
MRNEX is a trade-off between memory and runtime and is the best choice for
native mobile applications.

An in-depth empirical evaluation confirms the scalability of the proposed al-
gorithms. While MDijkstra is fast once the entire network is loaded in memory,
vertex expiration that is implemented in MINEX and MRNEX is an effective way
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to minimize the memory requirements. Indeed, the memory requirements of the
latter two algorithms are only a tiny fraction of the isochrone size. That is, only
a minimal set of expanded vertices is kept in memory that is necessary to avoid
cyclic network expansions. The runtime experiments show that for large datasets,
MRNEX, which loads the network in small chunks outperforms all other algorithms
for medium and large isochrones. MINEX performs well on small isochrones, but
since the number of DB lookups depends on V iso, it is not scalable in terms of
runtime. Overall, MRNEX is a good trade-off between memory and runtime.

We implemented a Web-based prototype system which combines the compu-
tation of isochrones with a statistics component to provide a useful instrument
to perform various kinds of geospatial analysis, in particular reachability analysis.
The system is subdivided in three components. The first component is responsible
for an efficient computation of isochrones. The second component transforms a net-
work representation of isochrones in an area representation. The third component
joins an isochrone with an user-defined spatial relation that contains geo-referenced
objects. From a technical perspective, ISOGA adopts a service-oriented three-tier
architecture and uses standardized OGC services for exchanging spatial data. The
system can be accessed at www.isochrones.inf.unibz.it/isoga.

7.2 Future Research Directions

Future work points in different directions. First, we want to complete the imple-
mentation to cover all possible combinations of transportation modes, including
discrete space continuous time networks and continuous space discrete time net-
works, such as the use of cars.

Second, we will study approximation techniques to further improve the run-
time efficiency. The goal is to find a very efficient solution that provides a good
approximation of the exact isochrone.

Third, we plan to migrate ISOGA into a native mobile application that com-
putes isochrones offline. The major challenges of this task are how to embed a
light-weighted spatial DBMS (for instance SpatiaLite) in mobile devices and how
to adopt the expensive rendering process of raster and vector data to devices with
less computational power.

Fourth, we aim to standardize isochrone queries as a Web Processing Service
(WPS). The OGC provides rules for standardizing inputs and outputs (i.e. requests
and responses) for invoking geospatial processing services as a Web service.

Finally, we will deploy our prototype system ISOGA as a full operational
system with the aim to use it as an instrument for various kinds of reachability
analysis.

www.isochrones.inf.unibz.it/isoga
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