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Abstract

In this thesis we study issues related to large scale analysis of historical
data. We observe that summarizing such data and discovering the most
important aspects of it are the key issues to address. Temporal aggrega-
tion is used to summarize time varying information. However, the two most
prominent operators in use today do not meet the demands of large scale
applications. Instant temporal aggregation tends to produce more output
data than the input, which is contrary to the very idea of aggregation. Span
temporal aggregation takes non-data adaptive measures to control the size
of the output. Therefore, we propose a new aggregation concept, parsimo-
nious temporal aggregation (PTA), that overcomes the limitations of existing
approaches. PTA takes a data adaptive approximation approach, allowing
the user to control the tradeoff between the size of the aggregation result
and the error induced by the consequent approximation.

We propose a dynamic programming algorithm for the offline evaluation
of PTA queries that benefits from temporal gaps present in the data and
aggregation groups specified in the query. The computation complexity of
the algorithm, although quadratic in the worst case, is reduced to linear for
real-world situations. For the online evaluation of PTA queries we propose
a time and space efficient greedy merging algorithm that reduces n input
tuples to c in O(n log(c+β)) time using O(c+β) space, where β is typically
very small. The efficiency of the greedy approach comes at a slight loss
of approximation precision that we prove to be upper bounded by O(log n).
An empirical evaluation using synthetic and real world data shows that PTA
considerably reduces the aggregation result introducing only small errors.
The greedy solution is scalable for large datasets and induces less approx-
imation error than other commonly used approximation techniques.

The second issue addressed in this thesis concerns a framework for
mining the aggregation groups from data, and for ranking them. As an
application scenario we we focus on the problem of ranking news stories

xvii



within their historical context by exploiting their content similarity. We ob-
serve that news stories evolve and thus have to be ranked in a time and
query dependent manner. We do this in two steps. First, the mining step
discovers metastories, which constitute meaningful groups of similar sto-
ries that occur at arbitrary points in time. Second, the ranking step uses
well known measures of content similarity to construct implicit links among
all metastories, and uses them to rank those metastories that overlap the
time interval provided in a user query. We use real data from conventional
and social media sources (weblogs) to study the impact of different meta-
aggregation techniques and similarity measures in the final ranking. We
evaluate the framework using both objective and subjective criteria, and
discuss the selection of clustering method and similarity measure that will
lead to the best ranking results.

The combined application of the PTA operator and the ranking frame-
work allows us to store and analyze aggregated data over long periods of
time. The data aggregated with PTA will take less space yet preserve the
most important information. The ranking framework will allow the selection
of the most important aspects of the data depending on the user-specified
historical context.

xviii
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2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Data analysis is at the core of many business, scientific and administra-
tive processes. For example, data analysis allows companies to discover
new, previously unknown, information about the behavior and needs of their
clients and adapt the business accordingly. In scientific research, data col-
lected from sensors may be used to prove or formulate novel hypotheses. A
significant amount of computer science and database research effort lead
to techniques and industry-standard tools that facilitate data collection and
analysis. Relational databases are now used for data storage and SQL is
the most widely used query language used in database retrieval.

In almost every transactional database a timestamp or a validity time
interval is assigned to data records. Employment databases store contract
start and duration as a temporal validity interval. Observational data bears
the timestamp indicating the time the measurements took place. Medical
databases record patient histories and their visits to doctors. Stock market
databases track the commodity prices that change over time. News aggre-
gation engines store the time an article was published, as well as the time
it was retrieved by the web crawler.

The temporal dimension captured in the data enables the users to ana-
lyze and possibly predict the way the system under consideration changes
over time. It also allows one to identify trends and repeating patterns. Tem-
poral aggregation aims at summarizing the data and enabling the analysis.
It differs from traditional aggregation as aggregate values are computed
over a set of time intervals. Traditional database tools, however, do not
allow efficient temporal aggregation [34]. Although several temporal aggre-
gation techniques have been proposed to address the issue, the aggre-
gated result they provide is overly detailed. Today, when the amount of
archived data is enormous, temporal aggregation should efficiently provide
a compact overview of all the data available, putting the emphasis on the
most significant changes. Moreover, it should use the underlying data to
select the aggregation intervals and aggregation groups instead of leaving
this task to the user, as is the case with current techniques.

In fact, the need to monitor the evolution of a system under considera-
tion has recently captured the interest of the general public, media, industry
and scientists alike. In various fields, from climate to economics, finding out
what has changed will be fundamental in understanding why it happened.
For example, today many people feel that human activity across the planet
has lead to global climate change. Whether or not this is true, what caused
the change and what the future state will be, are subject to much scientific
and public debate. However, it is clear that adequate large scale monitoring
and analysis tools, as well as international policies, must be in place for a
consensus on the cause and future state to be reached [25].

Accordingly, recent years have seen increased interest in historical data
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management and temporal databases among scientific communities and
industry . As an example, consider a state-of-the-art content aggregation
platform that was recently unveiled by Thoora1. The Thoora platform solves
the problem of how to cluster together news articles, blogs and tweets all
relating to a given story. Thus, existing technology for news-related con-
tent aggregation allows users to have easy access to current stories, and
to benefit from the wide range of opinions and comments provided by so-
cial media. However, the larger-scale problem of organizing, grouping and
searching historical archives of such and similar content remains largely
unsolved due to the enormous amount of information that has to be han-
dled and the evolutionary dynamics of the temporal data itself.

A recent article by the BBC2 debates the most important events of the
last decade. In this article the authors ask the readers to list the most im-
portant events of the last decade and rank them. Unfortunately, while the
events of 911, the launch of the iPhone, etc. received their mention, the
launch of YouTube, or the sequencing of the human genome had been for-
gotten and not included on the list. Moreover, as can be seen in Fig. 1.1,
some events pertain to distinctly different news categories, therefore, it is
hard to judge which one should be ranked higher. In summary, the arti-
cle shows that public memory is not a reliable approach to rank historical
events. The authors conclude that “any attempt to list the major events of
a decade is almost bound to disappoint. It will miss things that some will
consider vital.” We feel that the above conclusion is premature. And we
argue that in order to answer such and similar questions we must collect
historical data and learn how to analyze it in a principled and automated
way.

1.2 Problem Statement

Today data warehouses accommodate data that streams in vast amounts
from a plethora of heterogenous sources. For example, the above men-
tioned news aggregation system combines different sources of user opin-
ion, i.e. blogs and tweets, with articles from conventional media into one
database. In most cases the incoming data records are stored together
with timestamps or temporal validity intervals. This temporal dimension is
crucial as it enables the analysis of the collected data with a temporal per-
spective. Temporal aggregation is used to provide the user with a summary
of the data. It allows one to identify trends, and search for patterns and
other time related developments that would otherwise remain invisible.

Various forms of temporal aggregation have been studied in the past.
Most importantly, instant temporal aggregation (ITA) [12, 34, 43, 55, 42, 60]

1 www.thoora.com
2BBC, 14 December 2009, http://news.bbc.co.uk/2/hi/8409040.stm

www.thoora.com
http://news.bbc.co.uk/2/hi/8409040.stm
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Figure 1.1: Is it really possible to sum up a decade?

and span temporal aggregation (STA) [12, 34]. The value of ITA at time
instant t is computed from the set of tuples that hold at t. Consecutive time
points with identical aggregate values are then coalesced. Thus, ITA works
at the smallest time granularity. Its main drawback is that the result size
depends on the argument relation, and may grow to be twice as large as
the latter [12]. This behavior is in conflict with the very idea of aggregation,
which is to provide a summary of the data.

Example 1.1. As an example consider relation proj in Figure 1.2(a) that
records information about project contracts, i.e. the name of an employee,
the project he/she works for, the monthly salary, and the time period (T )
(in months) during which the contract is effective. The tuple r1 states that
John received a salary of 800 for every of the four months when he worked
for project A. The validity intervals are illustrated as horizontal lines. Fig-
ure 1.2(b) shows the result of an ITA query “What is the average monthly
salary for each project?” containing one grouping and one aggregation at-
tribute. Its size exceeds the size of the input relation, though some adjacent
tuples have quite similar aggregate values.

Span temporal aggregation (STA) allows one to control the result size
by permitting an application to specify the time intervals in which to report
a result tuple, e.g., for each year from 2000 to 2005. For each of these
intervals a result tuple is produced by aggregating over all argument tuples
that overlap that interval. STA might not always provide good summaries of
the data, since the intervals are specified a priori without considering the
distribution of the data.
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r1 = (John, A, 800)
r2 = (Ann, A, 400)

r3 = (Tom,A,300)

r4 = (John,B,500) r5 = (John,B,500)

t1 2 3 4 5 6 7 8

(a) proj relation

s1 = (A, 800)
s2 = (A, 600)

s3 = (A,500)
s4 = (A,350)

s5 = (A,300)

s6 = (B,500) s7 = (B,500)

t1 2 3 4 5 6 7 8

(b) ITA result

s1 = (A, 600)

s2 = (A, 500)

s3 = (A,300)

s4 = (B,500)

s5 = (B,500)

t1 2 3 4 5 6 7 8

(c) STA result

z1 = (A, 733.33)
z2 = (A,375)

z3 = (B,500) z4 = (B,500)

t1 2 3 4 5 6 7 8

(d) PTA result of size 4

Figure 1.2: Temporal aggregation over the proj relation

Example 1.2. The result of STA query “What is the average monthly salary
for each project at each trimester?” is shown in Figure 1.2(c). Evaluation of
the query involves constructing one result tuple per three month period and
aggregation group. Since the aggregation intervals are imposed over the
data, the approach is likely to miss important changes that do not dominate
the interval.

Both, ITA and STA, do not meet the demands of modern applications.
They fail to provide good summaries of vast temporal datasets. Their draw-
backs hinder visualization, similarity search and, consequently, other tem-
poral data mining tasks, e.g., clustering. Therefore, we need a novel ap-
proach to temporal aggregation that would provide compact summaries of
the data and introduce data adaptive approximations, i.e. such that are
dictated by the data and not imposed over it.
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1 – 31 October, 2009

(a) Individual stories

?NATO nudges Obama
towards Afghan troop surge

?Surge in US troops will
fuel Taliban insurgency

�Karzai delaying election
probe

�Senate committee approves
health overhaul

�Abdullah May Boycott
Afghan Presidential Runoff

R
an

k

1
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3

4

5

Query: 1 – 31 October, 2009 Query: 26 – 31 October, 2009

(b) Metastories

? Afghanistan Troop Surge

� Afghanistan Election

� US Health Care

◦ NYC Mayoral Elections

� Afghanistan Election

� US Health Care

? Afghanistan Troop Surge

◦ NYC Mayoral Elections

Figure 1.3: Effect of the query time interval on the ranking result

The second problem is that the grouping used in the temporal aggrega-
tion process is unlikely to be known a priori. In fact, contrary to traditional
aggregation, the aggregation groups evolve, i.e. appear, merge, and disap-
pear as the time goes. We observe that they form very complex structures
that have to be discovered from the underlying data and not imposed by the
user. Consider the previously mentioned news aggregation scenario. The
users may wish to follow particular stories as they develop through weeks
or even months. Each story, therefore, forms an aggregation group. Within
every group we compute a time varying aggregate representation of all the
articles, blogs and tweets that belong to it. Typically, however, already at
the data collection step, such stories will be broken up into several separate
events and form separate aggregation groups. This may occur because im-
portant stories have multiple ramifications and branch into components that
are different enough not to be clustered together. It can also occur because
of the temporal separation between developments that are part of the same
story. While keyword search may retrieve many of these in response to a
query, the true importance of the whole story cannot be evaluated if its
components have not been linked. Thus existing news aggregators cannot
accurately rank the search results.

Example 1.3. In Figure 1.3 we show an example of the news story ag-
gregation and ranking process. Individual story elements, shown in Fig-
ure 1.3(a), were gathered during the month of October 2009. The figure
shows only five out of the 700 news-related clusters that were used. Even
so, notice that the individual clusters can be grouped into metastories cor-
responding to important events occurring during the month3.

In summary, modern applications require a temporal aggregation solu-
tion that efficiently aggregates vast datasets allowing the user control over
the size of the aggregation result or the overall approximation error. In addi-
tion, automated techniques for discovering aggregation groups to be used

3Without loss of valuable information, we use the most descriptive titles for the stories
and metastories in Figure 1.3
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for the aggregation are necessary. Since the groups evolve and change
over time we need a method to disseminate the most important ones based
on the time interval of interest.

1.3 Proposed Solution and Contributions

The solution to the above problem that we propose in this thesis is com-
prised of two components. First, we define a novel temporal aggrega-
tion operator, termed parsimonious temporal aggregation (PTA). It approx-
imates the aggregation result in a data adaptive fashion allowing one to
discard small fluctuations of the aggregate result that are of no interest to
the application and, instead, report (longer) time periods without significant
changes. Second, we introduce a temporal ranking framework allowing for
the mining and ranking of the aggregation groups from the input data. The
combined application of the PTA operator and the temporal ranking frame-
work presents the user with the information that reflects the most significant
and interesting changes in aggregate values over time. Such information
will greatly simplify further data mining tasks, such as visualization, classi-
fication, clustering and trend analysis. In the following two subsections we
provide a brief overview of the two components.

1.3.1 Parsimonious Temporal Aggregation

Parsimonious temporal aggregation is based on the following observation:
an application is typically not interested in small fluctuations of the aggre-
gation result, but in (longer) time periods without significant changes. PTA
comprises two main steps: (1) it computes the ITA result over the input
relation and, (2) it reduces this intermediate result to a user-specified size
c. The reduction is done by merging only time-wise adjacent tuples that
belong to the same aggregation group and keeping the induced total error
minimal. The compressed ITA result is returned as the final PTA result. The
PTA operator allows for the control of the size of the output relation, thus
overcoming the main limitation of ITA. On the other hand, it induces the
best time intervals from data thus overcoming the main limitation of STA.

Example 1.4. Figure 1.2(d) shows the PTA result for the query “What is the
average monthly salary for each project represented in 4 tuples?”. Three
merging steps were taken to obtain the result. In contrast to the ITA result,
the PTA tuples reveal significant changes in the aggregation values.

In this thesis we formally define the PTA operator for two types of user
input, namely the size- and error-bound. Size-bounded PTA reduces the
ITA relation to a user specified size minimizing the total error, whereas
error-bounded PTA minimizes the result size under a user specified total
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error threshold. We investigate various strategies for evaluation of PTA
queries and propose algorithms for two fundamental scenarios – offline
and online query evaluation. In an offline evaluation scenario the user is
interested in the most precise PTA evaluation and is not overly limited by
memory and computing power. In an online scenario, on the other hand,
the user is interested in obtaining the aggregation result as quickly as possi-
ble and is willing to sacrifice some precision in exchange for speed and and
the amount of memory required. We propose dynamic programming and
greedy algorithms tailored for both offline and online scenarios respectively.
Most importantly, we show how temporal grouping in the query and tempo-
ral gaps in the data allow significant speedup of these algorithms. Last, but
not least, we prove that the additional approximation error introduced by the
greedy strategy is upper-bounded and likely to be very small.

The experimental evaluation reveals that real-world temporal data tends
to have a great deal of redundant information. In some cases we are able
to reduce the relation to 5% of its size maintaining the aggregation error
close to 0. The greedy algorithms show exceptional approximation quality
outperforming its most similar competitor, approximate temporal coalescing
(ATC) [8] and other state-of-the art approximation methods used in time
series data analysis.

1.3.2 Temporal Ranking Framework

We introduce temporal ranking framework which is crucial in dynamic envi-
ronments where the aggregation groups used for temporal aggregation are
not known in advance. Typically in such environments the groups form very
complex structures that evolve in time and the user is only interested in the
most important ones. Their ranking, however, depends on the time interval
specified in the aggregation query. For example, the most important events
of this week are different from the ones of the whole year. Therefore, the
framework consists of online and offline components. The offline compo-
nent discovers all the aggregation groups. The online ranking component
will rank only those groups that fall into the time frame of the particular user
query.

We study the temporal ranking problem in the context of the news ag-
gregation engine Thoora, cited previously. We propose a novel framework
that allows the user to follow large-scale events as they develop through
time. The problem is very challenging and has offline and online compo-
nents. Offline, given (a) a set of stories with their valid time intervals and,
(b), their content-based similarity, we find a way to cluster similar ones into
metastories. Online, we determine which metastories are the most relevant
in the context of user specified time frame.

The clustering task is challenging because, as noted before, the differ-
ent components of a story have already been deemed to be distinct enough
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by the aggregator to be put into different story clusters. Ranking is difficult
because the relevance of events is not static – it depends on the specific pe-
riod a user is interested in, and how concurrent events during that timespan
evolve in terms of social impact. In other words, a story that captured the
attention of the whole world last month will not necessarily be considered
as one of the most important stories of the decade.

Example 1.5. In Figure 1.3 we show how metastory aggregation is per-
formed over the set of all existing story components, and is independent
of any interval a user may be interested in. Once metastories have been
constructed, the ranking step determines their relative order with regard
to a time interval specified by the user. Figure 1.3(b) shows two sample
rankings for different query intervals in 2009: Oct. 1-31, and Oct. 26-31.
Notice that the relative ranking of metastories changes. In particular, the
“Afghanistan Troop Surge” metastory is the most important overall story of
October 2009, but when only the last week of the month is considered,
its relevance is lower compared to other metastories that were more ac-
tive during this specific period. Such relationships can only be discovered
through meta-aggregation and time-dependent ranking. Given the same
set of metastories, a content-based search would produce the same rank-
ing independent of the period in which the user was interested. In summary,
the time-dependent nature of the ranking process, coupled with the more
comprehensive scope of metastories, yields a more informative and more
representative ranking of news events.

In this thesis we determine which clustering method and similarity mea-
sure produce the best metastories. We evaluate several existing clustering
methods [21, 56, 49] that have proven successful in different domains. At
the same time we explore the issue of measuring similarity between sep-
arate story components. Along the way we look at the statistical behavior
of similarity measures on typical data available to information retrieval and
content aggregation platforms.

Next we explore the ranking problem proposing that ranking can be fully
independent of clustering if proper formulation is used. We use a graph-
based formulation and where the rank of a node is high if other highly
important nodes link to it. Since blog and news sites rarely link to each
other or to their sources of information, we propose to use their similarity to
create the graph edges. Thus the weights of the edges are set to the sim-
ilarity among the nodes. Ranking is then evaluated using the PageRank
algorithm and exploiting a known fact that for symmetric similarity matrices
the PageRank computation is trivial [16]. Hence, ranking is reduced to the
problem of computing a good similarity matrix capturing the strength of the
relationship between different story components.

Finally, we evaluate the performance of different similarity measures
within this framework to determine which measure yields the best ranking
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compared to the actual relevance of each metastory. In our setting the
actual relevance corresponds to the total social impact the story has expe-
rienced. To measure it we exploit the fact that Thoora has access to social
media, and that it can relate specific blog and tweet information to particular
events.

1.4 Related Publications

The thesis covers the research work conducted at the Free University of
Bozen–Bolzano during 2007-2010 under the supervision of Professor Jo-
hann Gamper and in collaboration with Professor Michael Böhlen. The
ranking work was conceived in collaboration with Thoora Inc. (Toronto,
Canada) under the supervision of Periklis Andritsos.

Most of the contributions presented in this thesis have been published
(or are in the process of publication) as the following papers:

• J. Gordevicius, J. Gamper, and M. Böhlen. A Greedy Approach To-
wards Parsimonious Temporal Aggregation. In Proc. of the 15th In-
ternational Symposium on Temporal Representation and Reasoning
(TIME-08), pages 88 – 92, June 2008.

• J. Gordevicius, J. Gamper, and M. H. Böhlen. Parsimonious Temporal
Aggregation. In Proc. of the International Conference on Extending
Database Technology (EDBT), pages 1006 – 1017, 2009.

• J. Gordevicius, P. Andritsos, F. Estrada, Hyun C. Lee, J. Gamper.
Ranking of Evolving Stories Through Meta-Aggregation. In Proc. of
19th International Conference on Information and Knowledge Man-
agement (CIKM), pages 1909–1912, 2010.

• J. Gordevicius, J. Gamper, and M. H. Böhlen. Parsimonious Temporal
Aggregation. Under review at VLDB Journal.

1.5 Outline

After this introduction we continue with the formal discussion of the novel
temporal aggregation operator and temporal ranking framework. Chapter 2,
presents an overview of the state of various research fields related to our
problem. Once we are familiar with the related works, we formally define
the parsimonious temporal aggregation operator in Chapter 3 and corre-
sponding evaluation algorithm. For situations when PTA queries have to be
evaluated very quickly, and some precision can be sacrificed, we propose a
novel greedy evaluation strategy in Chapter 4. Next, we turn to mining and
ranking of aggregation groups for temporal aggregation. We propose our
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temporal ranking framework in Chapter 5. Finally, we list the contributions
made in this thesis and conclude the work in Chapter 6.
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CHAPTER 2

State of the Art

In this chapter we present the research works that are related to the topic
of this thesis or address similar problems. We delve into the recent de-
velopments in the fields of temporal aggregation, histogram construction,
time series approximation, topic detection and tracking and, finally, ranking
approaches used in information retrieval.
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2.1 Overview

The temporal aggregation, approximation and ranking problems addressed
in this thesis are related to similar problems in various other fields. The
solutions we propose here leverage from other approaches or can be com-
pared to them for performance and efficiency. Therefore, in this chapter we
review these relevant solutions in the fields of temporal aggregation, his-
togram construction, time series approximation, topic detection and track-
ing and ranking approaches used in information retrieval.

A plethora of temporal aggregation operators have been proposed in
the temporal database research field. We present and discuss the differ-
ent aspects, advantages, and drawbacks of the three most prominent ones,
namely instant, span and moving-window aggregation operators. The par-
simonious temporal aggregation (PTA) operator, that we will introduce in
Chapter 3, overcomes the limitations of these approaches by effectively
approximating the result of instant temporal aggregation. The algorithm
we propose for evaluation of PTA queries is based on achievements in the
histogram construction research area. The dynamic programming strategy
proposed by Jagadish et al. [27] for optimal histogram construction inspired
also our approach.

Later in this thesis we introduce a greedy strategy for the evaluation of
PTA queries tailored for online environments where a quick answer is of
the utmost importance. We compare the greedy approach to other linear
approximation methods proposed in the field of time series approximation.
The field has seen very active development in the recent years and vari-
ous approximation techniques ranging from discrete wavelet transform to
symbolic approximate representation have been proposed. Most of these
techniques can be applied to evaluate a certain subclass of PTA queries.
Therefore, in this section we review these techniques.

The temporal ranking framework that we propose has its roots in various
disciplines. First, clustering of textual documents is often used in topic
detection and tracking (TDT) to discover documents that relate to the same
topic and to identify new topics. We will discuss the recent work in this
field and explain how our approach differs from the general TDT strategy.
Finally, ranking of textual information retrieved by search engines is at the
core of information retrieval. Recent years have seen increased interest in
the problem with such algorithms as PageRank and HITS changing the way
we understand the principles of ranking.

2.2 Temporal Databases and Aggregation

Relations in temporal databases reflect the time varying nature of the data.
Models of such databases have been studied extensively and are well doc-
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umented in a book by Tansel et al. [52]. In 1998 Jensen et al. proposed
terminology to be used to name temporal database concepts [28]. For ex-
ample, they distinguish between transaction time, that defines when the
tuple was written to disk, and valid time, that allows one to determine when
the data specified in the tuple was valid. In this work, most importantly when
defining the parsimonious temporal aggregation in Chapter 3, we use the
temporal database model and terminology that adhere to the above works.

Various forms of temporal aggregation have been studied in the past.
The most prominent approaches are the instant, span and moving-window
temporal aggregation. They differ mainly in how the timeline is partitioned.

Instant temporal aggregation (ITA) [34, 43, 42] operates at the smallest
time granularity. The timeline is partitioned into time instants, and for each
time instant, t, and aggregation group, g, the aggregate functions are evalu-
ated over all tuples that hold at t and belong to g. Then, identical aggregate
results for consecutive time instants are coalesced into tuples over maximal
time intervals. While ITA reports the most detailed result, its main drawback
is that the result size that is typically larger than the argument relation, and
can be up to twice the size of it.

Moving-window temporal aggregation (MWTA) [45], later termed cumu-
lative temporal aggregation [50, 60], extends ITA. For each time instant,
t, it computes the aggregate values over all tuples that hold in a window
“around” t. Just like ITA, it is prone to returning large result relations.

Span temporal aggregation (STA) [50] allows for the control of the result
size by partitioning the timeline into predefined intervals. For each such
interval and aggregation group, a single result tuple is produced by eval-
uating the aggregate functions over all argument tuples that overlap that
interval and belong to the group. However, the timestamps of the result
tuples are specified by the application and are independent of the argu-
ment data. Most approaches consider only regular time spans expressed
in terms of granularities, e.g., years or months.

Most research works address the efficient evaluation of ITA queries
[34, 43], and cumulative aggregates [60]. Temporal aggregates with ad-
ditional range predicates [62] receive less attention according to [12]. The
first approach to temporal aggregate computation was introduced by Tuma
[55]. The computation requires two scans of the argument relation. Kline
and Snodgrass [34] later show that temporal aggregation using traditional
SQL is not efficient, thereby motivating the development of a separate al-
gorithmic approach. They propose a solution that requires only one scan
of the argument relation and builds a main-memory based aggregation tree
structure. Since the tree is not balanced, the worst case complexity isO(n2)
for n tuples.

Moon et al. [43] propose the use of a balanced aggregation tree. The
solution works only for sum, count , and avg functions, thus for min and
max they proposed a merge-sort like algorithm. Both algorithms run in
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O(n log n) time thus improving over the previous approaches. The authors
also propose a scalable solution for large relations that do not fit into main
memory. They assign tuples to buckets according to the partitioning of the
timeline and perform aggregation on each bucket separately. The approach
takes into account long-lived tuples, however, it requires three scans of the
whole argument relation.

Yang and Widom [60] advanced the evaluation of temporal aggregates
even further. They proposed a method that supports disk-based incremen-
tal computation and maintenance of instant and span temporal aggregation
results. They introduce a SB-Tree structure that incorporates features from
segment trees and B-Trees. It constructs a hierarchy of intervals maintain-
ing within each interval a partially computed aggregate. The tree does not
support selection predicates, that is, aggregate queries may only be ap-
plied to the entire base relation. The drawback is addressed by Zhang et
al. [62] with a multi-version SB-Tree.

The later works [42, 12] seek to unify different aggregation operators
into a single framework. This way analysis and comparison of the different
temporal aggregation forms becomes possible. Böhlen et al. [12] observe
three limitations common to all existing temporal aggregation approaches.
First, the temporal grouping process couples the partitioning of the time-
line with the grouping of the input tuples. The time line is partitioned into
intervals, and an input tuple is said to belong to a specific partition if its
timestamp overlaps that partition. Second, the result tuples are defined for
time points and not over time intervals. Third, they allow the use of at most
one non-temporal attribute for temporal grouping.

The multi-dimensional temporal aggregation operator (TMDA) introduced
in [12] overcomes these limitations and generalizes previous temporal ag-
gregation operators. It decouples the partitioning of the timeline from the
grouping of the input tuples, thus allowing one to specify result tuples over
possibly overlapping intervals. Furthermore, the authors introduced fixed
and constant interval semantics. Constant interval semantics compute the
ITA, taking into consideration lineage information. With fixed interval se-
mantics, which cover also the STA, the user specifies the time intervals
for which to report result tuples. We use their definition of the ITA and
respective algorithms as a starting point for the parsimonious temporal ag-
gregation operator.

The approximation of temporal aggregation is a relatively new topic [22,
23, 53]. The work in [53] is the first to introduce an approximate temporal
aggregation technique, which leverages from span temporal aggregation
and, for a given time interval, finds an approximate aggregation result from
tuples that overlap that interval. The approach uses off-the-shelf B- and
R-trees to compute the aggregation result in linear space and logarithmic
time with respect to the size of the database. Since the proposed technique
approximates span temporal aggregation, where the user specifies the ag-
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gregation intervals, it is not data-adaptive and cannot be used to reveal
significant changes in the data. Moreover, only error-bounded approxima-
tion for the sum and count aggregation functions is possible.

In [22, 23] we introduce parsimonious temporal aggregation as an ap-
proximation of ITA. In this thesis we extend our previous work in various
directions. First, in addition to size-bounded PTA that reduces an ITA rela-
tion to a user-specified size, we define error-bounded PTA that minimizes
the result size under a maximal error threshold specified by the user. We
provide new query evaluation algorithms for error-bounded PTA, and we re-
port the results of additional experiments, including the comparison of PTA
with state of the art time series approximation techniques.

The work in [8] introduces an approximate temporal coalescing (ATC)
technique to reduce the size of a temporal inverted file index. The index
is represented as a temporal relation, where each record contains a docu-
ment reference, a term, its index value, and a validity interval. ATC reads
sorted and temporally adjacent tuples that share the same document/term
pair and merges them if the induced local error does not exceed a user-
specified threshold. Though the aim is different, ATC can be used to merge
ITA result tuples. Experiments show that the total error of ATC is up to an
order of magnitude higher than that of PTA and varies significantly depend-
ing on the dataset. Such a behavior is not surprising since ATC makes
merging decisions based on local information only. The performance gain
of ATC with respect to our greedy algorithms is negligible.

2.3 Histogram Construction

Histograms provide a compact synopsis of large datasets. Query optimiz-
ers, for example, use histograms to estimate query selectivity from his-
tograms that capture attribute value distribution. Since the aim of PTA is to
construct a compact synopsis of instant temporal aggregation, we may be
able to leverage from solutions tailored for histogram construction. A good
overview of the history of histogram development is provided in [26]. In this
work we focus in particular on optimal histogram construction discussed
primarily by Jagadish et al. [27]

In [27] the authors introduce an optimal algorithm that computes his-
togram representation of one dimensional data given either size or error
bounds. Dynamic programming is used to obtain the optimal solution. The
authors advocate the use of sum square error (SSE) measure and show
how to evaluate it in constant time leading to O(n2c) time and O(n2) space
complexity of the algorithm. They improve the performance even further by
reducing the search space of the algorithm.

In this thesis we follow the above advice and use the same error mea-
sure. The dynamic programming algorithm for PTA evaluation introduced
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here has been inspired by their approach. It is worth noting that although
the algorithm in [27] considers only one dimensional data which has no
equivalent of temporal gaps present in our setting, their search space re-
duction techniques nevertheless apply.

Recently a greedy algorithm for lattice histogram construction has been
proposed by Karras [29]. The approach optimizes the error under infinite
norm. With this error measure local decisions will lead to a globally opti-
mal solution. Since we use a different error measure, the approach is not
comparable to our work.

2.4 Time Series Approximation Methods

The techniques developed for approximate representation of time series
data can benefit our research. An ITA result can be considered as time
series if no temporal gaps and aggregation groups are present, and hence
time series approximation techniques can be applied. ITA approximation
is a more general problem whose subproblem is an approximation of time
series data.

The need to visualize, mine and index abundant amounts of time se-
ries data has motivated an extensive research into their approximate rep-
resentation. Many representation techniques have been proposed in the
literature, such as [2, 40, 31, 61, 15, 41, 48]. An interesting classifica-
tion of different approximation methods is available in [41]. Overall, the
authors divide the methods into data adaptive and non data adaptive ap-
proaches. Wavelets, spectral methods, and piecewise aggregate approxi-
mation are examples of non-data adaptive approaches. Adaptive piecewise
constant approximation and symbolic methods stand out as data adaptive
approaches.

With respect to temporal aggregation, all of the time series approxima-
tion methods typically do not consider possible gaps in the data. Moreover,
they compute the representation of one time series at a time, i.e. they
approximate data from each aggregation group separately. Therefore, ap-
plying or comparing them in our setting is limited to such temporal data that
does not sport any temporal gaps, and such temporal aggregation queries
that do not specify aggregation groups.

Discrete wavelet transform (DWT) [51] was used for time series approx-
imation in [40] and was shown to be superior to discrete Fourier transforms
(DFT) [2]. The length of the input is assumed to be a power of two. Neigh-
boring pairs are averaged obtaining a twice smaller representation of the
input. Iterating recursively, DWT reaches the desired resolution of the data.
In other words, the approach divides the input dataset into a set of equally
long segments and, thus, is not data adaptive.

Piecewise aggregate approximation (PAA) was introduced in [31]. At
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the same time the approach was introduced also in [61] and termed Seg-
menting Means. The approach divides the time series into c segments of
equal lengths and calculates the average value within each segment. Just
like DWT it is not a data adaptive approach. It has been shown that both
PAA and DWT produce the same result under L2 norm when the length
of the input sequence and c are powers of 2. However, PAA is not limited
to L2 norm and the length of the input sequence. In fact, for any similar-
ity norm Lp, a PAA approximation x′ of a time series x with c segments is
p
√
lLp(x

′) ≤ Lp(x). Here l is a length of a segment, i.e. l = dn/ce.
Adaptive piecewise constant approximation (APCA) [15] leverages from

PAA and DWT. It starts by decomposing the input time series using DWT.
The wavelet coefficients are normalized, and only the c most significant co-
efficients are retained, which are then used to reconstruct the time series.
Since the reconstruction step may yield up to 3c segments, the algorithm
greedily merges the most similar ones to reduce the time series to size c.
While APCA improves over PAA and DWT in terms of approximation quality,
APCA induces significantly higher errors than our greedy evaluation algo-
rithms. This is due to the underlying DWT decomposition, which is not
data-adaptive and breaks apart the constant-value intervals in the ITA rela-
tion, yielding large approximation errors. The consequent greedy merging
step of APCA can only smooth these errors out, but cannot fix them entirely.

The symbolic aggregate approximation SAX [41] and its scalable ver-
sion iSAX [48] allow very efficient nearest neighbor queries by representing
the input time series as a word of symbols. The symbolic representation is
constructed in two steps. First, PAA is used to partition the time series into
c equal sized segments. Second, the segments are represented using w
different symbols in such a way that each symbol has approximately the
same probability of occurrence. Increasing the vocabulary w leads to a
more precise representations. Due to the use of PAA, the same limitations
carry over to SAX.

In [18], an approach similar to ATC is proposed, which aims at guar-
anteeing a given error bound while maximizing the compression ratio of a
continuous time series data stream. The proposed algorithm constructs a
new approximation segment if attaching an incoming data point to the pre-
vious segment exceeds an error threshold. The data in each segment are
approximated with a linear function. In line with other stream approxima-
tion techniques, the infinity norm is used as error measure, which allows to
maintain the global approximation error under a given threshold by keeping
local errors under the same threshold. However, the infinity norm is not
appropriate for PTA, and we use the Euclidean norm as suggested in [27].
Additionally, our approach allows the user to specify either a global size or
a global error bound.

In summary, time series approximation algorithms do not consider the
constant value intervals in the ITA result. When applied in the context of
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temporal aggregation, they split these intervals and yield high approxima-
tion errors. Moreover, temporal gaps in the data and the approximation of
multiple aggregation groups under one global bound are not supported.

2.5 Topic Detection and Tracking

Topic Detection and Tracking (TDT) [44, 46, 14, 10, 1, 32, 3] is related to
our problem of discovering aggregation groups or, in the context of news
aggregation, discovery of evolving stories. The goal of TDT is to automat-
ically identify topics within a set of documents, and to keep track of these
topics as the document set evolves over time. Although the precise defi-
nition of what a topic is varies in terms of scope and generality across the
literature, topics can be loosely understood to be large collections of docu-
ments related by a central theme, or belonging to a general category such
as “Cinema” or “Entertainment”.

Topic detection can be online or retrospective [3]. In online setting new
topics are discovered from a window of the most recent data. In retrospec-
tive setting, on the other hand, all the data collected up to the current time
point is considered. Most existing TDT algorithms focus on the online dis-
covery of new topics from recent data and the tracking of developments
within known topics. Kleinberg [32] observed that the main problem in TDT
is dealing with the tradeoff between content similarity and temporal local-
ity. Piskorski et al. [46] suggest a sliding-window system where the data of
the last four hours is clustered every ten minutes and overlapping clusters
are subsequently linked into topics. Both [14, 10], suggest the discovery of
topics from underlying stories by considering their cosine similarities within
a seven day window. If the similarity between two stories is above a given
threshold they are linked into a topic. Similarly, C-TREND [1], splits time
into intervals and performs hierarchical clustering on events within each
interval. Similar clusters from neighboring intervals are then linked. The
algorithm is tailored towards trend visualization allowing efficient overview,
zooming and filtering. For retrospective topic detection Allan et al. [3], sug-
gest agglomerative clustering.

The critical difference between TDT and our approach is in the gran-
ularity of the clustering. We find that clusters in TDT are too general to
represent individual stories evolving through time, and that a much finer
clustering is needed. Indeed, Leskovec et al. [39], note that typical TDT
topic clusters are too general to be of use in the analysis and understand-
ing of the news cycle.

Besides generating more fine-grained clusters, our method differs from
existing TDT algorithms in that it considers the entire time range for meta-
story detection. In other words, we merge related stories into metastories
without any restriction on their temporal distance. Unlike [44, 3] we do not
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use time decay in our similarity measure. In addition, we note that while
standard TDT methods work on reasonably clean news document data,
our initial story components contain blogs as well as news documents.
Blogs are characterized by their large variability, and do not adhere to any
standards either of content, language, or structure. This complicates the
metastory generation process beyond what standard TDT was designed to
handle.

2.6 Ranking

The temporal ranking framework that we propose in this thesis is closely
related to PageRank [13] and HITS [33], two widely used approaches for
ranking based on link analysis. PageRank exploits the linkage structure of
a set of web pages using the intuition that the rank of a page should be
high if it is linked-to by other highly ranked pages. Fast PageRank eval-
uation methods and an in-depth analysis are presented in [9, 38]. HITS
[33] classifies web pages into hubs and authorities. Hubs are ranked high
when they link to highly ranked authorities and, symmetrically, authorities
receive high ranks when they are linked by qualitative hubs. PageRank and
HITS cannot be directly applied to rank stories as there are no hyperlinks
between them.

There have been a few attempts to rank individual documents that have
few or no hyperlinks with the help of similarity scores [59, 35, 36, 37]. The
authors of [59] address the problem of ranking sparsely linked web forum
data where the links usually represent navigational aids or advertisements,
but not recommendations for the user. In such a context, PageRank scores
are uninformative. The authors propose exploiting the contents of the forum
postings to influence the behavior of the random surfer. They hypothesize
that the random surfer would most likely travel to nodes (postings) cover-
ing the same topic or its subtopics, and would rarely jump to a different
topic altogether. They show that PageRank results improve when content-
based implicit hyperlinks are introduced. In a similar fashion, Kritikopoulos
et al. [35] suggest exploiting content similarity to supplement the sparse and
often non-relevant link structure of weblog data. In contrast to these works,
we assume no prior hyperlinks between stories. The transition probability
matrix that we use for ranking is computed using only the selected similarity
function.

Kurland et al. [36, 37] suggest PageRank and HITS style algorithms to
rank documents based on their content similarity. Asymmetric Kullback-
Leibler divergence is used to compare document keyword vectors yielding
a weighted directed flow graph which, subsequently, is fed to the PageRank
algorithm. The authors apply HITS by constructing a bipartite graph from
document clusters and individual documents. The clusters are treated as
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hubs, whereas individual documents are treated as authorities. They use
only resulting authority scores for the final ranking and show that the HITS
approach outperforms PageRank.

In contrast to their work, we argue that using a symmetric similarity
measure for metastory components is more intuitive and appropriate. Fur-
thermore, the symmetric property of the similarity measure allows very effi-
cient evaluation of PageRank. In our experimental evaluation we compare
PageRank used in our framework against the ranking results produced by
the HITS algorithm, evaluating in addition the impact of different similarity
measures on the ranking result.

2.7 Summary

In this chapter we have reviewed the most recent and prominent works in
various research fields that relate to the problem of this thesis. We have
discussed various temporal aggregation operators and corresponding eval-
uation algorithms that form the groundwork for parsimonious temporal ag-
gregation. We have looked at histogram construction and time series ap-
proximation algorithms. We will leverage from these works when creating
dynamic programming and greedy evaluation strategies for the new tem-
poral aggregation operator. Finally, we have discussed topic detection and
tracking as well as ranking problems that relate closely to our temporal
ranking framework. In the next chapter we use this knowledge to define the
parsimonious temporal aggregation operator.
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Parsimonious Temporal Aggregation

Temporal aggregation is an important operation in temporal databases, and
different variants thereof have been proposed. In this chapter we introduce
a novel temporal aggregation operator, termed parsimonious temporal ag-
gregation (PTA), which overcomes major limitations of existing approaches.
PTA takes the result of instant temporal aggregation (ITA) of size n — which
might be up to twice as large as the argument relation — and merges similar
tuples until a given error (ε) or size (c) bound is reached. The new opera-
tor is data-adaptive and allows the user to control the tradeoff between the
result size and the error induced by merging. For the precise evaluation of
PTA queries, we propose two dynamic programming based algorithms for
size- and error-bounded queries, respectively, with a worst-case complexity
that is quadratic in n. We present two optimizations that take advantage of
temporal gaps and different aggregation groups and achieve a linear run-
time in experiments with real-world data. Empirical study using synthetic
and real world data reveals the usefulness of PTA. The operator consider-
ably and consistently reduces the aggregation result introducing only small
errors.
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3.1 Introduction

Temporal aggregation is used to summarize large sets of such data and
is, therefore, very important in temporal databases. It has been studied in
various flavors, most importantly, as instant, and span temporal aggrega-
tion. However, current aggregation operators may not meet the demands
of modern data mining applications as they do not allow control over the
size of the output.

In instant temporal aggregation (ITA) [12, 34, 43, 55, 42, 60], the ag-
gregate value at a time instant t is computed from the set of tuples whose
timestamps overlap t. Consecutive time instants with identical aggregate
values can then be coalesced into so-called constant intervals, i.e., tuples
valid over maximal time intervals during which the aggregate results are
constant. Nevertheless, the result size depends on the argument relation
and, due to temporally overlapping argument tuples, may become up to
twice the size of the input [12]. This behavior is in conflict with the very idea
of aggregation, which is to provide a summary of the data.

On the contrary, span temporal aggregation (STA) [12, 34] allows an
application to specify the time intervals for which to report result tuples, e.g.,
for each year from 2000 to 2005. For each of these intervals a result tuple
is produced by aggregating all argument tuples that overlap that interval.
Therefore, the output size of STA is predictable yet it may fail to provide
good summaries of the data since the aggregation intervals do not consider
the distribution of the underlying data.

In this chapter we introduce the parsimonious temporal aggregation
(PTA) operator that combines the best features of instant and span tem-
poral aggregation. It aims at providing the user with a small set of result
tuples that represent the most significant changes in the data over time.
Like ITA, PTA is data adaptive as it considers the (temporal) distribution of
the input. At the same time, similarly to STA, it allows one to control the
size of the result. Conceptually PTA operates in two steps: (1) it computes
the ITA result of the input relation and, (2) it reduces it by merging the tem-
porally adjacent ITA result tuples and keeping the introduced error minimal
until a user-specified size or error bound is satisfied. Tuples are adjacent
if they belong to the same aggregation group and are not separated by a
temporal gap. PTA is useful for such applications as data visualization or
similarity search for classification and clustering where the fine-grained re-
sult of ITA is too large to handle and, instead, a concise overview of the
data at hand is necessary.

In particular, we formally define the PTA operator for two types of user
queries. Size-bounded PTA reduces an ITA relation to a user-specified size
minimizing the global error. Error-bounded PTA minimizes the result size
under a user specified global error threshold. We introduce a dynamic pro-
gramming algorithm tailored for offline evaluation of PTA queries. It finds
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the optimal reduction of the ITA relation for both, size and error-bounded
queries. We show that aggregation groups specified in the query and
temporal gaps present in the data allow significant performance improve-
ment yielding almost linear running times when evaluated using real-world
datasets. In the worst case the algorithm runs in O(n2cp) time and needs
O(n2) space. Finally, we conduct extensive experimental evaluation using
real-world as well as synthetic data. The results show that the PTA operator
allows a significant reduction of the ITA result while introducing only a small
error.

3.2 Example

Empl Proj Sal T
r1 John A 800 [1, 4]
r2 Ann A 400 [3, 6]
r3 Tom A 300 [4, 7]
r4 John B 500 [4, 5]
r5 John B 500 [7, 8]

r1 = (John, A, 800)

r2 = (Ann, A, 400)

r3 = (Tom,A,300)

r4 = (John,B,500) r5 = (John,B,500)

t1 2 3 4 5 6 7 8

(a) proj Relation

Proj AvgSal T
s1 A 500 [1, 4]
s2 A 350 [5, 8]
s3 B 500 [1, 4]
s4 B 500 [5, 8]

s1 = (A, 600)

s2 = (A, 500)

s3 = (A,300)

s4 = (B,500)

s5 = (B,500)

t1 2 3 4 5 6 7 8

(b) STA Result

Proj AvgSal T
s1 A 800 [1, 2]
s2 A 600 [3, 3]
s3 A 500 [4, 4]
s4 A 350 [5, 6]
s5 A 300 [7, 7]
s6 B 500 [4, 5]
s7 B 500 [7, 8]

s1 = (A, 800)

s2 = (A, 600)

s3 = (A,500)

s4 = (A,350)

s5 = (A,300)

s6 = (B,500) s7 = (B,500)

t1 2 3 4 5 6 7 8

(c) ITA Result

Proj AvgSal T
z1 A 733.33 [1, 3]
z2 A 375 [4, 7]
z3 B 500 [4, 5]
z4 B 500 [7, 8]

z1 = (A, 733.33)
z2 = (A,375)

z3 = (B,500) z4 = (B,500)

t1 2 3 4 5 6 7 8

(d) PTA Result of Size 4

Figure 3.1: Temporal aggregation over the proj relation using the query
“What is the average monthly salary for each project?”
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Throughout the chapter we use the relation proj shown in Figure 3.1(a)
to illustrate and explain the concepts. It records the information about
project contracts and each record stores the name of an employee (Empl ),
the project he/she works for (Proj ), the monthly salary (Sal ), and the time
period (T ) (in months) during which the contract is effective. Thus the tuple
r1 states that John received a salary of 800 for each of the four months that
he worked on the project A. In the graphical illustration the timestamps of
the tuples are drawn as horizontal lines.

Consider a STA query “For each project, what is the average monthly
salary in each trimester?”. It implicitly specifies the expected maximal result
size. Evaluation of the query involves constructing one result tuple per each
4 month period and aggregation group as shown in Figure 3.1(b). Since the
aggregation intervals are imposed over the data, the approach is likely to
miss important changes that do not dominate the interval.

Figure 3.1(c) shows the result of an ITA query “For each project, what is
the average monthly salary?”. Evaluation involves computing the average
salary at each time point for both aggregation groups, projects A and B,
from the tuples that hold at that point. Then identical values over consecu-
tive time points are then coalesced. The result contains one grouping and
one aggregation attribute. Although its size exceeds the size of the input
we observe that some adjacent tuples have quite similar aggregate values,
e.g., s4 and s5.

Figure 3.1(d) shows the result of a PTA query “For each project, what
is the average monthly salary, where the result size shall not exceed 4
tuples?”. The result is obtained by applying three merging steps such that
the total error between the reduced relation and the ITA relation is minimal.
The ITA tuples s1 and s2 are merged to the PTA tuple z1. The average
salary of z1 is computed by averaging the salaries of s1 and s2 over each
time point, i.e., 800 for two months and 600 for one month, yielding the
value 733.33. The tuples separated by temporal gaps, e.g. s6 and s7, or
belonging to different aggregation groups, e.g. s3 and s6, are not merged.
In contrast to the other operators the PTA reveals significant changes in the
aggregation values.

3.3 Preliminaries

3.3.1 Temporal Database Model

First we formally define the temporal database model used throughout this
thesis. Let Ω1 denote a non-empty, finite set of attributes. Let β denote
a finite set of domains, and dom : Ω → β be a function that associates a
domain with each attribute. We call a triple R = (Ω, β, dom) a schema and

1Boldface is used to denote sets throughout.
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use it to describe the format of data tuples. A tuple r over schema R is a
finite set that contains for every Ai ∈ Ω a pair Ai/vi such that vi ∈ dom(Ai).
A relation over schema R is a finite set of tuples over R.

A temporal schema is a schema with at least one timestamp valued
attribute, T , ranging over time domain βT , i.e., T ∈ Ω and dom(T ) = βT ∈
β. We assume that the time domain is discrete. Its elements are termed
chronons (or time points), equipped with a total order, <T (e.g., calendar
months with the usual chronological order). A timestamp (or time interval),
t, is a convex set of chronons over the time domain and is represented
by two chronons, [tb , te ], denoting its inclusive starting and ending points,
respectively. If t∩t′ 6= ∅, we say that the two intervals overlap (or intersect),
otherwise, we say that they are disjoint.

For simplicity we assume an ordering of the attributes and represent
a temporal relation schema as R = (A1, . . . , Am,T ) and a corresponding
tuple as r = (v1, . . ., vm, t). For a tuple r and an attribute A we write r.A to
denote the value of the attribute A in r, thus r.T = t. For a set of attributes
A = {A1, . . . , Ak}, k ≤ m, we define r.A = (r.A1, . . . , r.Ak).

3.3.2 Instant Temporal Aggregation

ITA computes an aggregation result for each combination of grouping at-
tribute values, at each time point, t, by considering all argument tuples that
hold at t and have the same grouping attribute values. Formally,

DEFINITION 3.1 (Instant Temporal Aggregation). Let r be a temporal rela-
tion with schemaR = (A1, . . . , Am,T ), grouping attributes A={A1, . . . , Ak},
and aggregate functions F = {f1/B1, . . . , fp/Bp}. Furthermore, let coalesce
be the coalescing operator and rg,t = {r | r ∈ r ∧ r.A = g ∧ t ∈ r.T} be
all tuples of r with grouping attribute values equal to g and intersecting time
point t. Instant temporal aggregation is defined as

GITA[A,F]r = coalesce{s | g ∈ π[A]r ∧ t ∈ βT ∧ rg,t 6= ∅ ∧ (3.1)
f = (f1(rg,t), . . . , fp(rg,t)) ∧ (3.2)
s = g ◦ f ◦ [t, t]}. (3.3)

and has schema S = (A1, . . . , Ak, B1, . . . , Bp,T ).

In the above, the variable g ranges over all combinations of grouping at-
tribute values in r, and the variable t ranges over the time domain. For each
combination of g and t, the aggregation group rg,t collects all argument tu-
ples that have grouping attribute values equal to g and are valid at time t. A
result tuple, s, is produced by extending g with the result of the aggregate
functions fi evaluated over the non-empty rg,t and with a timestamp [t, t].
Each fi is some aggregation function that takes a (temporal) relation as
argument and applies aggregation to one of the relation’s attributes. The
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resulting value is stored as the value of an attribute named Bi. The final
step is coalescing of value-equivalent result tuples over consecutive time
points into tuples over maximal time periods during which the aggregate
values do not change. The result of ITA contains up to 2n−1 tuples, where
n is the size of the argument relation [12].

Example 3.1. The ITA query “What is the average monthly salary for each
project?” in our running example (see also Figure 3.1(c)) is formulated
as GITA[A,F]proj with aggregate functions F = {avg(Sal)/AvgSal} and
grouping attributes A = {Proj}. The aggregation result is relation with
schema (Proj ,AvgSal ,T ).

A property of ITA aggregation result relation is that the timestamps of
the tuples within a single aggregation group do not intersect. We term such
temporal relations sequential.

DEFINITION 3.2. (Sequential Relation) A relation s over a temporal relation
schema S = (A1, . . . , Am, T ) is sequential with respect to a set of (group-
ing) attributes A ⊆ {A1, . . . , Am} if for any pair of tuples si, sj ∈ s such that
si 6= sj ∧ si.A = sj .A we have si.T ∩ sj .T = ∅.

For example, the ITA result in Figure 3.1(c) is sequential with respect to
the grouping attribute Proj , i.e., the timestamps of all tuples with identical
Proj values are temporally disjoint. There are many other instances of
sequential relations, e.g., time series datasets.

3.4 Parsimonious Temporal Aggregation

In this section we introduce and define parsimonious temporal aggregation,
PTA, which conceptually comprises two steps: (1) obtain the ITA result
from the argument relation and, (2) merge adjacent ITA result tuples until a
user specified size or error bound is satisfied. We begin by describing the
merging of adjacent tuples and an error measure that is used to quantify
the induced error.

3.4.1 Merging Adjacent Tuples

The ITA result is always a sequential relation, which shall be preserved by
allowing only adjacent tuples to be merged.

DEFINITION 3.3 (Adjacent Tuples). Let s be a sequential relation with schema
S = (A1, . . . , Ak, B1, . . . , Bp,T ) and grouping attributes A = {A1, . . . , Ak}.
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Two tuples si, sj ∈ s are adjacent, si ≺ sj , iff the following holds:

(1) si.A = sj .A (3.4)
(2) si.te = sj .tb − 1 (3.5)

(3.6)

The first condition ensures that the two tuples are value-equivalent in
the non-temporal attributes. The second condition requires that the tuples
are immediately consecutive and not separated by a temporal gap.

Example 3.2. In the ITA result in Figure 3.1(c) we have s1 ≺ s2 ≺ s3 ≺
s4 ≺ s5. Tuples s5 and s6 are not adjacent, s5 6≺ s6, since the Proj -values
are different, violating the first condition. Similar, s6, s7 and s1, s3 are not
adjacent since they are separated by a temporal gap and violate the second
condition.

DEFINITION 3.4 (Merge Operator). Let s be an ITA result relation with schema
S = (A1, . . . , Ak, B1, . . . , Bp,T ), where A = {A1, . . . , Ak} are the grouping
attributes and B = {B1, . . . , Bp} store the aggregate values. The merge,
⊕, of two adjacent tuples, si, sj ∈ s, si ≺ sj , is defined as

si ⊕ sj = (si.A1, . . . , si.Ak, v1, . . . , vp, [si.tb , sj .te ]), (3.7)

where vd =
|si.T |si.Bd + |sj .T |sj .Bd

|si.T | + |sj .T | for 1 ≤ d ≤ p.

The merge operator produces a new tuple from two ITA result tuples,
i.e., z = si ⊕ sj . The grouping attributes of z assume identical values as si
(and sj). The timestamp z.T is the concatenation of si’s and sj ’s timestamp.
Since the aggregate values of si and sj hold at every time point in si.T and
sj .T , respectively, the new aggregate values, v1, . . . , vp, are computed by
averaging over the timestamps, i.e., vd is the weighted average of si.Bd and
sj .Bd with the weights being the length of si.T and sj .T , respectively.

Example 3.3. Merging the tuples s1 = (A, 800, [1, 2]) and s2 = (A, 600, [3, 3])
in Figure 3.1(c) yields the result tuple z1 = s1⊕s2 = (A, 733.33, [1, 3]) in Fig-
ure 3.1(d). The average salary is determined as z1.AvgSal = (2 · 800 + 1 ·
600)/(2 + 1) = 733.33.

To reduce the ITA result, s, to a specific size, the merge operator is
applied recursively. However, there is a lower bound, cmin , for the size of
the reduced ITA result, which is determined by the difference between the
cardinality of s and the number of adjacent tuple pairs that can be merged,
i.e., cmin = |s| − |{(si, sj)|si, sj ∈ s ∧ si ≺ sj}|. In our running example,
the ITA result contains seven tuples with four adjacent pairs, giving cmin =
7− 4 = 3.

Next, we introduce a (nondeterministic) reduction function that reduces
an ITA result relation to a given size c.
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DEFINITION 3.5 (Reduction Function). Let s be an ITA result relation, si ≺
sj be two adjacent tuples in s, and c ≥ cmin be a size constraint. The
reduction, ρ, of relation s to size c is defined as

ρ(s, c) =

{
s |s| ≤ c,
ρ(s \ {si, sj} ∪ {si ⊕ sj}, c) |s| > c.

(3.8)

If the cardinality of s is smaller or equal to c, the reduction process
terminates. Otherwise, two adjacent tuples, si and sj , are substituted with
the merged tuple si ⊕ sj . Notice the nondeterministic nature of ρ which
allows any pair of adjacent tuples to be merged. We will be more specific
about choosing tuples for merging later on.

Example 3.4. The ITA result relation in Figure 3.1(c) is reduced to size c =
4 in three merging steps with ρ(s, 4). The reduced relation in Figure 3.1(d) is
obtained by merging tuples s1, s2 into z1 and s3⊕(s4⊕s5) into z2. Choosing
different pairs of tuples for merging produces different results.

3.4.2 The Error Measure

Merging tuples induces an error with respect to the ITA result, which we
quantify using the following error measure.

DEFINITION 3.6 (Error Measure). Let s, S,A,B be as in Def. 3.4, z = ρ(s, ·)
be a reduction of s, and let for each z ∈ z, sz = {s | s ∈ s ∧ s.A =
z.A ∧ s.T ⊆ z.T} be the set of all ITA result tuples that are merged into z.
For a set of positive weights, w1 > 0, . . . , wp > 0, the error, SSE(s, z), that
is induced by reducing s to z is

SSE(s, z) =
∑
z∈z

∑
s∈sz

p∑
d=1

w2
d|s.T |(s.Bd − z.Bd)2. (3.9)

This is the well-known sum squared error, which is given as the total
sum of the squared distance between the tuples in s and z. More specifi-
cally, it computes for each tuple, z ∈ z, the squared distance (over all ag-
gregation results, B1, . . . , Bp) between z and the ITA result tuples, s ∈ sz,
that are merged to produce z. The weights wd are used to leverage the
impact of the different aggregation attributes. The choice of such weights
is out of the scope of this work, and we refer the interested reader to [58].

Example 3.5. Consider the merge of tuples s1 = (A, 800, [1, 2]) and s2 =
(A, 600, [3, 3]) in Figure 3.1(c) to tuple z = (A, 733.33, [1, 3]) in Figure 3.1(d).
With a weight of 1 for the only aggregation attribute AvgSal , the induced
error is SSE(s, z) = 1·2·(800−733.33)2 + 1·1·(600−733.33)2 =26 666.67.
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3.4.3 The PTA Operator

We provide two variants of the PTA operator. First, size-bounded PTA re-
duces the ITA relation to a user-specified size, yet minimizing the induced
error. Second, error-bounded PTA reduces the the size of the ITA result
relation as much as possible, yet maintaining the total induced error under
a given threshold.

DEFINITION 3.7 (Size-Bounded PTA). Let r be a temporal relation with
schema R = (A1, . . . , Am,T ), grouping attributes A = {A1, . . . , Ak}, and
aggregate functions F = {f1/B1, . . . , fp/Bp}. Let c ≥ cmin be an application-
specific size constraint. A relation z is the result of size-bounded parsimo-
nious temporal aggregation, z = GPTA[A,F, c]r, iff

(1) s = GITA[A,F]r (3.10)
(2) z = ρ(s, c) (3.11)
(3) @z′(z′ = ρ(s, c) ∧ SSE(s, z′)<SSE(s, z)). (3.12)

Relation s is the ITA result which is reduced to c tuples in the best pos-
sible way, that is, there is no better reduction, z′, of s to c′ < c tuples that
would induce a smaller error. An PTA result is not necessarily unique. If
different reductions to size c induce the same minimal error, all of them
represent valid PTA results.

Example 3.6. There are four different ways to reduce the ITA result in Fig-
ure 3.1(c) to c = 4 tuples. Figure 3.1(d) shows the best possible reduction
with an induced error of 49 166. Figure 4.2 shows a different reduction,
which has an error of 63 000.

DEFINITION 3.8 (Error-Bounded PTA). Let r, R, A, and F be as in Def. 3.7
and ε, 0 ≤ ε ≤ 1, be an application-specific error bound. Furthermore, let
SSEmax = SSE (s, ρ(s, cmin)) denote the largest possible error. A relation
z is the result of error-bounded parsimonious temporal aggregation, z =
GPTA[A,F, ε]r iff

(1) s = GITA[A,F]r (3.13)
(2) ∃c(z = ρ(s, c)) (3.14)
(3) SSE(s, z) ≤ ε·SSEmax (3.15)
(4) @z′, c′(z′ = ρ(s, c′) ∧ c′ ≤ c ∧ SSE (s, z′) < SSE (s, z)). (3.16)

Relation z is a maximal reduction of s (to a size c) such that the induced
error is smaller or equal to ε multiplied by the largest possible error, which
occurs when s is reduced to cmin tuples. Condition 4 ensures that no re-
duction to a smaller or same number, c′ ≤ c, of tuples exists with a smaller
error. Again, the result may not be unique.
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Example 3.7. With an error threshold ε = 1 we obtain obviously the maxi-
mal reduction of two tuples. Allowing only 2% error yields four result tuples
as in Figure 3.1(d).

3.5 PTA Evaluation Using Dynamic Programming

For the evaluation of PTA queries, ITA is computed first, followed by a re-
duction of the ITA result until a given size or error bound is satisfied. In
this section we propose algorithms PTAc and PTAε for the precise eval-
uation of size-bounded and error-bounded PTA, respectively. While any
ITA algorithm can be used for the first step, a dynamic programming based
approach is adopted to compute an optimal reduction of the ITA result. Var-
ious optimizations are applicable to improve the basic DP scheme, such
as computing the error in constant time and exploiting temporal gaps and
aggregation groups to prune the search space.

3.5.1 Basic DP Scheme for Size-Bounded PTA

Let s = {s1, . . . , sn} be an ITA result relation sorted on the aggregation
groups and, within each aggregation group, along the timeline. Then each
pair of consecutive tuples that are non-adjacent, si 6≺ si+1, marks a bound-
ary (temporal gap or change of aggregation group) that cannot be crossed
during the merging process.

Example 3.8. Consider the ITA result in Figure 3.1(c), which is sorted first
by the Proj attribute and, within each group, in chronological order. It con-
tains two boundaries, namely s5, s6 since the two tuples belong to different
aggregation groups, and s6, s7 since the two tuples are separated by a tem-
poral gap.

Let sj = {s1, . . . , sj} denote the first j tuples in s. Then s\sj denotes the
rest of the relation, i.e. s\sj = {sj+1, . . . , sn} the rest. Then the reduction of
s to c tuples, ρ(s, c), can be defined recursively as follows: find a reduction
ρ(sj , c−1) for some split point j and merge the remaining tuples into one,
i.e., ρ(s \ sj , 1). For the reduction to be optimal, the sum of errors induced
on both sides of j must be minimized at each recursive step. To avoid that
non-adjacent tuples are merged, we set the error of merging non-adjacent
tuples to infinity. Thus, merging altogether any subset s′ ⊆ s will yield
infinite error, if s′ contains at least one pair of non-adjacent tuples, si 6≺ si+1.

Example 3.9. Figure 3.2 illustrates the four options for the split point, j.
For instance, for j = 3, the solution is to find an optimal reduction ρ(s3, 3)
and to merge s4, s5, s6, s7 into one tuple, which yields an infinite error since
s5 6≺ s6 6≺ s7. The only split point with an error different from∞ is j = 6.
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s1
s2

s3
s4

s5
s6

s7

ρ(s3, 3) j = 3 s4 ⊕ s5 ⊕ s6 ⊕ s7

ρ(s4, 3) j = 4 s5 ⊕ s6 ⊕ s7

ρ(s5, 3) j = 5 s6 ⊕ s7

ρ(s6, 3) j = 6 s7

Figure 3.2: Four possible ways to reduce the ITA result to four tuples

i = 1 2 3 4 5 6 7
k = 1 0 26666 67500 208333 269285 ∞ ∞

2 – 0 5000 41666 49166 269285 ∞

3 – – 0 5000 6666 49166 269285

4 – – – 0 1666 6666 49166

Figure 3.3: Error matrix E

To find an optimal reduction, we propose a dynamic programming tech-
nique that constructs an an error matrix, Ec×n, with c rows and n columns.
A cell (k, i) represents the smallest error of reducing si to k tuples. The
matrix is filled incrementally in each step using the values that have been
computed in the previous steps, i.e., Ek,i =

min
k−1≤j<i

{Ek−1,j +

SSE(si\sj , ρ(si\sj , 1))} k > 1

SSE(si, ρ(si, 1)) k=1 ∧ s1≺ . . .≺ si

∞ k=1 ∧ ¬(s1≺ . . .≺ si)

(3.17)

The matrix is filled row-wise for all k = 1, . . . , c, and, for any fixed k, in
increasing order of i for i = 1, . . . , |s|. At each step k, the values computed
in steps k−1 are used. At the end, the value Ec,n contains the error induced
by an optimal reduction of relation s to c tuples.

Example 3.10. Figure 3.3 shows the error matrix that is constructed when
reducing the ITA result in our running example to size 4. The matrix is filled
starting from row k = 1. To fill the second row, the data from row 1 are
used, etc. Eventually, cell (4, 7) contains the error of the optimal reduction.

In order to construct the reduced relation, we maintain a split point ma-
trix, Jc×n. A cell (k, i) in the matrix stores the value of j that led to the min-



34 CHAPTER 3. PARSIMONIOUS TEMPORAL AGGREGATION

i = 1 2 3 4 5 6 7

k = 1 0 0 0 0 0 0 0

2 – 1 1 2 2 5 0

3 – – 2 3 3 5 6

4 – – – 3 3 5 6

Figure 3.4: Split point matrix J

imal error value when computing Ek,i. Consequently the cell (c, n) stores
the first split point j that tells us where to split s in order to construct the final
result. The tuples sj+1, . . . , sn are then merged into a single one, whereas
tuples s1, . . . , sj are merged into c−1 tuples, following the next split point
that is stored in the cell (c−1, j), etc.

Example 3.11. Figure 3.4 shows the split point matrix in our running ex-
ample. The split points of the optimal reduction are framed. The first split
point is j = 6, the value of cell (4, 7). We generate the result tuple z4 = s7

and proceed to reduce s6 to size 3 by taking the value of cell (3, 6) as the
next split point. We generate the result tuple z3 = s6. Then we proceed to
reduce s5 to two tuples, obtaining z2 = s3⊕ s4⊕ s5. Finally, we reduce s2 to
size 1, yielding z1 = s1 ⊕ s2 (the last split point in cell (2, 1) is 0).

3.5.2 Efficient Computation of the Error

The DP scheme frequently needs to compute the error that is induced when
a set of adjacent tuples is merged. Jagadish et al. [27] introduce a tech-
nique to calculate the error for one dimensional data in constant time. We
extend their approach for multidimensional data.

Let s be an ITA result relation with corresponding aggregation attributes
B = {B1, . . . , Bp}. The additional information that is required for an efficient
computation of the error is stored in two matrices Sp×|s|,SSp×|s| and a vector
L|s|, which are defined as follows:

Sd,i =

i∑
j=1

|sj .T |sj .Bd, (3.18)

SSd,i =

i∑
j=1

|sj .T |sj .B2
d , (3.19)

Li =
i∑

j=1

|sj .T |. (3.20)
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Sd,i is the sum of the Bd values over all tuples from s1 to si, SS is the sum
of the squares of the Bd values, and L is the sum of the lengths of the
timestamps. Observe that precomputing this information does not induce
any additional overhead since the ITA algorithm can fill the matrices while
producing the output.

Using such information, the error of merging a set of ITA result alto-
gether can be computed in O(p) time, where p is the number of aggregation
attributes in the ITA result. This is shown in the following proposition.

PROPOSITION 3.1. Let sz = {si, si+1, . . . , sj} ⊆ s such that si ≺ . . . ≺ sj .
The error that is induced by merging sz into one tuple, z, can be computed
as

SSE(sz, {z}) =

p∑
d=1

w2
d

[
SSd,j − SSd,i−1 −

(Sd,j − Sd,i−1)2

Lj − Li−1

]
. (3.21)

Proof. From Def. 3.4 of the merge operator we have that

z.Bd =
1

|z.T |
∑
s∈sz

|s.T |s.Bd. (3.22)

Then we rewrite the error equation in Def. 3.6 as follows:

SSE(sz, {z}) =

p∑
d=1

w2
d

[∑
s∈sz

|s.T |s.B2
d − (3.23)

2 z.Bd
∑
s∈sz

|s.T |s.Bd︸ ︷︷ ︸
=|z.T |z.Bd

+z.B2
d

∑
s∈sz

|s.T |︸ ︷︷ ︸
=|z.T |

]
(3.24)

=

p∑
d=1

w2
d

[∑
s∈sz

|s.T |s.B2
d − |z.T | z.B2

d

]
(3.25)

=

p∑
d=1

w2
d

[∑
s∈sz

|s.T |s.B2
d −

(
∑

s∈sz
|s.T |s.Bd)2

|z.T |

]
(3.26)

=

p∑
d=1

w2
d

[
SSd,j − SSd,i−1 −

(Sd,j − Sd,i−1)2

Lj − Li−1

]
. (3.27)

Example 3.12. For the ITA result in Figure 3.1(c) the matrices and vectors
are given as follows:

S = 〈 1 600, 2 200, 2 700, 3 400, . . . 〉
SS = 〈 1 280 000, 1 640 000, 1 890 000, 2 135 000, . . . 〉
L = 〈 2, 3, 4, 6, . . . 〉
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s1 = (A, 800)
s2 = (A, 600)

s3 = (A,500)
s4 = (A,350)

s5 = (A,300)
s6 = (B,500)

s7 = (B,500)

G1 G2

Figure 3.5: The vector of gaps, G

Using this information, the error of merging the tuples {s2, s3} into a tuple z
is computed as SSE({s2, s3}, {z}) = 1 890 000− 1 280 000− (2 700−1 600)2

4−2 =
5 000.

3.5.3 Pruning the Search Space of the DP Scheme

Recall that filling the error matrix E involves computing the value of each
cell (k, i) for all k = 1, . . . , c and i = 1, . . . , n using the above dynamic
programming equation. That leads to an algorithm whose performance
depends quadratically on the input size and linearly on the output size.
In this section we introduce bounds for the variables i and j used in the
equation this way improving the performance of the algorithm. Bounding
the variable i allows us to avoid computing some Ek,i if that would in any
way evaluate to infinity. Otherwise, we speed up the evaluation of Ek,i =

min
k−1≤j<i

{Ek−1,j + SSE(si\sj , ρ(si\sj , 1))} by reducing the value range of the

variable j. The bounds depend on the positions of the non-adjacent tuple
pairs in the sorted input relation s. Therefore, the resulting performance
improvements are data-dependent.

Let G be a vector that stores the positions of the non-adjacent tuple
pairs in the sorted input relation, s, i.e., Gm = l if sl, sl+1 ∈ s, sl 6≺ sl+1,
is the m-th pair of non-adjacent tuples. We use the information in G to
compute the bounds of i and j variables.

Example 3.13. For the ITA result of the running example we have G =
〈5, 6〉, which is illustrated in Figure 3.5. The first pair of non-adjacent tuples
is s5 6≺ s6. The second pair is s6 6≺ s7.

First, we determine an upper bound, imax, for the variable i under which
Ek,i does not evaluate to infinity. Intuitively, if the number of non-adjacent
tuple pairs in si is greater than k, then merging across gaps is unavoidable,
and, we are sure that the error Ek,i is infinite. As long as k ≤ |G|, the value
Gk tells us the position of the k-th non-adjacent tuple pair. Consequently,
the subset si = {s1, . . . , sGk

} ⊆ s has k − 1 non-adjacent tuples pair and
is the maximal subset that can be reduced to size k. Therefore, imax = Gk

and for all i > imax we have Ek,i = ∞. When k > |G|, the rule may no
longer be applied and we set imax equal to the size of the input relation,
imax = |s|. Observe, that the more non-adjacent tuple pairs are present in
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the relation, the more advantageous is this upper bound to speed up the
evaluation.

Example 3.14. Consider the computation of E1,i using the vector G =
〈5, 6〉 shown in Figure 3.5. The value G1 = 5 indicates that at most the
first five tuples, s5 = {s1, . . . , s5}, can be merged into one tuple without
crossing a gap and inducing an infinite error. Therefore, given k = 1, the
upper bound for i is imax = G1 = 5; for all i > 5 we have E1,i = ∞. Given
k = 2 the upper bound for i is imax = G2 = 6. For all greater values of k
the rule does not apply and i cannot be upper-bounded.

Second, whenever Ek,i must be evaluated, we can determine a lower
bound, jmin, for the variable j. The recursion formula for Ek,i determines
the error of merging the tuples si \ sj into one tuple, which will be infinite
if si \ sj contains at least one non-adjacent tuple pair. This is the case if
j is smaller than the position of the right-most non-adjacent tuple pair in
si, if such a pair exists. The lower bound for j is therefore the position of
the right-most non-adjacent tuple pair, i.e., jmin = max{Gl | Gl < i ∧ l =
1, . . . , |G|}. If si contains no gaps, we set jmin = k − 1. Hence, to evaluate
Ek,i it is enough to loop only over jmin ≤ j < i. To efficiently determine
jmin, we use binary search over G. If there are no gaps in si, the search
does not return any result and we set jmin = k − 1. Interestingly, when
jmin = Gk−1, then the subset si has exactly k gaps and the only choice to
split si is at j = jmin.

Example 3.15. To compute E3,6, the basic DP scheme evaluates the SSE
of merging the tuples s6 \ sj for j = 2, . . . , 5. The right-most non-adjacent
pair in s6 is jmin = G1 = 5. Therefore, only for j = 5 the error is different
from∞; the error computation for j = 2, . . . , 4 can safely be pruned.

3.5.4 The Size-Bounded PTA Algorithm

Algorithm 3.1 shows algorithm PTAc for the evaluation of size-bounded PTA
queries using the above DP scheme. First, the ITA result, s, over the input
relation r is computed using any ITA algorithm. (We assume s to be sorted
by the grouping attributes A and, within each group, in chronological order;
if not, an additional sorting step is required.) Next, the vectors G, L and
matrices S, SS that are needed for the error computation are initialized.
Notice that this initialization could be pushed into the ITA algorithm to avoid
an additional scan of s. Next, the error, E, and split point, J, matrices are
initialized. The code in the following for loop fills them up implementing the
DP scheme and performance improvements described before. For each
matrix row, k, we iterate over columns, i, computing Ek,i. The upper bound
for i is obtained from the gap vector G. When k = 1 we implement the
first condition in the scheme and evaluation of Ek,i is straightforward. The
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following lines implement the second condition. When the number of non-
adjacent pairs in the subset si equals to k, then the only possible split point
is at j = jmin. In other cases, iteration over j is necessary. We lower-bound
the variable j, that is, j must be greater than the index of the right-most
non-adjacent pair in the subset si. Recall that Ek,i has been initialized to
infinity. Then, iterating over j in decreasing order, we choose any smaller
value. It has been shown in [27] that j should be iterated in decreasing
order, i.e. from i − 1 towards jmin. Since the value of err2 increases with
each iteration, the loop can be safely broken when e2 alone exceeds the
smallest error Ek,i found so far. Finally, the final while loop computes the
output using the split point matrix J as described before.

Example 3.16. The evaluation of PTAc over the proj relation starts with
the computation of the ITA result s. The tuples are enumerated from 1 to 7
as in Figure 3.1(c). Next, E1,i is computed for all i = 1, . . . , 5. The values
E1,6 and E1,7 are infinite and their evaluation will be avoided with the help of
upper bound imax. Similarly, we compute E2,i for all i = 2, . . . , 6 and avoid
evaluation of E7,2. When k = 2 and i is between 2 and 5, the loop over j
ranges between 1 and i. However, when i is 6, the value of j is fixed at 5.
This way all the remaining errors are computed until k = 4 and i = 7, and
the final output relation shown in Figure 3.1(d) is produced.

The runtime complexity of PTAc depends on the ITA algorithm and the
merging step. We assume that ITA is computed by one of several algo-
rithms that have been proposed in the past, e.g. [12, 34, 43]. Their average
running time is O(n log n), where n is the size of the input relation. In the
merging step we evaluate the error within three nested loops, one per vari-
able k, i, and j. The first two perform at most c and n iterations, respec-
tively. The maximum number of iterations in j loop is equal to the size of
the largest adjacent tuple subset in the ITA result, q. Error evaluation takes
O(p) time for p aggregation functions, however, p is usually insignificantly
small and can be regarded as a constant. Therefore, the running time com-
plexity of the merging step in the PTAc algorithm is O(c n q). In the worst
case, when the dataset has no temporal gaps or aggregation groups, q = n
and the complexity of PTAc is O(n2 c). The space complexity of the algo-
rithm is O(n2) as the split point matrix, J, must be kept in memory entirely.
On the other hand, only the two most recent rows of the error matrix, E, are
necessary.

3.5.5 The Error-Bounded PTA Algorithm

To answer error-bounded PTA queries, we use the same DP scheme as
for the size-bounded algorithm. The DP solution computes all the optimal
reductions to k = 1, 2, . . . tuples in increasing order of k. As k increases,
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1 Algorithm: PTAc(r,A,F, c)

2 s← GITA[A,F]r;
3 Initialize G,L,S,SS;
4 Initialize E,J to∞ and 0, respectively;
5 for k = 1, . . . , c do
6 if k ≤ |G| then imax = Gk else imax = |s|;
7 for i = k, . . . , imax do
8 if k = 1 then
9 E1,i ← SSE(si, ρ(si, 1));

10 J1,i ← 0;
11 else
12 jmin ← max{k − 1,Gl|Gl < i ∧ l = 1, . . . , |G|};
13 if Gk−1 = jmin then
14 j ← jmin;
15 Ek,i ← Ek−1,j + SSE(si \ sj , ρ(si \ sj , 1));
16 Jk,i ← j;
17 else
18 for j = i− 1, . . . , jmin do
19 err1 ← Ek−1,j ;
20 err2 ← SSE(si \ sj , ρ(si \ sj , 1));
21 if err1 + err2 < Ek,i then
22 Ek,i ← err1 + err2;
23 Jk,i ← j;

24 if err2 > Ek,i then break;

25 z← ∅, n← |s|;
26 while c > 0 do
27 j ← Jc,n;
28 z← z ∪ {sj+1 ⊕ . . .⊕ sn};
29 n← j; c← c− 1;

30 return z;
Algorithm 3.1: The PTAc algorithm for size-bounded PTA
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1 Algorithm: PTAε(r,A,F, ε)

2 s← GITA[A,F]r;
3 Emax ← SSE(s, ρ(s, cmin));
4 Initialize S,SS,L,G,E,J;
5 for k = 1, . . . , |s| do
6 Fill E,J using lines 6–24 in Algorithm 3.1;
7 if E[|s|, k] ≤ ε ·Emax then
8 c← k;
9 break;

10 Build output z using lines 25–29 in Algorithm 3.1;
11 return z;

Algorithm 3.2: The PTAε algorithm for the error-bounded PTA

the error monotonically decreases. Thus, the relation with the smallest k
that satisfies the error bound ε is the solution.

Algorithm 3.2 depicts the evaluation algorithm for error-bounded PTA,
which is very similar to the algorithm in Algorithm 3.1. The variable Emax
is set to the maximum non-infinite error, i.e., the error that would be in-
duced by merging all adjacent tuples together. This value can be computed
together with ITA result at no additional cost. Then, in the main loop k iter-
ates from 1 to the cardinality of the ITA relation, where the error matrix, E,
and the split point matrix, J, are computed. The loop is terminated when
the error exceeds ε. The running time complexity of this algorithm is the
same as of PTAc.

3.6 Experimental Evaluation

In this section we evaluate experimentally the reduction capability of PTA
to reduce the ITA result. To answer the question we use both synthetic and
real-world datasets. We measure the error that the dynamic programming
algorithm induces at various reduction ratios. Intuitively, the operator per-
forms well when it introduces low errors at high reduction ratios. Having
evaluated the capabilities we turn to measure the scalability of the dynamic
programming algorithm.

3.6.1 Experimental Setup

We implemented the algorithms using JavaTM version 6. They are executed
on a Linux machine with 4 AMD 2600MHz Opteron processors and 16GB
of RAM. An Oracle 11g database running on the same machine is used as
the data storage medium.
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Table 3.1: The aggregation queries used for evaluation of PTA
(a) ETDS

Name Grouping Agg. Functions ITA Size cmin

E1 – avg 6 394 1
E2 – max 6 394 1
E3 – sum 6 394 1
E4 Emp.No., Dep. avg 5 419 493 339 067

(b) Incumbents
Name Grouping Agg. Functions ITA Size cmin

I1 Dep., Proj. avg 16 144 131
I2 Dep., Proj. max 16 144 131
I3 Dep., Proj. sum 16 144 131

(c) Time series
Name Dimensionality ITA Size cmin

T1 Chaotic 1 1 800 1
T2 Tide 1 8 746 1
T3 Wind 12 6 574 216

(d) Synthetic
Name Grouping Dimensionality ITA Size cmin

S1 – 10 10 000 000 1
S2 yes 10 10 000 000 50 000

For the experiments we use the following data relations: real-world In-
cumbents dataset kindly donated by the University of Arizona, USA; syn-
thetic employee temporal dataset (ETDS) donated by F. Wang [57]; a sub-
set of real-world time series data from the UCR Time Series Data Repos-
itory [30]; a large synthetic dataset for large scale experiments. Our aim
is to evaluate the behavior of PTA in the context of various aggregation
functions, the presence and absence of grouping attributes, and varying
numbers of temporal gaps. Therefore, as summarized in Table 3.1, we
issue different aggregation queries over the four temporal relations. The
resulting datasets sport different attribute value distribution, as well as dif-
ferent number of aggregation groups and temporal gaps. Next we discuss
the properties of each of the datasets.

The ETDS relation depicts the evolution of employees in a company
and contains 2 875 697 records. Each record stores employee number, sex,
department, title, salary, and contract validity interval in months. The ITA
queries over this relation are summarized in Table 3.1(a). The queries E1,
E2, and E3 specify different aggregation functions but no grouping. They
yield 6 394 tuple ITA result relations. These relations have no temporal gaps
nor aggregation groups and thus their cmin is 1. Observe that the results
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of these queries may have very different attribute values as they have been
obtained using different aggregation functions. The query E4 specifies the
grouping by employee number and department and the corresponding ITA
result yields more than five million tuples. This query illustrates the case
when the size of the ITA result may exceed the input size.

The Incumbents relation records the change of employee salaries over
time. With each tuple a project ID, department ID, salary, and time interval in
months are associated. The relation has 83 857 records. The correspond-
ing ITA queries, summarized in Table 3.1(b), use project ID and department
ID as grouping attributes and yield 16 144 tuples.

Time series datasets from UCR Time Series Data Repository [30] offer
a great variety of data from various real-world sources. Each time series
record has one or more aggregate values and a timestamp that we extend
into a validity interval of length 1 obtaining sequential relations. Thus, time
series data can be passed directly to PTA merging step omitting ITA aggre-
gation. Table 3.1(c) summarizes the time series we use in this work. T1,
Chaotic, as well as T2, Tide, has one aggregate value, 1 800 and 8 746
samples respectively. The T3, Wind, series has 12 aggregate values (di-
mensions).

Finally, to avoid any data induced bias we generate a synthetic dataset
with ten million tuples, one grouping attribute and ten aggregate attributes
whose values are distributed uniformly. Table 3.1(d) summarizes the two
ITA queries we issued over this relation. The query S1 does not specify
grouping. The result is a sequential relation with no temporal gaps, i.e.
cmin = 1. The query S2, on the other hand, uses grouping. The result has
50000 groups with 200 sequential tuples in each. We use these datasets
and their subsets to evaluate the scalability of PTA algorithms as well as
the influence of varying dimensionality on the quality of PTA results.

3.6.2 PTA Reduction Capability

In the following set of experiments we evaluate PTA algorithms by quanti-
fying the error they induce when reducing the ITA result to different sizes.
Ideally, the error should be low when the reduction ratio is high, indicating
that the operator effectively discards redundant information borne by the
data.

We quantify the error induced by the PTAc algorithm at every possible
output size. Note that PTAε results are identical and we do not report them
here. We use every dataset except E4 and the synthetic one as these two
are too large to be processed in a reasonable time. The error and output
size values were normalized to fit in the range between 0 and 100%. Thus
we obtained error growth curves where the horizontal axis depicts reduction
ratio and the vertical one corresponds to the error. In particular, any ITA
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Figure 3.6: PTA error as a function of reduction ratio over (a) different
datasets; (b) varying dimensionality

result has 0% reduction and thus 0% error; 100% error is reached when
the dataset is reduced to its cmin.

Figure 3.6(a) depicts the error curves in the range of 90% to 100% re-
duction. Observe that for most queries the error remains very low even at
huge reduction ratios. That is especially true for queries over the ETDS
data. Queries over the Incumbents relation as well as the time series
datasets can be reduced significantly as well. For example, the series T1 is
reduced by 95%, i.e. 100 tuples, before the total error exceeds 10%. Only
the T3 series reaches 55% error by 90% of reduction.

The relatively bigger PTA errors on the only high dimensional dataset,
T3, suggest that the reduction capabilities depend on the dimensionality of
the data. We evaluate multiple PTA queries over a sequential 2 000 tuple
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subset of the synthetic dataset using PTAc. For each query we specify dif-
ferent number of aggregation attributes. Figure 3.6(b) depicts the resulting
error growth curves. Observe that as dimensionality increases the overall
error grows as well.

The above results allow us to conclude that in most cases the PTA op-
erator helps to reduce the result size significantly and only induce small er-
rors. The reduction capabilities do not depend on the aggregation functions
or grouping attributes specified in the query, but on the data dimensional-
ity. That is not surprising as the dimensionality related problems have long
been known [11].

3.6.3 Scalability Evaluation

We evaluate running time performance of the dynamic programming ap-
proach. In the following performance graphs we measure the total CPU
time devoted for query evaluation. We exclude the time taken to produce
ITA results as well as the time needed to write the final PTA result back to
the database.

We take as our baseline the straight-forward implementation of the dy-
namic programming equation (DP) as described in Sec. 3.5.1. We compare
the time that DP takes to evaluate PTA queries to that of the PTAc algorithm
that implements the improvements developed in this paper as described in
Sec. 3.5.4. We expect the PTAc algorithm to be faster when dealing with
data that sports multiple temporal gaps and aggregation groups and oth-
erwise similar to that of DP. In these experiments there is no difference
between PTAc and PTAε, therefore we use the former.

Figures 3.7(a) and 3.7(b) illustrate the influence of the input size to the
computation time. In the first experiment, Figure 3.7(a), we use varying
size sequential subsets of the synthetic data, i.e. they have no temporal
gaps or aggregation groups. We vary the size of the input from 500 tu-
ples to 6 500 whereas the output, c, and dimensionality, p, are fixed at 500
and 10 respectively. As expected, the two approaches show no significant
difference.

Next, in Figure 3.7(b), we observe that the performance of PTAc im-
proves significantly when the argument relation contains multiple groups or
gaps. In this instance we used subsets of grouped synthetic data. For each
different size input we keep the number of aggregation groups fixed at 200
increasing only the number of tuples within each group. As the figure de-
picts, the PTAc algorithm significantly outperforms DP and scales almost
linearly as the presence of gaps reduces the amount of computation.

In Figure 3.8 we see how the change of the output size, c, influences the
performance. Here we use 2 000 tuples from the synthetic dataset with 200
groups and ten tuples in each group. The value of c varies from 1 to 2 000
and n, p remain fixed. As expected, the running time increases linearly with
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Figure 3.7: PTAc running time as a function of input size

increasing size of the output. Observe however, that the PTAc algorithm
is not overly sensitive to the size bound, c, as the presence of gaps is the
most important speed factor.

To conclude, the experiments confirm the estimated performance of the
PTAc algorithm. Applying it in realistic situations when data has temporal
gaps, or multiple aggregation groups are specified in the query yields the
result much faster than the plain dynamic programming approach does.

3.7 Summary

In this chapter we defined the parsimonious temporal aggregation operator,
PTA, for size- and error-bounded queries. By reducing the instant temporal
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aggregation result via approximation, the approach allows us to control the
size of the aggregation result thus overcoming limitations of existing oper-
ators. Since PTA is an approximating operator, its result may occasionally
seem unexpected at the first glance. For example, when using avg as the
sole aggregation function, PTA will merge two adjacent tuples that have
very similar average values although the underlying data that contributes to
these average values may be vastly different. In such a situation the user
may instruct PTA to compare underlying distributions by specifying addi-
tional aggregation functions commonly used in descriptive statistics, such
as standard deviation. Consequently, PTA will merge only those adjacent
tuples that have similar average and standard deviation.

Another possible drawback of the operator is its inability to cope with
noise in the data. While evaluating the operator we have not come up with
such data, although it is easy to imagine situations when measurements
obtained from sensors are not reliable or news articles harvested from the
Internet are accompanied with large volumes of spam. For example, con-
sider adding one tuple with very high Sal value anywhere in the middle of
our proj relation. That would separate otherwise very similar ITA tuples
making it impossible for PTA to merge them without induction of very high
error. In fact, such noise in temporal data is largely ignored in current re-
search literature and the users have to cleanse the data before they apply
temporal data analysis tools. While evaluating this thesis we have worked
with noiseless data only, such as employment contracts. In the future work
we will address the issue of noise using methods similar to those employed
in nonparametric spline smoothing techniques [17].

Applications requiring the most precise aggregation result should evalu-
ate PTA queries using suggested dynamic programming algorithms, PTAc

and PTAε, that introduce minimal approximation error. In realistic situa-
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tions, when data contains temporal gaps, or aggregation groups are speci-
fied in the query, the algorithms scale linearly with respect to the size of the
input. In the worst case, they will take O(n2c) time and O(n2) space to find
the reduction of n tuples in the input relation to c tuples. Experimental eval-
uation proved that the PTA operator can reduce the ITA result significantly
yet introduce only small errors.
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CHAPTER 4

Greedy Evaluation of PTA

In this chapter we continue elaborating on the parsimonious temporal ag-
gregation operator (PTA). We focus on the online evaluation of PTA queries
where algorithmic performance is of the utmost importance. We propose an
efficient greedy merging strategy with a precision that is upper bounded by
O(log n). We present two algorithms that implement this strategy and be-
gin to merge as ITA tuples are produced. They require O(n log(c+ β)) time
and O(c + β) space, where β is the size of a read-ahead buffer and is typ-
ically very small. An empirical evaluation on real-world and synthetic data
shows that PTA considerably reduces the size of the aggregation result, yet
introducing only small errors. The greedy algorithms are scalable for large
datasets and introduce less error than other approximation techniques.
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4.1 Introduction

Parsimonious temporal aggregation queries are likely to be issued over
huge argument relations storing archives of historical data. The dynamic
programming approach can be used to evaluate them offline introducing
minimal possible error. However, many applications would benefit from a
less exact answer available immediately, i.e. computed in an online fashion.
For example, a data analyst may want to obtain an approximate answer to
her PTA query before she tells the system to start the computation of the
optimal reduction.

In this chapter we present a greedy evaluation strategy for PTA queries.
We propose to merge greedily and iteratively pairs of the most similar tuples
in ITA result until the size- or error-bound is satisfied. Such a strategy may
not provide the optimal result, however, we prove that the additional error it
induces is reasonably small and upper-bounded.

Furthermore, we show that greedy merging can commence before the
whole ITA relation is computed and that it would not incur any additional
error. We introduce two novel algorithms for the greedy evaluation of size-
and error-bounded PTA queries, gPTAc and gPTAε respectively. The al-
gorithms read ITA tuples as they arrive and attempt merging as soon as
possible. They maintain in memory only the intermediate PTA result that
takes O(c+ β) space, where β is typically much smaller than the whole ITA
relation. Reducing computation space requirements results in better run-
ning time performance and the algorithms need only O(n log(c+β)) time to
compute the reduction of size c from n ITA tuples.

Finally, we conduct extensive experimental evaluation using real-world
as well as synthetic data. We show that the greedy algorithms scale well for
large datasets. We compare the greedy algorithms to other plausible solu-
tions suggested in the field of time series approximation. The experiments
reveal that the greedy strategy introduces significantly less error than other
state of the art methods.

We build on top of the concepts developed in Chapter 3. Therefore,
we continue using the same notation and adhere to the same database
model as defined previously. We start our discussion by introducing a small
example dataset that we use to illustrate the concepts. Next, we introduce
the greedy merging strategy and show that its definition requires a notion of
tuple similarity. We derive the similarity measure from the sum square error
of the previous chapter. We also prove the upper bounds of the error that
the greedy approach may introduce. We continue by introducing greedy
evaluation algorithms that implement the strategy in an efficient way. Note
that the algorithms are different for size- and error-bounded PTA queries.
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4.2 Example

Empl Proj Sal T
r1 John A 800 [1, 4]
r2 Ann A 400 [3, 6]
r3 Tom A 300 [4, 7]
r4 John B 500 [4, 5]
r5 John B 500 [7, 8]

r1 = (John, A, 800)

r2 = (Ann, A, 400)

r3 = (Tom,A,300)

r4 = (John,B,500) r5 = (John,B,500)

t1 2 3 4 5 6 7 8

(a) proj Relation

Proj AvgSal T
s1 A 800 [1, 2]
s2 A 600 [3, 3]
s3 A 500 [4, 4]
s4 A 350 [5, 6]
s5 A 300 [7, 7]
s6 B 500 [4, 5]
s7 B 500 [7, 8]

s1 = (A, 800)

s2 = (A, 600)

s3 = (A,500)

s4 = (A,350)

s5 = (A,300)

s6 = (B,500) s7 = (B,500)

t1 2 3 4 5 6 7 8

(b) ITA Result

Proj AvgSal T
z1 A 733.33 [1, 3]
z2 A 375 [4, 7]
z3 B 500 [4, 5]
z4 B 500 [7, 8]

z1 = (A, 733.33)
z2 = (A,375)

z3 = (B,500) z4 = (B,500)

t1 2 3 4 5 6 7 8

(c) PTA Result of Size 4

Proj AvgSal T
z1 A 800 [1, 2]
z2 A 420 [3, 7]
z3 B 500 [4, 5]
z4 B 500 [7, 8]

z1 = (A, 800)
z2 = (A,420)

z3 = (B,500) z4 = (B,500)

t1 2 3 4 5 6 7 8

(d) Greedy PTA Result of Size 4

Figure 4.1: The proj relation and greedy PTA evaluation of the query “What
is the average monthly salary for each project?”

Throughout this chapter we use the proj relation that is also used in
Chapter 3 and shown in Figure 4.1(a). Figure 4.1(b) shows the result of
an ITA query “What is the average monthly salary for each project?”. Fig-
ure 4.1(c) shows the result of a PTA query “What is the average monthly
salary for each project represented using 4 tuples?”. The result is obtained
by applying the dynamic programming strategy introduced in Chapter 3. It
offers an optimal reduction of the ITA relation, i.e. the introduced error is
minimal.

Figure 4.1(d), on the other hand, depicts the result obtained by greedily
reducing the ITA result. At each iterative step we choose a pair of tuples
that introduce the smallest additional error and merge them. We continue in
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s1 = (A, 800)
s2 = (A, 600)

s3 = (A,500)
s4 = (A,350)

s5 = (A,300)
s6 = (B,500)

s7 = (B,500)

z1 = (A, 800)
z2 = (A, 420)

z3 = (B,500)
z4 = (B,500)

Figure 4.2: The dendrogram of the greedy merging steps.

the same fashion until the size bound is satisfied. Observe that the resulting
relation is slightly different from that obtained using the dynamic program-
ming strategy. Nevertheless it provides a good approximation of the ITA
result.

4.3 Greedy Merging Strategy

Let s be an ITA result relation. The greedy merging strategy (GMS) reduces
s in an iterative manner until the size or error bound is satisfied. At each
step, it operates on an intermediate result relation, choosing from it a pair of
the most similar tuples for merging. Intuitively, the less the error of merging
two tuples is, the more similar they are. By replacing the chosen pair with
the newly merged tuple a reduced intermediate result is obtained. When
several pairs of tuples are equally similar, any pair can be chosen. We elect
to merge the pair with the smallest timestamp value. This choice, however,
does not influence the total error induced by the greedy merging process.

Example 4.1. Figure 4.2 illustrates the greedy merging steps over the ex-
ample ITA relation with size bound c = 4. The first tuples to be merged (i.e.,
the most similar ones) are s4 and s5 followed by s2 and s3. The two new
tuples are then merged to produce the final result tuple z2. The result of
greedy merging differs from the precise PTA result in Figure 4.1(c), where
tuple s2 is merged with s1. The DP algorithm induces an error of 49 166,
while the error of the greedy approach is 63 000, yielding an error ratio of
1.28 between the two.

In order to apply GMS, the notion of similarity between tuple pairs needs
to be precisely defined. Consider a sequential relation s′ that is obtained
from the initial relation, s, by applying the reduction operator. Merging a
pair of adjacent tuples si ∈ s′, sj ∈ s′ leads to a new relation, say z. Then,
the dissimilarity of the tuples si and sj is the error introduced by the merge,
i.e., dsim(si, sj) = SSE (s, z)− SSE (s, s′). In order to determine the dissim-
ilarity using this equation, the source relation s must be available, which is
not practical if we want to start merging before the whole ITA result is com-
puted. The following proposition shows that dsim(si, sj) can be determined
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by considering only the tuples si and sj .

PROPOSITION 4.1. Let s be a sequential relation, s′ = ρ(s, k) be a reduction
to size k, and z be obtained from s′ by merging the tuples si ∈ s′, sj ∈ s′

to si ⊕ sj = z ∈ z. The dissimilarity of the tuples si, sj is dsim(si, sj) =
SSE ({si, sj}, {z}).
Proof. Let s∗i ⊂ s be the tuples in s that make up si, i.e., for all s ∈ s∗i we
have s[A] = si[A]∧ s.T ⊆ si.T . Let s∗j be defined for sj in a similar fashion.
Then, s∗ = s∗i ∪ s∗j constitute z. Since the sets s′ \ {si, sj} and z \ {z} are
identical we rewrite dsim(si, sj) as

dsim(si, sj) = SSE (s∗, {z})− SSE (s∗, {si, sj})
= SSE (s∗i , {z})− SSE (s∗i , {si}) + (a)

SSE (s∗j , {z})− SSE (s∗j , {sj}) (b)

The summation (a) + (b) is possible because the tuples si, sj are adjacent,
i.e., they do not overlap. Recall, that according to the merge function, si =

1
|si.T |

∑
s∈s∗i
|s.T |s. Using the definition of the error, we can rewrite equation

(a) (and similarly (b)) as

(a) =
∑
s∈s∗i

|s.T |(s− z)2 −
∑
s∈s∗i

|s.T |(s− si)2

= |si.T |(z2 − 2z · si + s2
i ) = SSE ({z}, {si}).

Since the square sum error is defined as a sum of individual errors and
si, sj are adjacent, we have

dsim(si, sj) = (a) + (b) = SSE ({z}, {si}) + SSE ({z}, {sj})
= SSE ({z}, {si, sj}).

In contrast to the DP approach, GMS does not necessarily compute an
optimal ITA reduction. At every greedy merging step, there is a chance
of making a sub-optimal decision. Therefore, the more merging steps are
performed, the more additional error can be accumulated. The following
theorem shows that the error ratio of the greedy and optimal solution is
asymptotically upper-bounded by the logarithm of the number of merging
steps. Experimentally we show that the greedy reduction is in fact very
close to the optimal one.

THEOREM 4.1. Let sn be a sequential relation of size n. Let sc be a reduc-
tion of sn to c tuples obtained using the greedy merging strategy. Let z be
an optimal reduction of sn to c tuples obtained using PTAc. Then, the error
ratio between the two solutions is

SSE (sn, sc)

SSE (sn, z)
≤O(log n).
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Proof. By the definition of the greedy merging strategy, the error induced
by the merge of two most similar tuples in sk is

SSE (sk, sk−1) = min
si,sj∈sk
si≺sj

{dsim(si, sj)}.

The minimum is upper-bounded by an average which is, in turn, upper-
bounded by the total error, i.e.,

SSE (sk, sk−1) ≤ 1

k − 1

∑
si,sj∈sk
si≺sj

dsim(si, sj)

≤ 1

k − 1
C · SSE (sn, z).

C is a constant whose minimal value may vary depending on k, yet there
is a value that satisfies any k. According to Proposition 4.1, the error
SSE (sn, sc) made by the greedy algorithm is the sum of errors made at
each intermediate merging step, i.e., SSE (sn, sc) =

∑c+1
k=n SSE(sk, sk−1).

Replacing the summand with the upper-bound we get SSE (sn, sc) ≤ C ·
SSE (sn, z)

∑c+1
k=n

1
k−1 , which leads to the error bound of the theorem, namely

SSE(sn,sc)
SSE(sn,z) ≤ C ·

∑c+1
k=n

1
k−1 ≤ O(log n).

A straight-forward implementation of the greedy merging strategy is to
use a priority queue (e.g., a binary heap) to find the most similar tuple pairs.
After inserting all ITA tuple pairs in the heap, the merging process starts,
taking O(n log n) time and O(n) space to compute any reduction of n ITA
tuples. In the following we describe a more efficient implementation of the
greedy merging strategy for size- and error-bounded PTA queries, which
starts the merging process before the complete ITA result is available.

4.4 A Greedy Algorithm for Size-Bounded PTA

4.4.1 Basic Idea

We present the gPTAc algorithm for the evaluation of size-bounded PTA
queries, which integrates the computation of the ITA result and greedy
merging into one process. In a nutshell, gPTAc reads ITA result tuples
as they become available and inserts them into a binary heap, which al-
lows to efficiently identify the most similar tuple pair for merging. Whenever
the heap contains more than c tuples, the algorithm attempts to merge the
tuple at the top with its immediate predecessor, which requires some care.
The tuples are only merged if GMS operating on the whole ITA relation
would also choose to merge them. Such situation can only be identified if
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the last two tuples in the heap are non-adjacent as stated by the following
proposition. At any time during the computation the heap contains at most
c+ β tuples. Since β is typically small, gPTAc improves over GMS in terms
of running time and space efficiency.

Recall that the ITA result tuples come sorted along the aggregation
groups, and, within each group, along the temporal dimension. We enu-
merate them from 1 to n, i.e., s = {s1, . . . , sn}. Given a subset of s, the
following proposition specifies when GMS will merge the most similar tu-
ples in it.

PROPOSITION 4.2. Let sj+1 = {s1, . . . , si, si+1, . . . , sj , sj+1} be a part of the
ITA result s = {s1, . . . , sn} and si ≺ si+1 be the most similar pair of tuples
in sj+1 for some i ≤ j. The greedy merging strategy operating on s merges
si and si+1 if j ≥ c and sj 6≺ sj+1.

Proof. The GMS will not elect si, si+1 for merging as long as there are more
similar pairs in s. Since si, si+1 are most similar in sj+1, all pairs which are
more similar than si, si+1 (if any) must be in sn \ sj . Therefore, leaving
si, si+1 intact, the smallest intermediate relation produced by GMS is s′ =
{s1, . . . , si, si+1, . . . , sj , sj+1 ⊕ · · · ⊕ sn}. Since |s′| ≥ |sj | > c, more merging
steps are needed to reduce s′ to size c. Since the two tuples sj , sj+1⊕· · ·⊕
sn are not adjacent, the most similar pair in s′ to be merged next can only
be si, si+1.

Example 4.2. Consider reading the first five tuples, s5 = {s1, . . . , s5}, of the
ITA result in Figure 4.2, and let the size bound for the PTA result be c = 4.
The tuples s4 ≺ s5 are the most similar ones, yet they cannot be merged
since the tuple to be read next, s6, might form an even more similar pair
with s5. Therefore, we read ahead an get s6 = {s1, . . . , s6}. Since s5 6≺ s6,
the GMS has to make a merge in the first five tuples, independent of the
tuples that will follow.

Proposition 4.2 provides a criterion to perform early merging, yet guar-
anteeing the same result as GMS: if more than c tuples are in the heap
and the last tuple pair is not adjacent. However, when temporal gaps
are rare or the aggregation groups are few, a large portion of the ITA re-
sult (in the worst case the whole result relation) may be inserted into the
heap before a non-adjacent pair arrives. To avoid the heap size grow-
ing much beyond size c, we propose to heuristically determine whether
the currently most similar tuple pair, si, si+1, would also be merged by
GMS. Suppose that sj is the last tuple in the heap and there is a more
similar pair, sk, sk+1, in the ITA result that is connected to si+1 by a se-
quence of adjacent tuples, but has not yet been inserted into the heap,
i.e., sk+1 = {s1, . . . , si, si+1, . . . , sj , . . . , sk, sk+1}, where si+1 ≺ . . . ≺ sk+1.
GMS would first merge sk, sk+1. Since the merge result, sk ⊕ sk+1, might
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be more similar to sk−1 than si, si+1 are, the new tuple is next merged with
sk−1. This might propagate back, and si+1 may potentially become more
similar to its new successor (which is the result of several merging steps)
than to si. In such a situation, merging si, si+1 would be a mistake, leading
to a result that is likely to be different from the GMS result. However, the
more tuples follow the current merge candidate, si, si+1, the lower is the
probability that the similarity of si, si+1 will be influenced by merging of sub-
sequent tuples. Therefore, to keep the heap size small we use a parameter,
δ, to specify the minimum number of adjacent tuples that have to follow the
merge candidate for it to be merged. We will show experimentally that with
δ = 1 the difference between gPTAc and GMS is negligible, yet space and
performance gain is significant.

Observe that c + δ is essentially the lower bound of the heap size. In
the worst yet unlikely case the heap size will be equal to the ITA result size.
The higher is the value of δ parameter, the closer will be the final output to
that of GMS. When δ = ∞, gPTAc and GMS produce the same output as
shown by Theorem 4.2 below.

4.4.2 Heap Data Structure

We use a binary heap to avoid scanning the entire intermediate relation
in search of the most similar pair of tuples. Given a relation s, we repre-
sent a tuple s ∈ s as a node N that records the following information: the
sequence number of the tuple (N.id), the tuple itself (s), a pointer to the
previous (in chronological order) node (prev), a pointer to the next node
(next), and the error that would be induced by merging s with the previous
tuple (key), i.e., N.key = SSE (s, {N.s ⊕ N.prev.s}). The key is set to ∞ if
N and N.prev represent non-adjacent tuples or s is the first tuple.

We define the following operations on the heap. INSERT creates a new
node for a tuple and inserts it into the heap; this includes also the computa-
tion of the key value. PEEK returns the top node, N , but does not remove it
from the heap. MERGE removes the top node, N , off the heap and merges
the tupleN.s into the preceding node, P = N.prev, yielding P.s = P.s⊕N.s.
The pointers P.next andN.next.prev are updated, the key values ofN.prev
and ofN.next are recomputed, and the heap structure is updated. The field
P.id remains unchanged.

Example 4.3. Figure 4.3 depicts a binary heap. Solid lines represent
parent-child relationships, dashed lines indicate prev and next links. In
Figure 4.3(a) the heap contains the whole ITA result. The key of s1 is infi-
nite since s1 is the first tuple, whereas the key of s6 is infinite because s5

and s6 are not adjacent. The most similar tuple pair is s4, s5. Thus, the
node on the peak represents s5 with the key value 1 667, which is the error
of merging s4 and s5. Figure 4.3(b) shows the heap after performing one
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merge. The node s5 is merged into the node s4, which now contains s4⊕s5.
The key value of s4 ⊕ s5 and s6 are re-evaluated, and the next pointer of
s4 ⊕ s5 and the prev pointer of s6 are updated. The new peak node is s3,
thus s2 and s3 will be merged next.

(1 667, s5)

(5 000, s3)

(∞, s1) (36 667, s2)

(15 000, s4)

(∞, s6) (∞, s7)

(a) Before merging

(5 000, s3)

(36 667, s2)

(∞, s1) (∞, s6)

(56 333, s4 ⊕ s5)

(∞, s7)

(b) After merging

Figure 4.3: Binary heap used in the gPTAc algorithm

4.4.3 gPTAc Algorithm

The algorithm gPTAc for the greedy evaluation of size-bounded PTA is
shown in Algorithm 4.1. It takes the size-bound, c, and δ as input parame-
ters and starts by initializing an empty heap, the ITA operator that produces
sorted output, and three variables LastGapId, BG, and AG. The variable
LastGapId stores the sequence number of the last seen non-adjacent tuple
pair, i.e. it is equal to the N.id of the last seen node with infinite key value.
The variables BG and AG store the number of tuples preceding and, re-
spectively, succeeding the last non-adjacent node indicated by LastGapId.
Trivial modifications to the ITA algorithm in [12] are necessary to allow pro-
cessing the tuples one by one as they become available from the operator.

For each incoming ITA tuple a new node, N , is created and inserted into
the heap. If N.key is infinite, then the node represents a non-adjacent pair,
the LastGapId variable is set to the sequence number of this node and BG
is increased by the value of AG. Otherwise, we increment the AG variable
by 1.

Example 4.4. Consider having read the first 6 tuples of the ITA result in
Figure 4.2. Since 5 tuples precede the latest gap, BG = 5. Only one tuple
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follows the gap, thus AG = 1. Finally, the LastGapId = 6 variable indicates
the non-adjacent tuple that follows immediately after the gap.

When the size of the heap exceeds the PTA size bound, c, the merging
process starts with the second while loop. First a node with smallest key
value is read from the heap. Then we check whether the merging can take
place according to Proposition 4.2. If the condition evaluates to true, we
proceed with merging. Otherwise, we make use of the heuristic and only
check whether the node has at least δ adjacent successors. The higher is
δ, the less likely it is that the choice to merge is different from that of GMS
and that gPTAc will deviate from GMS result. When δ =∞ the effect of the
parameter is eliminated and merging will only happen when non-adjacent
tuple pairs are discovered. In that case the algorithm is guaranteed to
produce a result identical to that of GMS. If none of the two conditions
evaluate to true, then merging cannot take place. We break the cycle and
wait for more tuples to be inserted into the heap. Finally, when the whole
ITA result is read and the heap still does not satisfy the size bound, we
simply merge the remaining tuples.

Example 4.5. Consider running gPTAc over the proj relation with c = 3
and δ = 1. Figure 4.4 depicts each intermediate state of the heap. The ITA
tuples come sorted: first the group “A” and only then the group “B”. In (a) the
heap contains the first four ITA tuples. The merging process can start as the
most similar pair, s2 and s3, has 1 successor. Thus in (b) s2 ⊕ s3 has been
created to keep heap size equal to 3. Next, tuple s5 is inserted leading to
(c) where the tuple at the top of the heap is s5. Even though the size of the
heap exceeds c the merge cannot happen as at this point s5 does not have
δ successors. Observe that the tuple s5 may happen to be more similar to
s6 (which is not known yet) and, thus, should be merged with it. When the
tuple s6 arrives, (d), it becomes clear that merging is possible. The heap
now contains 5 tuples. The algorithm repeatedly merges adjacent tuples
(e,f) until the size constraint is satisfied again. Specifically, s4 is merged
to s5 and the result is then merged with s2 ⊕ s3. Finally, with the arrival of
tuple s7 (g) the final result is computed as shown in (h). Over the whole
process the heap contained at most 5 tuples whereas 7 ITA tuples have
been processed.

THEOREM 4.2. The output of the gPTAc algorithm with δ = ∞ is identical
to that of GMS.

Proof. The proof follows from Proposition 4.2. gPTAc merges the same
tuple pairs that GMS would merge.

The complexity of gPTAc depends on the ITA algorithm. Assume that
the latter takes T time to produce a result relation of size n. In addition, it
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1 Algorithm: gPTAc(r,A,F, δ, c)

2 H ← new empty heap;
3 Initialize the ITA operator with F, A, and r;
4 LastGapId← 0; BG← 0; AG← 0;
5 while si ← next tuple from GITA[A,F]r do
6 N ← INSERT(si);
7 if N.key =∞ then
8 LastGapId← N.id;
9 BG← BG+AG;

10 AG← 1;
11 else
12 AG← AG+ 1;

13 while |H| > c do
14 N ← PEEK();
15 if N.id < LastGapId ∧BG ≥ c then
16 BG← BG− 1;
17 MERGE();
18 else if N.id > LastGapId ∧N has δ adjacent successors

then
19 AG← AG− 1;
20 MERGE();
21 else
22 break;

23 while |H| > c > cmin do
24 MERGE();

25 return H;
Algorithm 4.1: Greedy algorithm, gPTAc, for size-bounded PTA

uses S space for internal structures. Then, gPTAc requires O(T +n log(c+
β)) time and O(S + c + β) space (assuming that the heap operations take
logarithmic time). In the worst case c + β = n, however for the majority of
datasets we expect c+ β to be much smaller than n.

4.5 A Greedy Algorithm for Error-Bounded PTA

The algorithm, gPTAε, for the greedy evaluation of error-bounded PTA
queries follows the same intuition as its size-bounded counterpart. As ITA
result tuples are produced, it starts to merge tuples as early as possible
and tries to merge as many tuples as possible before exceeding the error
threshold ε. The major difference is on how to determine tuple pairs that
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(a) Insert: s1 ≺ s2 ≺ s3 ≺ s4

(b) Merge: s1 ≺ s2 ⊕ s3 ≺ s4

(c) Insert: s1 ≺ s2 ⊕ s3 ≺ s4 ≺ s5

(d) Insert: s1 ≺ s2 ⊕ s3 ≺ s4 ≺ s5 6≺ s6

(e) Merge: s1 ≺ s2 ⊕ s3 ≺ s4 ⊕ s5 6≺ s6

(f) Merge: s1 ≺ s2
⊕. . . s5 6≺ s6

(g) Insert: s1 ≺ s2
⊕. . . s5 6≺ s6 6≺ s7

(h) Merge: s1
⊕. . . s5 6≺ s6 6≺ s7

Figure 4.4: Reducing an ITA result to three tuples with gPTAc

would also be merged by GMS. For that we need to know the size, n, of the
ITA result, s, and the maximal error, Emax = SSE (s, ρ(s, cmin)), of reducing
s to smallest possible size, cmin. Since we do not wait until the ITA result
is completed, these values have to be estimated. The ITA relation can be
safely estimated to contain twice as many tuples as the argument relation.
In order to estimate the total error we have to obtain a good sample of the
ITA result. Using these two values, the following preposition shows how to
identify tuple pairs in a subset of the ITA result that will be merged by GMS.

PROPOSITION 4.3. Let sj+1 = {s1, . . . , si, si+1, . . . , sj , sj+1} be a subset of
the ITA result relation, s = {s1, . . . , sn}, si ≺ si+1 be the most similar pair of
tuples in sj+1 for some i ≤ j, and Emax = SSE (s, ρ(s, 1)) be the maximum
total error. The greedy merging strategy operating on s will merge si and
si+1 if dsim(si, si+1) ≤ εEmaxn and sj 6≺ sj+1.

Proof. In the error-bounded setting GMS has to make as many merges as
possible, yet introducing at most εEmax error. Let the total error introduced
at some intermediate step be Etot. GMS will elect si, si+1 for merging at
that step only if there is no other more similar pair among those in the
intermediate result andEtot+εEmaxn ≤ εEmax. Since si, si+1 are most similar
in sj+1, at most n−j−1 more similar tuple pairs may exist in sn\sj . Once all
of these tuples are merged, the total error will be Etot ≤ (n− j − 1) · εEmaxn .
Since these merging steps do not change the similarity of si, si+1 (due to
sj 6≺ sj+1), si, si+1 become now the most similar pair. Since Etot + εEmaxn ≤
εEmax, GMS will make at least one more merging step, choosing si, si+1 for
merging.

To avoid the heap growing too much while we wait for a non-adjacent
tuple pair, we adopt the same heuristic as for the size-bounded case. That
is, the more tuples follow the current merge candidate, the more likely it is
that this pair will be merged also by GMS. Hence, we use a user-specified
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parameter δ to determine the minimum number of tuples that should follow
the merge candidate for it to be merged.

Algorithm 4.2 shows the gPTAε algorithm for the greedy evaluation of
error-bounded PTA. The variable Etot is updated after each merging step
and tracks the total error made so far. In addition, in line 6 we estimate
the maximal total error, Emax, and the size of ITA relation, n. Incoming ITA
tuples are inserted into the heap as they arrive and merging is attempted
with each new tuple. Merging may only happen if the key of the node at
the top of the heap is less than the average expected error, εEmax/n, and
the node is followed by a non-adjacent tuple pair or at least δ adjacent
tuples. Once the whole ITA relation has been processed we know the real
maximal error that can be made, Emax. Therefore, as long as the total error
introduced so far, Etot, does not exceed the error bound we use GMS to
finalize the merging process. The worst-case time and space complexity of
gPTAε is the same as of gPTAc.

Example 4.6. We run gPTAε on the proj relation with ε = 0.5 and δ = 1.
We set Emax = Emax of the corresponding ITA result, which is 269 285.714,
and n = n = 7. Therefore, if we were to merge all the tuples, the average
error we would make per step would be εEmax/n = 19 234.69. gPTAε reads
the ITA tuples one by one and tries to merge those that introduce less
than the expected average error. The first such candidates are s2, s3 (see
Figure 4.1(b)). However, the δ parameter dictates to read the tuple s4 before
merging that pair.

THEOREM 4.3. The output of the gPTAε algorithm with δ = ∞ is identical
to that of GMS if Emaxn ≤ Emax

n .

Proof. The gPTAε algorithm will consider merging a pair of tuples si, si+1

only if dsim(si, si+1) ≤ εEmaxn ≤ εEmaxn . Therefore, as follows from Proposi-
tion 4.3, the algorithm will merge the same tuple pairs that GMS would.

The estimated values n and Emax play an important role in the gPTAε

algorithm. First, the estimated values may influence the correctness of the
final output. Second, the precision of the estimate affects the size of the
heap. The estimation of the ITA result size is easy, since it can be at most
twice as large as the argument relation, thus n = 2|r| − 1. Estimating the
maximal error, Emax, is more complicated. The key aspect to consider
here is how precise should the estimate be. As long as Emax ≤ Emax, the
estimate only influences the size of the heap. That is, when Emax � Emax,
none or very few early merges will take place. Thus, the heap will be filled
with almost the entire ITA result before the merging will commence. On the
other hand, when the error is overestimated, i.e., Emax < Emax, we cannot
guarantee that the result is the same as for GMS. It seems reasonable to
sample the argument relation and compute the corresponding ITA result to
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1 Algorithm: gPTAε(r,A,F, δ, ε)

2 H ← new empty heap;
3 Initialize the ITA operator with F, A, and r;
4 LastGapId← 0; BG← 0; AG← 0;
5 Etot ← 0; Emax ← 0;
6 Estimate Emax and n;
7 while si ← next tuple from GITA[A,F]r do
8 Lines 6 – 12 from gPTAc algorithm in Algorithm 4.1;
9 while true do

10 N ← PEEK();
11 if N.key > εEmax/n then break;
12 if N.id < LastGapId then
13 BG← BG− 1;
14 Etot ← Etot +N.key;
15 MERGE();
16 else if N.id > LastGapId ∧N has δ successors then
17 AG← AG− 1;
18 Etot ← Etot +N.key;
19 MERGE();
20 else
21 break;

22 while true do
23 N ← PEEK();
24 if N.key <∞∧ (Etot +N.key)/Emax ≤ ε then
25 MERGE();
26 Etot ← Etot +N.key;
27 else
28 break;

29 return H;
Algorithm 4.2: Greedy algorithm, gPTAε, for the error-bounded PTA.
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Table 4.1: The aggregation queries used for evaluation of PTA
(a) ETDS

Name Grouping Agg. Functions ITA Size cmin

E1 – avg 6 394 1
E2 – max 6 394 1
E3 – sum 6 394 1
E4 Emp.No., Dep. avg 5 419 493 339 067

(b) Incumbents
Name Grouping Agg. Functions ITA Size cmin

I1 Dep., Proj. avg 16 144 131
I2 Dep., Proj. max 16 144 131
I3 Dep., Proj. sum 16 144 131

(c) Time series
Name Dimensionality ITA Size cmin

T1 Chaotic 1 1 800 1
T2 Tide 1 8 746 1
T3 Wind 12 6 574 216

(d) Synthetic
Name Grouping Dimensionality ITA Size cmin

S1 – 10 10 000 000 1
S2 yes 10 10 000 000 50 000

obtain an error estimate. A more detailed investigation of this aspect is part
of the future work.

4.6 Experimental Evaluation

In this section we evaluate experimentally the reduction quality and scal-
ability properties of the greedy algorithms. Using the same datasets and
aggregation queries as in Chapter 3 we quantify the error that they induce
and compare it to other related approaches. The summary of these queries
is reprinted in Table 4.1. Full description of each dataset and query is avail-
able in Section 3.6.1.

We implemented the algorithms introduced in this paper as well as
ATC [8], APCA [15], DWT [40], and PAA [31] using JavaTM version 6. They
are executed on a Linux machine with 4 AMD 2600MHz Opteron proces-
sors and 16GB of RAM. An Oracle 11g database running on the same
machine is used as the data storage medium.
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4.6.1 Reduction Quality

We quantify the reduction error of the greedy PTA algorithms. First we
find out how close greedy approximation and the optimal solution are as
well as whether the former can outperform other known data approximation
algorithms. For this purpose we use gPTAc algorithm with δ = ∞ as the
representative of the greedy merging strategy. Note that gPTAε would yield
an identical result. Next we evaluate the influence of δ parameter on the
results of both, gPTAc and gPTAε, algorithms.
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Figure 4.5: Reduction errors induced by different algorithms
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Figure 4.6: Reduction error ratio of different algorithms

As before we measure the error induced by the algorithms at each
size bound and Figure 4.5 depicts the resulting error growth curves for T1
dataset. Observe that the curve induced by gPTAc is the closest to the op-
timal result obtained from PTAc, indicating that the greedy algorithm is the
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closest to the optimal result. On the other hand, DWT and PAA approaches
introduce significantly more error. Figure 4.6 offers an alternative view of
this experiment. Here we take PTAc result as a baseline and plot the ratio
of reduction error to the baseline. Thus an error ratio value 1 means that
the approach produced optimal reduction and any greater value signifies
divergence from it. The ratio of greedy reduction error remains very close
to 1 throughout and increases slightly with the number of merging steps
to reach a maximum of 1.25. This behavior is predicted by Theorem 4.1.
ATC and APCA lag behind. DWT and PAA algorithms perform significantly
worse and are not included in the graph.
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Figure 4.7: Average reduction error ratios induced by various algorithms
over the ETDS dataset
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Figure 4.8: Average reduction error ratios induced by various algorithms
over the Incumbents and time series datasets

We run the same experiment on all the datasets and summarize the
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Figure 4.9: The impact of δ parameter

result in Figures 4.7 and 4.8. For each query the average reduction error
ratio over the full range of c values is shown. A pattern-filled bar depicts the
average ratio and a thin line represents the standard error. APCA, DWT,
and PAA algorithms cannot be used for queries I1, I2, I3, and T3 as they
have not been defined for data with multiple aggregation groups or temporal
gaps. For query E4 we take GMS as the baseline and compare the error
of ATC to it because E4 is too large to be evaluated with PTAc. The value
of the ratio is above one, indicating that GMS outperforms ATC. Overall the
gPTAc algorithm consistently provides the best error ratio, i.e. its results are
closest to those of PTAc. ATC is the second best algorithm, however, its
performance is not consistent. ATC shows satisfactory results for queries
E4 and T3, but not for I1 and I2.

Now we evaluate the influence of the δ parameter to the correctness
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Figure 4.10: Performance of greedy algorithms compared to other linear
approximation methods

of the final result of gPTAc and gPTAε. Figure 4.9 shows the average
error ratio (and standard error) of both algorithms with varying δ and dif-
ferent datasets. As before, the average is computed over errors induced
by varying the size bound c and error bound ε respectively. When δ = 0
the algorithms are at their worst. When δ = ∞ the algorithms return the
best possible result, i.e. equivalent to that of the greedy merging strategy.
However, we see that for δ ≥ 1 the results are practically the same. In the
following experiments we will show that setting δ reduces the heap signifi-
cantly yielding better running time performance.

4.6.2 Scalability Evaluation

We compare the performance of gPTAε and the gPTAc (δ = 1) algorithms
to APCA, DWT, PAA and ATC. Observe that gPTAε and gPTAc are differ-
ent and should yield different performance figures. We use subsets of the
synthetic dataset without temporal gaps ranging in size from 1 to 10 mil-
lion tuples. The size bound is set to 10% of the input. Satisfying such a
size bound means a significant approximation effort for all algorithms. Fig-
ure 4.10 depicts the average running time of each algorithm with respect to
the size of the input. The gPTAε is the slowest and rapidly diverges from
the others as it has to deal with an ever-increasing heap structure. On the
other hand, gPTAc is very fast and loses out only to DWT. Such a per-
formance advantage is due to the significantly smaller priority queue that
gPTAc operates on. With the following experiment we verify this claim.

We measure the heap size by running gPTAc on the whole synthetic
relation and varying the size of the output, c, as well as the merging bound,
δ. As already mentioned, the gPTAc algorithm operates on a heap of size
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Figure 4.11: Maximal heap size of gPTAc and gPTAε algorithms as a func-
tion of output size

c + β where β varies throughout the aggregation, depending on the dis-
tribution of the data and the value of c. For each query we measure the
maximum value of β. Intuitively, β is maximal when c = 1 and the tuples
in the dataset are very similar. In such situations the most similar pair can
often be the most recently read one and thus more ITA tuples have to be
read.

Figure 4.11 illustrates the result. The horizontal axis ranges over the
values of c and the vertical over β. As expected, the maximum values are
experienced when c = 1 and then decrease rapidly with the change of c.
The bigger the value of δ, the more space is needed for the queue. When
δ = 0 the queue needs only c+ 1 space. In the limit, when δ =∞ and data
has no temporal gaps, the space needed is equal to the size of the input.
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Most importantly, this experiment shows that gPTAc uses only a fraction of
space in comparison to other methods that have to store the whole input
(10 000 000 tuples) in memory.

In summary, the gPTAc and gPTAε algorithms show very good reduc-
tion quality outperforming other linear data approximation methods consis-
tently and significantly. In addition, they scale remarkably well for huge
datasets.

4.7 Summary

When efficient performance in the evaluation of PTA queries is the top pri-
ority, the proposed greedy algorithms, gPTAc and gPTAε, should be used.
We proved that the error ratio of greedy approach to the optimal one is
upper-bounded by O(log n), where n is the size of corresponding ITA re-
lation. The algorithms use O(c + β) space and O(n log(c + β)) time to
obtain an output of size c, and β is typically very small. Experimental eval-
uation confirmed theoretical estimations and demonstrated that the greedy
algorithms scale very well for large datasets providing a significantly better
approximation quality than other comparable approximation approaches.
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CHAPTER 5

Temporal Ranking

Since the beginning of the world wide web, interlinked sources of infor-
mation have been the subject of active research in the knowledge discov-
ery community. Several approaches have been proposed to deal with the
challenging problems of information summarization and ranking using link
analysis. In this chapter, we leverage from these previous approaches and
focus on the problem of ranking aggregated news stories within their his-
torical context by exploiting their content similarity. We observe that news
stories evolve and we rank them in a time and query dependent manner.
We do this in two steps. First, the mining step discovers metastories, which
constitute meaningful groups of similar stories that occur at arbitrary points
in time. Second, the ranking step uses well known measures of content
similarity to construct implicit links among all metastories, and uses them
to rank those metastories that overlap the time interval provided in a user
query. We use real data from conventional and social media sources (we-
blogs) to study the impact of different meta-aggregation techniques and
similarity measures in the final ranking. We evaluate the framework using
both objective and subjective criteria, and discuss the selection of cluster-
ing method and similarity measure that lead to the best ranking results.
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5.1 Introduction

Existing technologies for online news browsing allow users to have con-
tinuous access to up-to-date news, as well as to a wide range of related
opinions and comments coming from the social media. However, the larger-
scale problem of aggregating, searching, and ranking such content within
its historical context has not been thoroughly addressed. Currently, news
search engines evaluate the relevance of a story based only on its content
and how well it matches the keywords specified in the query. However,
the temporal evolution of the story, and its behavior within the ecosystem
of all stories changing within the time interval of interest is an important
relevance factor that has thus far not been exploited. In addition, news ag-
gregation engines break the evolving stories into smaller, highly consistent,
short-lived clusters of similar news articles. Multiple events within a single
story typically generate distinct clusters as the content of the newer arti-
cles drifts away from that of existing older clusters. Consequently, events
that are widely spaced in time will be assigned to separate clusters even
if they belong to the same storyline. Under these conditions, a keyword
based search should retrieve the separate clusters, and, very importantly,
will rank them separately in terms of their content and how well they match
the query.

In this chapter we show that the temporal relationships between evolv-
ing stories should affect their rank, and how a temporally sensitive rank-
ing can be computed. We propose that the first step towards a meaningful
temporally-sensitive ranking of stories is the aggregation of separate events
related to the same story into a single cluster, here called a metastory. The
generation of metastories is a challenging problem because even though
the central theme of each metastory is the same, the actual content of the
news articles within can vary widely. The second step, once the metastories
have been generated, is the computation of a temporally sensitive rank by
considering only those metastories whose evolution overlaps the time inter-
val specified by the user in the query. The two steps together yield a novel
framework that facilitates ranking of the metastories by relevance even in
the absence of query keywords. All that is needed is the time interval of
interest.

More specifically, our framework consists of two independent compo-
nents. First, the metastory mining step employs a clustering method to
create metastories by aggregating a set of story clusters, similar to the
way news aggregators place stories together. Our stories are provided by
a state-of-the-art platform for news and social media aggregation1, which
contains not only news articles, but also blogs related to the stories. The
inclusion of social media is critical in allowing us to evaluate the quality of

1http://www.thoora.com

http://www.thoora.com
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? Afghanistan Troop Surge

� Afghanistan Election

� US Health Care
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◦ NYC Mayoral Elections

Figure 5.1: Effect of the query time interval on the ranking results

the ranking produced by our method. The mining process is purely content
driven, and allows for the generation of metastories spanning large time in-
tervals. We evaluate several existing clustering techniques [56, 21, 49], as
well as different similarity measures in order to determine the best possible
combination for this step.

In the second component, the ranking step, we proceed to rank a given
set of metastories with regard to the time interval specified by the user. Only
metastories active within this interval are considered and, very importantly,
only the metastory articles that were active within the interval are used
to determine relevance. Ranking is done through link analysis. However,
unlike traditional PageRank [13], which is based on hypertext links, we con-
struct implicit links using content-based similarity between all pairs of active
metastories. We exploit the symmetry of similarity measures to avoid the
expensive power iteration traditionally used to compute the PageRank vec-
tor. We study the effect of using different similarity measures to construct
the implicit links between metastories, and select the measure that yields
the best ranking based on both objective and subjective evaluation results.

The temporal ranking framework in this chapter is presented and eval-
uated in the context of news aggregation. However, it is straightforward
to apply it in the context of general temporal aggregation. The framework
would first discover the aggregation groups and, second, allow to dissem-
inate the most important ones. Next, we provide a short example that we
use throughout the chapter. Further on, we formally define the framework
and, finally and most importantly, we provide extensive evaluation of the
framework using real-world data.

5.2 Example

In Figure 5.1 we show an example of the news story aggregation and rank-
ing process. Individual story elements, shown in Figure 5.1(a), were gath-
ered during the month of October 2009. The figure shows only 5 out of the
700 news-related clusters that were used. Even so, notice that the individ-
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ual clusters can be grouped into metastories corresponding to important
events occurring during the month. Metastory aggregation is performed
once, over the set of all existing story components, and independently of
any interval a user may be interested in.

Once metastories have been constructed, the ranking step determines
their relative ordering with regard to a time interval specified by the user.
Figure 5.1(b) shows two sample rankings for different query intervals: Oct.
1-31, and Oct. 26-31, 20092. Notice that the relative ranking of metastories
changes. In particular, the “Afghanistan Troop Surge” metastory is the most
important overall story of October 2009, but when only the last week of the
month is considered its relevance is lower compared to other metastories
that were more active during this specific period. Such relationships can
only be discovered through meta-aggregation and time-dependent rank-
ing. Given the same set of metastories, a content-based search would
produce the same ranking independent of the period in which the user was
interested. In summary, the time-dependent nature of the ranking process,
coupled with the more comprehensive scope of metastories, yields a more
informative and representative ranking of news events.

5.3 The Framework

In this section we formally describe our ranking framework. First, we define
our basic building block – a story. Next, we describe how metastories are
constructed from similar stories and propose how content-based similarity
measures can be used to rank metastories. Finally, we discuss how the
ranking of metastories is made time-dependent by considering a specified
interval, which can be provided as part of a user’s query.

In our particular application scenario, a story refers to a cluster of news
and blog articles. Thus, a story is represented by the term frequency vector
and the lifespan associated with it is defined as the interval bounded by two
time points, tb and te , denoting the timestamps of the earliest and latest
documents in the story. If for two lifespans, T ′ and T ′′, we have T ′∩T ′′ 6= ∅,
then we say that they overlap (or intersect).

DEFINITION 5.1. Let W be a keyword dictionary. A story s is defined as
a pair s = 〈fs,Ts〉, where fs is the term frequency vector whose entries
corresponding to particular terms wi ∈ W, i = 1, . . . , |W| represent the
number of times the term wi occurs in all documents within s. Ts = [tbs, tes]
is the lifespan associated with s.

Example 5.1. Table 5.1 shows a few of the stories used in the example in
Figure 5.1(a) together with a snapshot of their keywords and corresponding

2Without loss of valuable information, we use the most descriptive titles for the stories
and metastories in Figure 5.1.
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lifespans. Stories are listed in the same order as in the figure, e.g., story s1

corresponds to the title “NATO nudges Obama towards Afghan troop surge
decision”. Within that story the keyword “nato” appears 808 times. Since
the stories themselves are clusters of a large number of related documents,
keyword frequencies can be quite high.

Table 5.1: Snapshot of story keywords
s Keywords, fs Lifespan, Ts

s1 nato: 808 afghan: 717 troop: 642 22 – 27/10
s2 afghan: 3472 obama: 3200 troop: 3027 8 – 15/11
s3 afghan: 9917 elect: 9891 karzai: 7093 11 – 25/10
s4 health: 12856 care: 11147 obama: 9049 10 – 30/10
s5 afghan: 6505 karzai: 6398 hamid: 5633 30/10 – 5/11

5.3.1 Constructing Metastories

Intuitively, a metastory is a collection of stories with associated notions of
lifespan and term frequency vector. Given as input the story set, S, a clus-
tering algorithm partitions it into k disjoint non-empty subsets, S1, . . . ,Sk ⊆
S, such that

⋃
i=1,...,k Si = S and

⋂
i=1,...,k Si = ∅. Each subset represents

a distinct metastory. In Section 5.4, we provide details about the clustering
algorithms used in our study.

DEFINITION 5.2. Given a set of stories S, a metastory m is a triplet m =
〈Sm, fm,Tm〉, where

(a) Sm ⊆ S,

(b) fm = ⊕s∈Sm(fs),

(c) Tm = [ min
s∈Sm

{tbs|tbs ∈ Ts}, max
s∈Sm

{tes|tes ∈ Ts}],

and ⊕ is an aggregation operator over a set of frequency vectors.

In the above definition the lifespan Tm of the metastory Sm refers to
the maximum time-interval covering the entire set of lifespans associated
with all stories in Sm. The term frequency vector fm for Sm is obtained
through an operator ⊕s∈Sm(fs) that performs aggregation over a set of term
frequency vectors. Some possible choices for aggregation operators are:

Sum :
∑
s∈Sm

fs, (5.1)

Mul :
∏
s∈Sm

fs, (5.2)

Max : farg max{size(s)|s∈S,} (5.3)
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where size(s) is the number of documents (blogs and news) found in the
story s. The Sum and Mul operators summarize all term frequency vectors
into one. The Max operator, on the other hand, chooses the term frequency
vector of the biggest story in Sm as the representative of Sm.

Example 5.2. From the stories depicted in the previous example we con-
struct metastories as shown in Table 5.2. Metastory m1 is formed by the
stories s1 and s2. It corresponds to title “Afghanistan Troop Surge” in Fig-
ure 5.1(b). Similarly, the titles of m2 and m3 are, respectively, “Afghanistan
Election” and “US Health Care”. Observe that in reality the size of a meta-
story can vary widely. When a metastory covers only a short-lived event,
it is likely to contain just one or few stories. Some metastories, such as
those related to the war in Afghanistan, cover long time intervals and con-
sequently contain thousands of stories.

Table 5.2: Clustering stories yields metastories
Sm Keywords, fm Lifespan, Tm

m1 {s1, s2} afghan: 4189 troop: 3669 obama:3200 nato: 808 22/10 – 15/11
m2 {s3, s5} afghan:16422 karzai:13491 elect:9891 hamid:5633 11/10 – 5/11
m3 {s4} health:12856 care:11147 obama:9049 10/10 – 30/10

5.3.2 Ranking Metastories

In this section we demonstrate how to rank metastories using their content
similarity. To do it we assume that the set of stories, S, and the set of
metastories, M , are given. We also assume a content-based similarity
measure overM . The measure is not necessarily the same as the one used
by the clustering method. Without loss of generality, we assume frequency
vectors represent proper probability distributions, i.e. they are normalized
to have unit mass.

DEFINITION 5.3. Let M be the set of metastories and let sim : M ×M →
[ε, 1] be a content-based similarity function with ε > 03. The rank of meta-
story m ∈M is defined as:

rank(M,m) =
∑
m′∈M

sim(m,m′)∑
m′′∈M sim(m′,m′′)

· rank(M,m′). (5.4)

The definition states that a metastory should be ranked high if it is sim-
ilar to other highly ranked metastories. The ranking step of our framework
can be seen as a random walk similar to that of PageRank [13], where

3We assume that ε > 0 is the minimum possible similarity value between metastories in
order to ensure that the graph constructed through the similarity values is fully connected
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the transition probabilities depend on metastory similarities. Therefore, the
rank vector for all metastories in M corresponds to the stationary distribu-
tion of a random walk over the graph whose nodes correspond to meta-
stories, and whose edges are the normalized similarities. While the stan-
dard way of computing the stationary distribution requires the use of the
power iteration method, we show through the following lemma that if the
similarity measure is symmetric, the computation is straightforward and ef-
ficient. The lemma follows [16] in showing that the value of rank(M,m) is
proportional to the sum of the similarities from m to all metastories in M.

LEMMA 5.1. Let M and sim be as in Definition 5.3. If sim is symmetric, i.e.
for every m′,m′′ ∈ M, we have sim(m′,m′′) = sim(m′′,m′), then for some
constant λ the following holds:

rank(M,m) = λ
∑
m′∈M

sim(m,m′). (5.5)

Proof. We rewrite Equation 5.4 using matrix notation. Let Ak×k be the
similarity matrix such that Aij = sim(mi,mj). By definition, A is symmetric
and represents a fully connected, undirected graph. Let the vector d be the
row-wise sum of values in A,

di =
∑

j=1,...,k

Aij . (5.6)

Let D = diag(d) be a diagonal matrix with d in its main diagonal. One can
easily verify that Equation 5.4 is equivalent to

rank(M,m) = A ·D−1rank(M,m). (5.7)

Since A is strictly positive and symmetric, A ·D−1 is a stochastic and irre-
ducible matrix and rank(M,m) is its right eigenvector. For such a matrix it
is known that its greatest eigenvalue is one and the space of eigenvectors
for this eigenvalue has dimension 1. In [16] it is shown that d is also the
eigenvector of A·D−1 for the eigenvalue 1. Since D−1 ·d = 1 and A·1 = d,
we have

d = (A ·D−1) · d (5.8)
= A · 1 (5.9)
= d. (5.10)

Therefore rank(M,mi) is in the space generated by d and hence is a multi-
ple of d, that is, rank(M,mi) = λdi. Since rank(M,mi) should be a vector
with nonnegative values and norm 1, we have λ = 1/||d||.

The preceding lemma proves that it is not necessary to perform the
costly power iteration procedure for symmetric similarity matrices. Instead,
an identical ordering of metastories can be obtained by computing the col-
umn or row-wise sum of similarity values in the adjacency matrix A.
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Example 5.3. Continuing the previous example we compute pairwise χ2

distances between the normalized keyword distributions of metastories in
Table 5.2. Converting them to similarities we obtain the adjacency matrix in
Table 5.3 where the rank value of a metastory corresponds to a row-wise
sum. It is important to note that ε here is so small that it cannot influence
the final ranking.

Table 5.3: Metastory similarity matrix and the resulting ranks

m1 m2 m3 rank

m1 1 0.36 0.33 1.69

m2 0.36 1 ε 1.36 + ε

m3 0.33 ε 1 1.33 + ε

5.3.3 Time Sensitive Ranking of Metastories

Having considered the general ranking problem, we now incorporate the
temporal dimension defined by the user query into the ranking of meta-
stories. The main challenge here is that the ranking of the metastories
that intersect with the user-specified query should depend only on those
member stories that also intersect the query. This way the temporal as-
pect associated with a specific query captures the evolution of stories as
illustrated previously in Figure 5.1.

In order to define the query dependent ranking, we first introduce the
reduction operator. Given a metastory the operator constructs a new meta-
story that contains only the stories intersecting the query interval. It cal-
culates the corresponding keyword frequency vector and a valid lifespan.
Naturally, some reduced metastories may contain no stories.

DEFINITION 5.4. Let S be the set of stories, M be the set of metastories,
and Q = [tbQ, teQ] be the user query. For a metastory m ∈ M, m =
〈Sm, fm,Tm〉 the operator reduce(Q,m) constructs a new metastory m′ =
〈Sm′ , fm′ ,Tm′〉 such that

(a) Sm′ ⊆ Sm ∧ ∀s ∈ Sm′(Ts ∩Q 6= ∅),
(b) fm′ = ⊕s∈Sm′ (fs),

(c) Tm′ = [ min
s∈Sm′

{tbs|tbs ∈ Ts}, max
s∈Sm′

{tes|tes ∈ Ts}].

Only the metastories that are relevant to the user query should get a
rank, therefore, the query dependent rank of a metastory is zero if its re-
duced version contains no stories. Otherwise, it is equal to the rank of the
reduced version in the set of all reduced and non-empty metastories.
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1 Algorithm: TRANK(S,M, Q)

2 rankQ(M,m)← 0, ∀m ∈M ;
3 MQ ← {m′|m′ = reduce(Q,m) ∧m ∈M ∧ Sm′ 6= ∅};
4 for m ∈M do
5 m′ ← reduce(Q,m);
6 if m′ ∈MQ then
7 rankQ(M,m)←

∑
m′′∈MQ

sim(m′,m′′);

8 return rankQ;
Algorithm 5.1: The temporal ranking algorithm, TRANK

DEFINITION 5.5. Let S,M, and Q be as in Definition 5.4. Let MQ be a set
such that MQ = {m′|m′ = reduce(Q,m) ∧m ∈ M ∧ Sm′ 6= ∅}. Then the
query dependent rank of a story m ∈M is rankQ(M,m) =

=

{
rank(MQ, reduce(Q,m)), if reduce(Q,m) ∈MQ,
0, otherwise.

Example 5.4. Consider a temporal ranking query for the period between
the 26th and 31st of October, 2009. The reduced set of example meta-
stories is shown in Table 5.4. The metastories m1,m2 are reduced to only
one story each, while metastory m3 remains intact.

Table 5.4: Metastories between 26th and 31st of October, 2009
Sm Keywords, fm Lifespan, Tm

m2 {s5} afghan: 6505 karzai: 6398 hamid:5633 30/10 – 5/11
m3 {s4} health:12856 care:11147 obama:9049 10 – 30/10
m1 {s1} nato: 808 afghan: 717 troop: 642 22 – 27/10

The algorithmic procedure needed to evaluate the ranks of metastories
in the set M given a query Q is shown in Algorithm 5.1 and directly follows
the above definition. We start by assigning rank zero to each metastory.
Then the set of reduced and non-empty metastories, MQ, is computed.
The pairwise similarities of these metastories are used to compute their
query dependent ranks. Finally, we note that it is possible to implement our
framework in a more efficient way by using specialized data structures such
as the SB-Tree [60].

5.4 Experimental Evaluation

In order to design an optimal temporal ranking framework we must make
two crucial choices. First, we have to select a clustering algorithm that pro-
duces good metastories from the underlying stories. Second, we have to
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choose a similarity measure that ranks the metastories best. As mentioned
earlier, the similarity measure used by the clustering algorithm to discover
the metastories does not necessarily have to be the same as the one used
for ranking.

In this section, we conduct a thorough experimental study in order to
provide sufficient information regarding these two choices and to illustrate
the usefulness of our approach. We will evaluate different clustering algo-
rithms in terms of the quality of content in the resulting metastories, and
we discuss the potential tradeoffs between speed and quality in the cluster-
ing process. Once we have determined an appropriate clustering method,
we study the difference that the various similarity measures make in the
ranking result.

5.4.1 Datasets

For the evaluation we use the data acquired through the online news aggre-
gation platform. We have collected story clusters over a period of 56 days
starting from 15 September 2009. The story clusters are classified into
seven categories: Business, Entertainment, Controversy, Lifestyle, Politics,
Science & Technology, and Sports. Within any given category, blog posts
and news articles can only be assigned to a single story cluster. For each
category we create a separate dataset that records the 50 top-ranked sto-
ries for each day. The rank of a story cluster is based on how much buzz
the corresponding story generates, which is measured by the amount of
activity in the blogosphere and on Twitter regarding the story. Typically, the
list of top stories in consecutive days does not change significantly as new
hot stories enter the list and stale stories become irrelevant. The resulting
datasets contain an average of 700 unique stories per category, spanning
the 56 day period.

5.4.2 Evaluation of Clustering Algorithms

We compare three different clustering methods: efficient graph-based seg-
mentation (ES) [21], Markov Clustering (MCL) [56] and the agglomerative
Information Bottleneck (aIB) [49]. These methods represent a wide range
of clustering paradigms. ES uses a simple cluster growing approach based
on minimum spanning trees, MCL is a good representative of stochastic
clustering methods, and aIB is based on information theory. They have also
been applied successfully in different fields. ES has been used extensively
for image analysis [21], MCL has been successfully applied in protein anal-
ysis [19, 24], and aIB has proven itself as a successful method for clustering
database and document collections [49], while its extension, LIMBO, can be
directly applied to the problem of online clustering of streaming data [5].
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The ES method, the fastest of the three, is based on the intuition that a
good clustering is such that the cohesion between elements within a clus-
ter must be high, while the coupling between elements in different clusters
must be low. Data is represented by a weighted graph where the edge
weights are given by the dissimilarity between pairs of data entities. By
comparing and merging neighboring regions in the graph the algorithm pro-
duces a final set of clusters efficiently.

The MCL algorithm is based on the simulation of stochastic flow over a
graph representing the data. Due to the properties of Markov processes,
strongly connected components corresponding to clusters will be charac-
terized by edges with strong probability flow, whereas the flow between
nodes that correspond to data from different clusters will be weak. MCL
uses a probability diffusion process followed by edge filtering to remove
weak edges and enhance the flow within clusters.

For the ES and MCL algorithms we use the χ2 distance, as it has
been shown to provide close to optimal performance at a low computa-
tional cost in problems that involve discriminating between probability dis-
tributions [47]. Given two stories si and sj with their respective keyword
frequency distributions fsi , and fsj , the χ2 distance between the stories is
defined as [47]

χ2(si, sj) =
∑
w∈W

(fsi(w)− f̂(w))2

f̂(w)
, (5.11)

where f̂(w) = 1
2fsi(w)+ 1

2fsj (w) is the average keyword frequency distribu-
tion. In this case, we consider fsi(w) and fsj (w) to be properly normalized
and hence weight them by 1

2 .
For the aIB algorithm, the input is modeled as a joint probability dis-

tribution of two variables. One variable captures the objects to be clus-
tered, while the other represents the values over which these objects are
defined. In our case, these are the story clusters and the set of keywords
in the stories, respectively. aIB defines the notion of information loss (IL)
using the aforementioned joint probability distribution to quantify distance
between clusters. It iteratively merges pairs of clusters (initially individual
data points) with the minimum information loss to form metastories. This
process continues until a certain quality in the clustering is achieved or a
desired number of clusters is discovered.

The information loss (IL) is defined through the Jensen-Shannon (JS)
divergence in [49]. For two stories si and sj , represented by their respective
normalized keyword frequency distributions fsi , fsj , the Jensen-Shannon
(JS) divergence is defined as

JSΠ(si, sj) = H(π1fsi + π2fsj ) − π1H(fsi) − π2H(fsj ), (5.12)
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where H(f) =
∑

w f(w) log f(w) is the entropy of the words w ∈ W in f ,
and Π = {π1, π2} are weights for each of the keyword frequency vectors.
The JS measure is symmetric and given the probabilities pi and pj of stories
si and sj , respectively, the distance measure of Information Loss (IL) is
defined as

IL(si, sj) =(pi + pj)× JSΠ(si, sj), (5.13)

where Π = { pi
pi+pj

,
pj

pi+pj
}.

In order to assess the quality of clustering results based on the content
of the resulting clusters, many researchers have relied on the expected en-
tropy measure, which quantifies the amount of randomness that exists in
the set of clusters [7, 5]. In our experiments we compute the representa-
tive keyword frequency vector of each metastory using Equation 5.1, i.e.,
as the sum of individual story vectors. Then, we evaluate the entropy of
each metastory representative. Intuitively, lower quality clusters will have
large entropy, which in turn means that the distribution of keywords therein
approaches a uniform distribution. Conversely, good clusters will have fre-
quency vectors whose entropy is low, which in turn means that there is a
clear separation of the set of keywords inside these clusters. For a set
of metastories M obtained from some clustering algorithm and covering n
stories we compute the expected entropy as

H(M) =
∑
m∈M

p(m)H(fm), (5.14)

where p(m) = |m|/n is the probability that m occurs within the set M, and
H is the entropy defined as above. Assuming that stories are uniformly
distributed, the probability a metastory p(m) is proportional to the number
of stories within m.

The expected entropy of the clustering result depends on the number
of clusters the algorithm produced. The entropy is minimum when all data
points are left as individual clusters. Conversely, it is maximum when all
data is clustered into one metastory. Therefore, we have to control this pa-
rameter in our experiment and ensure that algorithms are compared on a
fair basis. Hence, we measure the entropies of clusterings resulting from all
algorithms over a range of clustering sizes that includes individual stories
at one end, and a single cluster containing all stories at the other. This in-
volves systematically changing the algorithm parameters to affect the num-
ber of clusters produced. For aIB this is straightforward, while for ES and
MCL this is achieved by filtering out weak edges and varying the algorithm
sensitivity parameters.

Figure 5.2 shows the expected entropy each algorithm yields as a func-
tion of the aggregation ratio. The aggregation ratio is the amount of com-
pression that is achieved via clustering each time. The lower this ratio, the
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more clusters there are in our system and vice versa. The entropy values
have been averaged over the seven story categories and the error bars
show standard error. Small bars indicate that the entropy results are stable
across all categories.
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Figure 5.2: Clustering entropy as a function of aggregation ratio

The results of this experiment, as shown in Figure 5.2, provide us with a
principled way to choose the best clustering method among those studied.
For low aggregation ratios all three algorithms are equivalent, which is rea-
sonable since we expect that fewer of the merges leading to metastories
occur between strongly related stories, and these merges should happen
first for any reasonable method. Beyond a 40% aggregation ratio the curves
diverge with aIB showing a better performance. We note that beyond 12%
of aggregation the ES algorithm constructs clusters that are characterized
by larger entropy values. In the context of our particular problem we have
observed that aggregation ratios over 30% tend to produce metastories that
are too general and do not correspond to a well defined world event. We
will, therefore, set the aggregation ratio to a fixed value of 20% for the eval-
uation of ranking results. At this level of aggregation, we could use either
aIB or MCL. Since aIB provides a much finer control of the level of aggrega-
tion, we will use aIB as the clustering method in all the ranking evaluation
tests.

5.4.3 Quantitative Comparison of Rankings

Having selected the clustering algorithm to produce the metastories, we
turn to the analysis of the ranking results. Recall that we rely on the par-
ticular properties of symmetric similarity matrices to determine the ranks of
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metastories. Thus, the ranking depends directly on how well the similar-
ity measure captures the relationships between metastories. We use the
following symmetric measures:
• The Jensen-Shannon JS distance measure as defined in Equation

5.12 with Π = {1/2, 1/2}.
• The χ2 distance measure as defined in Equation 5.11.
• The minimum (MIN) and maximum (MAX) overlap between stories.

MIN (resppectively MAX) is defined as the number of keywords two
stories overlap, over the length of the smaller (respectively larger) of
the two.
• The Jaccard Coefficient, (JC), which measures the amount of key-

word overlap between two stories as a fraction of the size of the union
of their keywords.
• The Cosine similarity, (COS), which measures the angle between two

vectors of keyword frequencies.
All these measures (we refer the reader to [6] for their formal definition) have
shown good performance in clustering and retrieval tasks. We selected JS
because it is closely related to the IL measure used by aIB, but does not
allow the size of the metastories to bias the similarity computation. Both
χ2 and JS are distance measures. In order to obtain consistent results, we
convert them to similarity measures. Hence, given the distance d(mi,mj)
between two metastories, mi and mj , the similarity is computed by first
normalizing the distance value d̂(mi,mj) = d(mi,mj)/maxk,l(d(mk,ml))
and then subtracting the normalized distance value from 1. We construct
the representative metastory vectors using Sum as in Equation 5.1 and
then evaluate the ranking results produced by these different similarity mea-
sures.

We compare the rankings produced by all measures quantifying the
differences using the normalized Kendall’s tau distance, K. Intuitively, K is
equal to the number of exchanges needed to convert one ranked list into
another using the bubble sort algorithm [20]. For two ranked lists τ1, τ2

containing integers in the range [1, . . . , p] that indicate the ranks of each
of the p metastories, the Kendall’s tau distance is defined as K(τ1, τ2) =

2
p(p−1)

∑
i,j K̂i,j(τ1, τ2) where

K̂i,j(τ1, τ2) =

{
0, if i,j are in the same order in both lists,
1, otherwise.

(5.15)

Table 5.5 summarizes the pairwise distances between rankings obtained
using each of the similarity measures. As suggested in the previous exper-
iment, we used aIB and 20% aggregation ratio to obtain the metastories.
The query lifespans were fixed to cover 100% of the time domain. Data
from all the seven categories was used and, therefore, the values in the
table correspond to average Kendall’s tau distance computed over all the
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datasets. The smallest and the largest distances are marked in bold. Ob-
serve that the only two measures that do not yield significantly different
results are χ2 and JS. The biggest difference, 0.326, is between Jaccard
Coefficient and MAX measures.

It is worth to note here that a Kendall’s tau distance of 0.5 indicates
completely unrelated rankings, e.g. two random rankings, whereas the dis-
tance of 1 indicates inverse rankings. The bigger the random lists, the less
likely it is that heir distance will deviate from 0.5. Since in our experiment
we have about 700 titles, the probability of observing distance 0.45 be-
tween two rankings generated by random draws from uniform distribution
is less than 1%. The above distance 0.326 between Jaccard Coefficient
and MAX measure, therefore, indicates that there is significant relation-
ship between the results and that all the measures are consistent about the
ranking at large. Our aim with further experiments is to find out which of the
measures provides the best result overall.

Table 5.5: Pairwise Kendall’s tau distance between rankings obtained using
different similarity measures

χ2 JS JC COS MIN MAX
χ2 0 0.013 0.201 0.130 0.182 0.187
JS - 0 0.206 0.137 0.173 0.182
JC - - 0 0.100 0.290 0.325
COS - - - 0 0.256 0.284
MIN - - - - 0 0.217
MAX - - - - - 0

Next, we check whether the size of the query window influences the
difference between rankings of different measures. To simplify the visual-
ization, we take χ2 as the baseline and compare all the other measures to
it for a set of queries. The latter were artificially designed to span multi-
ple regions of the time domain and have their lifespans covering from 10%
(approximately 6 days) to 100% of the 56-day time domain for which we
have data. Figure 5.3 depicts the average Kendall’s tau distance between
each pair of rankings as a function of query lifespan. It is apparent that the
distance values do not depend on the query.

The above experiments clearly indicate that the similarity function influ-
ences the final ranking independently of the time interval specified by the
query. Therefore, the similarity function must be chosen in a principled way
to yield the best ranking result. We continue our experiments evaluating the
similarity functions with respect to a subjective ground truth.
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Figure 5.3: Kendall’s tau distance between the rankings produced by χ2

and other similarity measures as a function of query length

5.4.4 Subjective Evaluation of Ranking Quality

The quality of a given ranking is ultimately a subjective quantity as it de-
pends on the particular interests of the user, the context in which they per-
form the query, and a multiplicity of other factors to which the ranking pro-
cess has no access. To verify that the rankings produced by our framework
are sensible we need to compare our results with the human perception of
which metastories are more important. Although an optimal ranking is very
hard to get, we will leverage two sources of opinion to estimate the way
people would rank the metastories, and compare our results against them.
First, we measure the impact of specific metastories in the social media
as the number of blogs written about them. The assumption here is that
more relevant stories will encourage people to write more blogs. Second,
we obtain metastory ranking through the Amazon mechanical turk and use
it as ground truth in our evaluation.

Blog Count as a Measure of Social Impact

As mentioned above, the platform offers access to social media sources,
in particular to personal weblogs written by people who offer their opin-
ion about developing stories. It is reasonable to assume that bloggers will
spend more time writing about more relevant stories, and that in this way
the relevance of metastories can be directly measured by looking at the
number of blogs associated with them.

In this experiment we evaluate how well our similarity based ranking
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corresponds to the social impact, i.e. the blog count, of each of the meta-
stories. We generate queries as discussed in Section 5.4.3, and for each
query we compute a ranking of metastories using our framework, and the
corresponding ranking due to the number of blogs associated with each
metastory. We then compute the Kendall’s tau between these two.

Figure 5.4(a) shows the distance between our ranking and the ranking
induced by measured social impact as a function of the size of the query
window. Results are averaged over all categories. The results show that
the best measure in terms of agreement with the social impact ranking is
JS, followed closely by χ2. The other measures lag behind in terms of
agreement. This is reasonable and agrees with the conclusions from [47].
The average Kendall’s tau distance for JS is 0.2914, and for χ2 it is 0.2962,
which is remarkable given that the ranking relies exclusively on the similarity
scores with no access to social impact information. This verifies the validity
of our ranking approach for situations in which the social impact factor is
not available.

Figure 5.4(b) shows the results in terms of Kendall’s tau distance from
the Blog Count ranking when we consider each category separately. Over-
all, we observe that JS and χ2 give the best ranking performance. It is
worth noting that the differences in performance over different categories
may be indicative of particular properties of stories in each category that
may be exploited for ranking purposes. This remains a topic of future work.

Ranking Using Mechanical Turk

To further validate our framework we carried out an evaluation based on the
Amazon Mechanical Turk4 (AMT), a service that allows to collect user feed-
back. In our experiment we want the AMT users to elect the best ranking of
metastories that we use as a ground truth to evaluate results of the frame-
work. However, asking the AMT users to compare all possible rankings of
metastories and choose the best one is not practical as there may be many
metastories, and comparison of long lists is a very hard task. In such a
situation the quality of an AMT experiment is likely to give poor results [4].

To overcome this problem we select a random and uniformly sampled
subset of fifteen metastories per category. For each metastory we choose
one representative title using the following procedure. First, we find the
story whose keyword frequency distribution is closest to the representative
distribution of the metastory in terms of the JS distance. Then, from titles
of individual news and blog documents belonging to the story we choose
the longest one. The selected story should be the most representative of
the metastory, and the longest title offers the most information for the AMT
user.

4http://www.mturk.com

http://www.mturk.com
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Question: Which story about (category) is more im-
portant?

Note: Consider two story titles below. Choose
the one that is more important in the cat-
egory of stories about (category). Please
choose according to IMPORTANCE and
NOT your curiosity.

Option 1 Title 1

Option 2 Title 2

Figure 5.5: Human intelligence task template

Each AMT user is shown one pair of titles from the sampled list be-
longing to the same category. The user is asked to choose the title he/she
considers more important. Each such question forms the so called Human
Intelligence Task (HIT). Each HIT is made of a question, an explanatory
note and the two metastory titles from which the user can only choose
one to be ranked higher. The template of a HIT is provided in Figure 5.5.
The field category is substituted by the corresponding category name of
the pairs of titles we use. The fields Title 1 and Title 2 are replaced with
respective titles.

The same HIT, i.e. the same pair of titles is shown to eleven different
AMT users Intuitively, if a title gets more votes than any other title in its
category, it should be ranked first. A ranked list of titles is constructed from
the pairwise votes using the Schulze method [54]. This method satisfies the
Condorcet criterion guaranteeing that the metastory title that is preferred
over all the other candidates will win. The resulting list is then used as
ground truth for comparison with the rankings produced by our framework
and we refer to it as the AMT list.

We compare the rankings obtained using our framework and different
similarity measures to the AMT list. Note that we only compare ranks of the
metastories that are part of the AMT list. Table 5.6 shows the Kendall’s tau
between these pairs as well as between each distance measure and the
social impact rank, measured by Blog Count, (BC), as described above.
We observe that χ2, MAX, and MIN give the best overall ranking with
regards to the AMT. However, the standard error across different categories
varies the least for χ2 and JS indicating that these two measures are the
most consistent. This is in agreement with the results reported previously
for Blog Count in Figure 5.4(a), and is further verified by the comparison
between the ranks induced by different distance measures and the Blog
Count rank over the subset of stories sent to the AMT.

An interesting observation is that the distance between BC and the
AMT list is larger than the distance between any distance measure and ei-
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ther BC or the AMT list. This could very well be caused by cultural and
environmental differences between AMT users and the blogger community.
However, it is encouraging to verify that in both cases the similarity mea-
sures do a good job of ranking metastories. To illustrate the kinds of stories
ranked at the top by different methods, Table 5.7 shows titles for meta-
stories in the politics category as ordered by the AMT, the χ2 measure, and
Blog Count.

The above experiments show that our ranking framework is feasible and
produces good ranking results compared to rankings derived from human
preferences as well as the social impact. Of the tested similarity measures,
JS and χ2 show the best ranking performance. It is also clear that the
choice of similarity measure has a dramatic effect on ranking quality. This
study provides strong evidence that within the context of story ranking, the
use of aIB for clustering, together with either JS or χ2 produces the best
metastories, and the most accurate ranking.

5.4.5 HITS-Style Ranking vs PageRank

All the above experiments were conducted using the PageRank approach.
However, HITS style ranking could be used as suggested in [37] by treating
individual stories as authorities and metastories as hubs. A bipartite graph
between stories and metastories is constructed with edges connecting sto-
ries and metastories. Edges are weighted by the similarity of the corre-
sponding story and metastory representatives. The HITS algorithm takes
as input the graph and returns a ranking of both, stories and metastories.

To test this, we quantify the Kendall’s tau distance between the rankings
obtained via the HITS algorithm, and those produced by PageRank as de-
scribed above. The first two rows in Table 5.8 show the average Kendall’s
Tau distance for each similarity measure, and over all the categories. Also
shown is the corresponding standard error. Observe that the rankings are
very close independently of the similarity measure used. Next, we see
how well HITS approximates the social impact ranking (blog count). As the
data in the table shows, the average Kendall’s tau distance between HITS
and blog count is very similar to that of PageRank and blog count. How-
ever, PageRank is slightly but consistently better. In conclusion, due to the
lower computational cost and better ranking performance, we recommend
PageRank as the ranking method of choice.

5.5 Summary

We have presented a framework for the ranking of evolving stories through
meta-aggregation. Metastory ranks are obtained in two steps. First, related
stories are clustered into metastories. We explored the issue of selecting an
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Table 5.8: Kendall’s tau distance between HITS and PageRank approaches
JS χ2 JC COS MIN MAX

HITS vs PageRank
Average 0.0257 0.0271 0.0520 0.0457 0.0366 0.0208
Std.err. 0.0097 0.0102 0.0197 0.0173 0.0139 0.0078

HITS vs Blog Count
Average 0.2940 0.2984 0.4256 0.3697 0.3093 0.3047
Std.err. 0.1111 0.1128 0.1609 0.1397 0.1169 0.1152

PageRank vs Blog Count
Average 0.2914 0.2962 0.4150 0.3616 0.2953 0.3096
Std.err. 0.1101 0.1119 0.1568 0.1367 0.1116 0.1170

optimal clustering method for this task, and showed that the MCL algorithm
yields the best results. Second, implicit links are constructed based on
metastory content similarity. We showed that the Jensen-Shannon distance
measure provides the best results, and discussed the efficient computation
of metastory ranks. We evaluated our framework in terms of the ground
truth provided by the amount of weblogs written about a given metastory,
and also in subjective terms through the use of the Amazon Mechanical
Turk. Our results confirm the validity of the framework and its usefulness
to determine a time-dependent rank for metastories in a completely unsu-
pervised manner. Future work will focus on scalability issues, including
the efficient computation of metastory representatives, and the incremental
computation of ranking results.
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CHAPTER 6

Conclusions

In this final chapter we summarize the issues discussed in the thesis and
outline the contributions made. Next, we elaborate on the future research
directions. Those include improvements to the temporal aggregation algo-
rithms as well as extensions to the temporal ranking framework.
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6.1 Summary

The work presented in this thesis emerged from the observation that most
of the data stored in warehouses today is equipped with temporal dimen-
sion, yet existing tools for summarizing this kind of data are of little use as
they do not meet the requirements of large data repositories. First, state
of the art temporal aggregation operators do not allow explicit control over
the result size. In case of instant temporal aggregation, that may lead a
result larger than the argument relation. In case of span temporal aggrega-
tion the aggregation result may eventually hide important changes present
in the underlying data. Such behavior is contrary to the very concept of
temporal aggregation. Second, unlike traditional aggregation, grouping in
temporal aggregation is unlikely to be static and known in advance. Instead,
we showed in this thesis that the groups are dynamic and evolve through
time.

Consequently, we argued that a good temporal aggregation operator will
allow the user to specify explicitly the size of the output and the operator
will satisfy it through such an approximation that introduces minimal amount
of error into the aggregation result. Moreover, a technique to discover the
aggregation groups from the data and disseminate the most important ones
pertaining to any given time period is necessary.

We addressed the problem in two steps. First, we introduced a novel
temporal aggregation concept, termed parsimonious temporal aggregation
(PTA). It leverages from the previous temporal aggregation approaches,
namely instant (ITA) and span (STA) temporal aggregation. PTA allows
the user to specify a size- or an error- bound for the approximation. It
first computes the ITA result and then merges similar adjacent tuples until
the bound is satisfied. This way the operator starts from the most precise
aggregation result, i.e. the ITA, and controls the size of the final output
through data adaptive approximation.

Together with the definition of the new operator we researched the al-
gorithms that could be used to evaluate PTA queries. We proposed two
evaluation scenarios, offline and online, and suggested an evaluation strat-
egy for each of them. Offline evaluation should be chosen when resources
are not limited, computation time is not restricted, and the smallest ap-
proximation quality is desired. For such a scenario we proposed a novel
dynamic programming algorithm that will find the best possible approxima-
tion of the instant temporal aggregation result. In the worst case scenario,
for an argument relation of n tuples the algorithm takes O(n2c) time to pro-
duce an output relation of c tuples. It needs O(n2) space for computation.
We showed that making use of temporal gaps in the data and aggrega-
tion groups in the query leads to linear computation time observed using
real-world datasets.

The online evaluation scenario of the PTA queries would be chosen by
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applications that require a quick response yet are willing to sacrifice preci-
sion. For example a data analyst may run a series of online queries and
analyze preliminary results in order to pinpoint the exact query she is inter-
ested in before she engages in a more time consuming offline computation.
For this scenario we proposed a greedy evaluation strategy. This strategy
operates on an ITA result relation by choosing iteratively the most similar
pairs of tuples and merging them until the size or error bound is satisfied.
Such a strategy may, and is very likely to, introduce more approximation
error than the dynamic programming approach would. Interestingly, we
showed that the error ratio of greedy to optimal result is upper bounded by
O(log n), i.e. the more data there is to process, the higher the ratio may be.

We introduced two novel greedy evaluation algorithms, for size- and
error-bounded queries respectively. The distinctive feature of both algo-
rithms is that they do not have to read the whole ITA relation before starting
to merge tuples. Thus they combine the evaluation of ITA and merging into
one process thereby saving computation space and dramatically reducing
evaluation time. Most importantly, such early merging does not influence
the final result, that is, they produce the same, or practically identical, out-
put that the straight-forward implementation of the greedy strategy would.
The algorithms run in O(n log(c + β)) time and O(c + β) space where β is
typically very small, β � n, yet in the worst case it may become c+ β = n.

Experimental evaluation of PTA algorithms revealed many interesting
features of the new operator. First of all, we saw that temporal aggrega-
tion results often carry much redundant data and PTA discards it effec-
tively. Thus PTA reduces aggregation results significantly yet introduces
only small errors. Next, the evaluation of greedy algorithms revealed that
the algorithms scale very well for huge datasets and the additional error
they introduce is very small. In fact, they introduce the smallest addi-
tional error among all the non-optimal approximation methods we evalu-
ated. Therefore, we would also like to recommend the use of the greedy
algorithms also in other fields where compact representations have to be
constructed, e.g. time series approximation.

Having succeeded in approximating the temporal aggregation we turned
to the second part of the problem, that is, mining of aggregation groups from
the data. We focused our research on a news and social media aggregation
application where the need for aggregation group mining was evident. The
application was able to cluster news, blogs and tweets, all related to the
same story. We discovered, however, that the stories tend to be short in
time and highly consistent, the long-running stories are usually split apart.
Thus, in order to obtain a good overview of the data, aggregation was not
enough, but the discovery of the most important and possibly long-running
stories, i.e. aggregation groups, was the key.

We proposed a temporal ranking framework that consists of two steps.
First, an offline clustering step identifies related stories and puts them into
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one aggregation group, so called metastory. Second, online ranking queries
can be answered. The metastories that overlap the time interval specified
in the query are selected and ranked. For ranking we suggested an ap-
proach similar to that of PageRank. We construct implicit links between
metastories based on their content similarity. We showed that as long as
the similarity measure is symmetric the power method computation of rank
vector is not necessary. Instead the rank of a metastory is computed as its
total similarity to all the other metastories.

We performed extensive evaluation of the new framework. Our aim
was to identify the best clustering algorithm for the metastory discovery
and the best similarity measure for ranking. Among the different clustering
algorithms that we tried, Markov clustering (MCL) showed the best results.
Interestingly, we observed that about 20% of stories belong to long running
meta-stories, and clustering beyond this threshold provides meta-stories
that are overly general.

In the evaluation of the ranking step we wanted to determine which sim-
ilarity measure provides the best ranking results and how well they reflect
the public opinion. First of all, we observed that the choice of the similar-
ity measure influenced the final outcome significantly. The same behavior
could be observed for varying temporal queries leading us to the conclu-
sion that the phenomena is due to the properties of the similarity measure,
but not the underlying data or the lifespan of the query. Next, we used
public opinion to evaluate the quality of rankings produced using our frame-
work and different similarity measures. We obtained the public opinion in
two ways. First, we measured blog count related to a given meta-story as
an implicit user vote. Comparing the different rankings we found out that
Jensen-Shannon divergence measure provides the best prediction of the
public opinion expressed through blog count. In order to verify the latter
finding, we employed Amazon Mechanical Turk service. In this case as
well, the rankings produced by the framework were able to predict the pub-
lic opinion to a large extent.

Summing up, the combination of the opinions obtained from the social
media and the proposed ranking framework enables objective look over the
historical perspective. The solution we proposed may help one to find out
what the people of the world were talking about and what they considered
the most important at any given historical time period. The technology,
therefore, may impact not only the field of news aggregation but also the
way the historical events are studied and their veracity is confirmed.

6.2 Future Work

The work discussed in this thesis forms the basis for a system that can
aggregate and rank vast amounts of historical data. The proposed ap-
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proaches can be further improved and extended in various directions. Here
we outline the future research directions we find would be the most valu-
able.

First, recall that the parsimonious temporal aggregation operator is de-
fined on top of instant temporal aggregation. However, cumulative (also
termed moving-window) temporal aggregation is often used in commercial
systems in parallel with ITA. As the operator suffers from the same draw-
backs as ITA, it would be worthwhile to reduce its output using the tech-
niques proposed in our work. In ITA aggregation result the time intervals
that bear redundant data have more or less constant value at each time
instant. In case of cumulative aggregation, the same time interval will show
linear growth of the data values at each time instant. Therefore, a careful
investigation of different error measures is worthwhile.

Second, there is a need to extend the greedy PTA algorithms to handle
streaming temporal data and, consequently, operate in a distributed online
environment. Large-scale internet crawlers discover vast amounts of new
information every hour. They aggregate this data in parallel threads each
taking care of its own separate aggregation group. Combining old and new
data, sorting, and only then passing it to the PTA operator may be overly
expensive. Instead, the PTA operator, at least the greedy evaluation algo-
rithms, should be able to deal with each aggregation group separately and
assume that the data comes sorted only along the time dimension, but not
along the aggregation groups.

Third, the PTA operator may potentially be seen in a more general con-
text of approximation of step functions by step functions with coarser granu-
larity. In our future work we will investigate whether the underlying algorithm
can be used to obtain improved results in histogram construction, time se-
ries indexing or detection of copy number variation which is a prominent
problem in bioinformatics.

Regarding the error-bounded greedy PTA algorithm, we will work on
estimating the maximal error that the reduction of an ITA result may in-
troduce. We believe that in order to obtain a good estimate random time
periods must be taken and corresponding aggregates computed. Instead,
current sampling techniques usually select random data records.

Regarding the temporal ranking framework, our future work will focus
on its scalability. First we want to reduce the number of keywords that
are stored with each story leaving only the most indicative ones. Currently
stories are often represented with tens of thousands of keywords. Such
reduction may, however, affect the quality of metastory ranking as it is de-
pendent on the similarity of keyword vectors. Since it is hard to speculate
on wether the change would be positive or negative, we have to conduct a
thorough experimental study of this issue.

Second, recall that for each temporal ranking query we have to recom-
pute the representative vector of each metastory that falls into the time



100 CHAPTER 6. CONCLUSIONS

period specified in the query. We think that this may be avoided with the
help of cumulative temporal aggregation. We would store multiple repre-
sentations of the same metastory that would correspond to different, ever
increasing, time intervals. Again, it may appear that adjacent representa-
tions are very similar and can be merged using a technique similar to PTA
as discussed previously.

Finally, we may be able to speed up the computation of the ranking re-
sult for any given query. Recall, that apart from recomputing the metastory
representatives, we must also construct their pairwise similarity matrix. It
may be possible to avoid such an expensive operation with the help of pre-
viously computed queries. It seems likely that many user queries, espe-
cially those spanning longer time periods and concerning older data, will
cover the same or almost the same time periods. Thus it seems natural
to reuse the answers of previous queries. Techniques such as rank aggre-
gation may be used to combine the results of multiple queries that overlap
the time period under consideration and obtain the answer for a given, pre-
viously unseen query. However, first of all the veracity of the assumption
must be verified via a thorough user study.

In summary, in the future the temporal ranking framework should be
optimized for better performance. Such optimization may lead to improved
or deteriorated results. The experimental results provided in this thesis may
serve as a baseline allowing one to quantify the amount of change.
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