
Value Function Iteration as a Solution Method for

the Ramsey Model

By Burkhard Heera,b and Alfred Maußnerc

a Free University of Bolzano-Bozen, School of Economics and Management, Via Sernesi

1, 39100 Bolzano-Bozen, Italy, Burkhard.Heer@unibz.it
bCESifo
c University of Augsburg, Department of Economics, Universitätsstraße 16, 86159 Augs-

burg, Germany, alfred.maussner@wiwi.uni-augsburg.de

March 31, 2008

Abstract

Value function iteration is one of the standard tools for the solution of the
Ramsey model. We compare six different ways of value function iteration with
regard to speed and precision. We find that value function iteration with cubic
spline interpolation between grid points dominates the other methods in most
cases. For the initialization of the value function over a fine grid, modified policy
function iteration over a coarse grid and subsequent linear interpolation between
the grid points provides a very efficient way to reduce computational time.

JEL classification: C63, C68, E32

Keywords: Value Function Iteration, Policy Function Iteration, Howard’s Algorithm,

Acceleration, Cubic Interpolation, Stochastic Ramsey Model

1 Introduction

Value function iteration is among the most prominent methods in order to solve Dy-

namic General Equilibrium (DGE) models. It is often used as a reference case for the

comparison of numerical methods because of its known accuracy as in the seminal work

by Taylor and Uhlig (1990) on the solution methods of nonlinear stochastic growth mod-

els or in later studies on the computation of the standard real business cycle model

with flexible labor supply by Aruoba et al. (2006) and Heer and Maußner (2008a).

Value function iteration is safe, reliable, and easy to implement. As one of its main

disadvantages, it is slow in speed. Therefore, it is often applied in models where the

dimension of the state space is low, usually one or two dimensions. In this paper,

we will analyze various forms of value function iteration and consider the implications

for speed and efficiency. We find that computational time of ordinary value function

iteration can be reduced significantly by a factor of 103-104 if one applies cubic spline

interpolation between grid points and uses the results from modified policy function

iteration over a coarse grid for the initialization of the value function on the finer grid.

In this paper, we use value function iteration to compute the infinite-horizon Ramsey

model with a representative agent. The consideration of value function iteration and

possible ways to increase the computational speed for it, however, is also very important

for the computation of heterogeneous-agent economies where agents may differ with

regard to their individual state variable, for example assets or age. In these cases,

value function iteration may be one of the very few feasible solution method since local

methods like perturbation methods, which are most often applied to the solution of

business cycle models in practise, break down.1 Similarly, the use of non-local methods

like projection methods or parameterized expectations may not be applicable either

because the underlying interval of the individual state space is simply too large to allow

for a good approximation of the policy function by a polynomial function.2 The latter

approximation methods are particularly vulnerable to a change of behavior in the policy

function if a constraint becomes binding. For example, the labor supply of households

may become zero if wealth exceeds a certain treshhold value. As a consequence, the

optimal labor supply function displays a kink at this point and function approximation

methods may behave poorly.3

1Another discrete-space method that may be applied in these cases is the finite-element method.

For this method, see McGrattan (1999).
2For an introduction to and a discussion of the different numerical solution methods see Judd (1998)

or Heer and Maußner (2008b).
3Christiano and Fisher (2000) have studied the use of projection methods in the case of a non-

1

In addition, the application of value function iteration methods may not be confined to

one- or two-dimensional problems: 1) With the advance of computer technology, three

or four-dimensional problems may soon be solvable with value function iteration for

acceptable accuracy. 2) In many applications, the curvature of the value function with

respect to some state variables may be so small that few grid points in some dimensions

of the state variable will be sufficient.4 3) Often, we need a good initial value for meth-

ods that rely upon the approximation of a function over a large interval. In our own

work, we find in a model of the equity premium that projection methods do not find

the solution if the initialization is not very close to the solution and we therefore had

to apply time-consuming genetic search algorithms (see Heer and Maußner (2008b),

Chapter 6.3). 4) The dimension of the individual state space may sometimes be larger

than the dimension of the variables that are actually needed for the arguments of the

value function. For example, Erosa and Ventura (2002) consider a household optimiza-

tion problem where the individual household has the three-dimensional state variable

consisting of his individual productivity, real money, and capital. They solve the prob-

lem in two steps. In the first step, they compute the value function as a function of

wealth, which is the sum of money and capital, and individual productivity. In a sec-

ond stage, they solve the optimal portfolio problem how to allocate wealth on money

and capital.

In the following, we consider various value function iteration methods for the computa-

tion of the infinite-horizon Ramsey model.5 In section 2, we describe our six different

methods of computation. As an illustration, we will apply these value function iter-

ation methods to the computation of the deterministic Ramsey model. In section 3,

negativity constraint on investment. The constraint is accommodated by the use of a parameterized

Lagrange multiplier function and can be handled successfully. The method is fast and accurate. In

this case, however, the treshhold value of the individual state variable capital at which the constraint

becomes binding is known. In the example of the non-negativity constraint on endogenous labor

supply, on the contrary, the exact wealth value for the kink may not be known in advance and can

only be found iteratively, which may cause significant computational problems.
4Heer (2007), for example, considers the business cycle dynamics of the income distribution in

an Overlapping Generations model. The value function of the individual is also a function of the

aggregate capital stock. He finds that a grid of 7 points over this variable is sufficient.
5We conjecture that our main result also carries over to finite-horizon models like the Overlapping

Generations model. In these models, value function iteration is usually much faster than in infinite-

horizon models as the value function is found in one iteration starting in the last period of the agent’s

life, even though there is a trade-off as the value function has to be computed and stored for each

age. Our results suggest that value function iteration with cubic spline interpolation is a very fast and

accurate method for these kinds of models as well.

2

we present our findings: 1) The modified policy function iteration scheme is found to

be superior to Howard’s algorithm for fine grids over the state space. 2) We also show

that value function iteration with cubic spline interpolation dominates the other algo-

rithms. In section 4, we extend our analysis to the two-dimensional case of a stochastic

economy. In this case, simple value function iteration is no longer feasible as the com-

putational time becomes prohibitive. We find that value function iteration with cubic

spline interpolation is still the dominant algorithm in the case of high accuracy. For

more moderate levels of accuracy, modified policy function iteration is a viable alter-

native. In addition, we show that a good initial guess for the value function vitally

improves the computational speed by an order of 10. We use modified policy iteration

over a coarse grid to come up with a good initial value for the value function over the

finer grid using linear interpolation between grid points. Section 5 concludes.

2 Description of the Value Function Iteration Algorithms

In this section, we present the following six different forms of the value function iteration

algorithm that we will analyze with regard to speed and accuracy:

1. Simple value function iteration,

2. Value function iteration that exploits the monotonicity of the policy function and

the concavity of the value function,

3. Policy function iteration,

4. Modified policy function iteration,

5. Value function iteration with linear interpolation between grid-points,

6. Value function iteration with cubic interpolation between grid-points.

The algorithms are best explained by means of an example. We choose the deterministic

infinite-horizon Ramsey model that serves as the basic structure for most business-cycle

and growth models.

The Deterministic Infinite-Horizon Ramsey Model We assume that a fictitious

planer6 equipped with initial capital K0 chooses a sequence of future capital stocks

6Equally, we could have considered the decentralized economy where the household optimizes his

intertemporal consumption and supplies his labor and capital in competitive factor markets.

3

{Kt}∞t=1 that maximizes the life-time utility of a representative household

U0 =
∞∑

t=0

βtu(Ct), β ∈ (0, 1),

subject to the economy’s resource constraint

f(Kt) ≥ Ct + Kt+1,

and non-negativity constraints on consumption Ct and the capital stock Kt+1. The

utility function u(Ct) is strictly concave and twice continuously differentiable. The

function f(Kt) = F (N, Kt) + (1 − δ)Kt determines the economy’s current resources

as the sum of output F (N,Kt) produced from a fixed amount of labor N and capital

services Kt and the amount of capital left after depreciation, which occurs at the rate

δ ∈ (0, 1). The function f is also strictly concave and twice continuously differentiable.

Value function iteration rests on a recursive formulation of this maximization problem

in terms of the Bellman equation:

v(K) = max
0≤K′≤f(K)

u(f(K)−K ′) + βv(K ′). (1)

This is a functional equation in the unknown value function v. Once we know this

function, we can solve for K ′ as a function h of the current capital stock K. The

function K ′ = h(K) is known as the policy function.

The optimal sequence of capital stocks monotonically approaches the stationary so-

lution K∗ determined from the condition βf ′(K∗) = 1. Thus, the economy will stay

in the interval [K0, K
∗] (or in the interval [K∗, K0] if K0 > K∗). In order to solve

the model numerically, we compute its solution on a discrete set of n points. In this

way, we transform our problem from solving the functional equation (1) in the space

of continuous functions (an infinite dimensional object) to the much nicer problem of

determining a vector of n elements.7

Our next decision concerns the number of points n. A fine grid K = {K1, K2, . . . Kn},
Ki < Ki+1, i = 1, 2, . . . , n, provides a good approximation. On the other hand, the

number of function evaluations that are necessary to perform the maximization step on

the right hand-side (rhs) of the Bellman equation increases with n so that computation

time places a limit on n. We will discuss the relation between accuracy and computation

time below. For the moment being, we consider a given number of grid-points n.

7Note, however, that the stationary solution of this new problem will differ from K∗. For this

reason we will use K̄ > K∗ as an upper bound of the state space.

4

A related question concerns the distance between neighboring points in the grid. In

our applications we will work with equally spaced points ∆ = Ki+1 − Ki for all i =

1, 2, . . . , n − 1. Yet, as the policy and the value function of the original problem are

more curved for low values of the capital stock, the approximation is less accurate in

this range. As one solution to this problem, one might choose an unequally-spaced grid

with more points in the lower interval of state space; for instance Ki = K1 +∆(i− 1)2,

∆ = (Kn − K1)/(n − 1)2, or choose a grid with constant logarithmic distance, ∆ =

ln Ki+1 − ln Ki. However, one can show that neither grid type dominates uniformly

across applications.

In our discrete model the value function is a vector v of n elements. Its ith element

holds the life-time utility U0 obtained from a sequence of capital stocks that is optimal

for the given initial capital stock K0 = Ki ∈ K . The associated policy function can

be represented by a vector h of indices. As before, let i denote the index of Ki ∈ K ,

and let j ∈ 1, 2, . . . , n denote the index of K ′ = Kj ∈ K , that is, the maximizer of the

rhs of the Bellman equation for a given Ki. Then, ĥi = j.

The vector v can be determined by iterating over

vs+1
i = max

Kj∈Di

u(f(Ki)−Kj) + βvs
j , i = 1, 2, . . . , n,

Di := {K ∈ K : K ≤ f(Ki)}.

Successive iterations will converge linearly at the rate β to the solution v∗ of the discrete

valued infinite-horizon Ramsey model according to the contraction mapping theorem.8

Method 1: Simple Value Function Iteration The following steps describe a very

simple to program algorithm to compute v∗. First, we initialize the value function.

Since we know that the solution to

max
K′

u(f(K)−K ′) + β · 0

is K ′ = 0, we initialize v0
i with u(f(Ki))∀i = 1, . . . , n. In the next step we find a new

value and policy function as follows: For each i = 1, . . . , n :

Step 1: compute

wj = u(f(Ki)−Kj) + βv0
j , j = 1, . . . , n.

8See, e.g., Theorem 12.1.1 of Judd (1998), p. 402.

5

Step 2: Find the index j∗ such that

wj∗ ≥ wj ∀j = 1, . . . , n.

Step 3: Set h1
i = j∗ and v1

i = wj∗ .

In the final step, we check if the value function is close to its stationary solution. Let

‖v0 − v1‖∞ denote the largest absolute value of the difference between the respective

elements of v0 and v1. The contraction mapping theorem implies that ‖v1 − v∗‖ ≤
ε(1− β) for each ε > 0. That is, the error from accepting v1 as solution instead of the

true solution v∗ cannot exceed ε(1− β). In our applications, we set ε = 0.01.

Method 2: Value Function Iteration that Exploits the Monotonicity of the

Policy Function and the Concavity of the Value Function We can improve

upon the method 1 if we take advantage of the specific nature of the problem. First,

the number of iterations can be reduced substantially if the initial value function is

closer to its final solution. Using K∗ from the continuous valued problem as our guess

of the stationary solution, the stationary value function is defined by

v∗i = u(f(K∗)−K∗) + βv∗i , ∀i = 1, 2, . . . , n,

and we can use v∗i = u(f(K∗)−K∗)/(1− β) as our initial guess.

Second, we can exploit the monotonicity of the policy function, that is:

Ki ≥ Kj ⇒ K ′
i = h(Ki) ≥ K ′

j = h(Kj).

As a consequence, once we find the optimal index j∗1 for K1, we do not need to consider

capital stocks smaller than Kj∗1 in the search for j∗2 any longer. More generally, let

j∗i denote the index of the maximization problem in Step 2 for i. Then, for i + 1 we

evaluate u(F (N, Ki)−Kj) + βv0
j only for indices j ∈ {j∗i , . . . n}.

Third, we can shorten the number of computations in the maximization Step 2, since

the function

φ(K ′) := u(f(K)−K ′) + βv(K ′) (2)

is strictly concave.9 A strictly concave function φ defined over a grid of n points either

takes its maximum at one of the two boundary points or in the interior of the grid. In

9Since the value function, as well as the utility and the production function, are strictly concave.

6

the first case the function is decreasing (increasing) over the whole grid, if the maximum

is the first (last) point of the grid. In the second case the function is first increasing

and then decreasing. As a consequence, we can pick the mid-point of the grid, Km,

and the point next to it, Km+1, and determine whether the maximum is to the left of

Km (if φ(Km) > φ(Km+1)) or to the right of Km (if φ(Km+1) > φ(Km)). Thus, in the

next step we can reduce the search to a grid with about half the size of the original

grid. Kremer (2001), pp. 165f, proves that search based on this principle needs at most

log2(n) steps to reduce the grid to a set of three points that contains the maximum.

For instance, instead of 1000 function evaluations, binary search requires no more than

13! We describe this principle in more detail in the following algorithm:

Algorithm 2.1 (Binary Search)

Purpose: Find the maximum of a strictly concave function f(x) defined over a grid

of n points X = {x1, ..., xn}

Steps:

Step 1: Initialize: Put imin = 1 and imax = n.

Step 2: Select two points: il = floor((imin + imax)/2) and iu = il + 1, where floor(i)

denotes the largest integer less than or equal to i ∈ R.

Step 3: If f(xiu) > f(xil) set imin = il. Otherwise put imax = iu.

Step 4: If imax−imin = 2, stop and choose the largest element among f(ximin
), f(ximin+1

),

and f(ximax). Otherwise return to Step 2.

Finally, the closer the value function gets to its stationary solution, the less likely it

is that the policy function changes with further iterations. So usually one can termi-

nate the algorithm, if the policy function has remained unchanged for a number of

consecutive iterations. Algorithm 2.2 summarizes our second method:

Algorithm 2.2 (Value Function Iteration in the Deterministic Growth Model)

Purpose: Find an approximate policy function of the recursive problem

7

Steps:

Step 1: Choose a grid

K = [K1, K2, . . . , Kn], Ki < Kj, i < j = 1, 2, . . . n.

Step 2: Initialize the value function: ∀i = 1, . . . , n set

v0
i =

u(f(K∗)−K∗)
1− β

,

where K∗ denotes the stationary solution to the continuous-valued Ramsey

problem.

Step 3: Compute a new value function and the associated policy function, v1 and h1,

respectively: Put j∗0 ≡ 1. For i = 1, 2, . . . , n, and j∗i−1 use Algorithm 2.1 to find

the index j∗i that maximizes

u(f(Ki)−Kj) + βv0
j

in the set of indices {j∗i−1, j
∗
i−1 + 1, . . . , n}. Set h1

i = j∗i and v1
i = u(f(Ki) −

Kj∗i) + βv0
j∗i

.

Step 4: Check for convergence: If ‖v0 − v1‖∞ < ε(1 − β), ε ∈ R++ (or if the policy

function has remained unchanged for a number of consecutive iterations) stop,

else replace v0 with v1 and h0 with h1 and return to step 3.

Method 3: Policy Function Iteration Value function iteration is a slow procedure

since it converges linearly at the rate β, that is, successive iterates obey

‖vs+1 − v∗‖ ≤ β‖vs − v∗‖,

for a given norm ‖x‖. Howard’s improvement algorithm or policy function iteration is a

method to enhance convergence. Each time a policy function hs is computed, we solve

for the value function that would occur, if the policy were followed forever. This value

function is then used in the next step to obtain a new policy function hs+1. As pointed

out by Puterman and Brumelle (1979), this method is akin to Newton’s method for

locating the zero of a function so that quadratic convergence can be achieved under

certain conditions.

8

The value function that results from following a given policy h forever is defined by

vi = u(f(Ki)−Kj) + βvj, i = 1, 2, . . . , n.

This is a system of n linear equations in the unknown elements vi. We shall write

this system in matrix-vector notation. Towards this purpose we define the vector

u = [u1, u2, . . . , un], ui = u(f(Ki) − Kj)), where, as before, j is the index of the

optimal next-period capital stock Kj given the current capital stock Ki. Furthermore,

we introduce a matrix Q with zeros everywhere except for its row i and column j

elements, which equal one. The above equations may then be written as

v = u + βQv, (3)

with solution v = [I − βQ]−1u.

Policy function iterations may either be started with a given value function or a given

policy function. In the first case, we compute the initial policy function by performing

Step 3 of Algorithm 2.2 once. The difference occurs at the end of Step 3, where we set

v1 = [I − βQ1]v0. Q1 is the matrix obtained from the policy function h1 as explained

above.

If n is large, Q is a sizeable object and one may encounter a memory limit on the

personal computer. For instance, if the grid contains 10,000 points Q has 108 elements.

Stored as double precision this matrix requires 0.8 gigabyte of memory. Fortunately, Q

is a sparse matrix and many linear algebra routines are able to handle this data type.10

Method 4: Modified Policy Iteration If it is not possible to implement the

solution of the large linear system or if it becomes too time consuming to solve this

system, there is an alternative to full policy iteration. Modified policy iteration with

k steps computes the value function v1 at the end of Step 3 of Algorithm 2.2 in these

steps:

w1 = v0,

wl+1 = u + βQ1wl, l = 1, . . . , k,

v1 = wk+1. (4)

As proved by Puterman and Shin (1978) this algorithm achieves linear convergence at

rate βk+1 (as opposed to β for value function iteration) close to the optimal value of

the current-period utility function.

10For instance, using the Gauss sparse matrix procedures allows to store Q in an n×3 matrix which

occupies just 240 kilobyte of memory.

9

Methods 5 and 6: Interpolation Between Grid-Points Applying methods 1-

4, we confine the evaluation of the next-period value v(K ′) to the grid points K =

{K1, K2, . . . , Kn}. In methods 5 and 6, we also evaluate v(K ′) off grid points using

interpolation techniques. We will consider two kinds of function approximation: linear

interpolation (method 5) and cubic spline interpolation (method 6). The two interpo-

lation schemes assume that a function y = f(x) is tabulated for discrete pairs (xi, yi).

Linear interpolation computes ŷ ' f(x) for x ∈ [xi, xi+1] by drawing a straight line

between the points (xi, yi) and (xi+1, yi+1). The cubic spline determines a function

f̂i(x) = ai + bix + cix
2 + dix

3 that connects neighboring points and where the first

and the second derivatives agree at the nodes.11 The first method provides a smooth

function between grid points that is continuous (but not differentiable) at the nodes

(Ki, vi). The second method determines a smooth (continuously differentiable) func-

tion over the complete set of points (Ki, vi). Since the current-period utility function

is smooth anyway, we are able to approximate the rhs of the Bellman equation (2) by

a continuous function φ̂(K):

φ̂(K) := u(f(Ki)−Kj) + v̂(Kj), (5)

where v̂ is determined by interpolation, either linearly or cubically.

In the interval [Kj−1, Kj+1] the maximum of φ̂ is located either at the end-points or in

the interior. For this reason, we need a method that is able to deal with both boundary

and interior solutions of a one-dimensional optimization problem. In order to locate

the maximum, we use Golden Section Search.

Accordingly, for methods 5 and 6, we need to modify Step 3 of Algorithm 2.2 in the

following way: we determine j∗i as before and then refine the solution. First, assume

that j∗i is the index neither of the first nor of the last grid-point so that the optimum

of (2) is bracketed by Ij = [Kj∗i −1, Kj∗i +1]. Instead of storing the index j∗i , we now

locate the maximum of (5) in Ij with the aid of Golden Section Search and store the

maximizer K̃j∗i ∈ Ij in the vector h in position i. φ̂(K̃j) is stored in vi. If j∗i = 1, we

evaluate (5) at a point close to K1. If this returns a smaller value than the one at K1,

we know that the maximizer is equal to K1. Otherwise, we locate K̃j∗i in [K1, K2]. We

proceed analogously, if j∗i = n.

In summary, we use the six different algorithms to compute the approximate solution of

the infinite-horizon Ramsey model with u(C) = [C1−η− 1]/(1− η) and F (N, K) = Kα

11In particular, we use secant Hermite splines where the first derivative at the endpoints is set equal

to the slope of the secant.

10

providing us with the solutions Ct = ĥC(Kt) and Kt+1 = ĥK(Kt) for consumption

and the capital stock, respectively. We evaluate their performance with respect to

computation time and accuracy as measured by the error e in the Euler equation:

u′((1 + e)Ct) = βu′(Ct+1)f
′(Kt+1), (6)

with Ct = ĥC(Kt), Kt+1 = ĥK(Kt) and Ct+1 = ĥC(Kt+1). The Euler residual e provides

a unit-free measure of the percentage error in the first-order equation of the household

and is a standard measure of accuracy in similar studies like Aruoba et al. (2006) or

Heer and Maußner (2008a).

We used a notebook with a dual core 2 gigahertz processor.12 The parameters of

the model are set equal to α = 0.27, β = 0.994, η = 2.0, and δ = 0.011. The

value and the policy functions are computed on a grid of n points over the interval

[0.75K∗, 1.25K∗]. We stopped iterations if the maximum absolute difference between

successive approximations of the value function became smaller than 0.01(1−β) or if the

policy function remained unchanged in 30 consecutive iterations (this latter criterium

is only applicable for methods 1 through 4). Modified policy iterations use k = 30.

The Euler equation residuals are computed for 200 equally spaced points in the smaller

interval [0.8K∗, 1.2K∗]. Linear – and in the case of method 6 – cubic interpolation was

used to compute the policy function between the elements of the vector h.

3 Evaluating the Algorithms in the Deterministic Infinite-

Horizon Ramsey Model

Table 1 presents the maximum absolute value of the 200 Euler equation residuals in

the computation of the deterministic Ramsey model. As can be seen from the first row

of this table, computation time becomes prohibitive for simple value function iteration

if n is getting large. Even on a grid of 5,000 points the algorithm requires more than 7

hours to converge. For the same n, Algorithm 2.2 needs just 4 minutes, and modified

policy iteration (method 4) 1 minute and 18 seconds. The rows labeled 3 and 4 in the

upper panel of Table 1 convey a second finding. Policy iteration requires more time

than modified policy iteration if n is reasonably large. In our example, this occurs

somewhere between n = 250 and n = 500. The time needed to solve the large linear

system (3) considerably slows down the algorithm. For a sizable grid of n = 10, 000

points, method 4 is about five times faster than method 3.

12The source code is available in the Gauss program Ramsey2d.g and can be downloaded from Alfred

Maußner’s homepage ’http://www.wiwi.uni-augsburg.de/vwl/maussner/’.

11

Table 1

Run Time

Method n=250 n = 500 n = 1, 000 n = 5, 000 n = 10, 000

1 0:00:43:06 0:03:04.44 0:12:39:51 7:16:36:28

2 0:00:05:63 0:00:12:91 0:00:28.94 0:04:00:67 0:09:16:91

3 0:00:02:08 0:00:05:02 0:00:14:22 0:06:18:61 0:22:11:48

4 0:00:02:31 0:00:04:47 0:00:08:31 0:01:18:53 0:04:39:17

5 0:01:05:97 0:02:34:89 0:06:36:89 1:25:07:61 7:43:13:78

6 0:01:15:92 0:02:27:94 0:04:48:80 0:22:41:84 0:44:14:28

Euler Equation Residuals

Method n = 250 n = 500 n = 1, 000 n = 5, 000 n = 10, 000

1 4.009E-2 2.061E-2 9.843E-3 1.835E-3

2 4.009E-2 2.061E-2 9.843E-3 1.835E-3 8.542E-4

3 4.026E-2 2.061E-2 9.363E-3 2.562E-3 8.722E-4

4 4.026E-2 2.061E-2 8.822E-3 3.281E-3 8.542E-4

5 5.814E-4 4.605E-4 2.339E-4 4.093E-5 2.013E-5

6 3.200E-7 3.500E-7 3.200E-7 3.800E-7 3.600E-7

Notes: The method numbers are explained in the main text. Run time is given in
hours:minutes:seconds:hundreth of seconds on a dual core 2 gigahertz processor. The empty en-
try pertains to a simulation which we interrupted after 8 hours of computation time. Euler equation
residuals are computed as maximum absolute value of 200 residuals computed on an equally spaced
grid of 200 points over the interval [0.8K∗, 1.2K∗].

It should come as no surprise that adding interpolation between grid-points to Step

3 of Algorithm 2.2 increases computation time. After all, we must determine the line

connecting two points of the grid and must locate the maximizer of (5) via a search

routine. Method 5 requires almost eight hours to converge, if n equals 10,000. It is,

however, surprising, that cubic interpolation, which requires additional computations

as compared to linear interpolation, is nevertheless quite faster for large grids. In the

case of n = 10, 000 the algorithm converged after about three quarters of an hour. It

seems that the smoother cubic function – though more expensive to compute – allows

a quicker determination of K̃j∗i .

In the case of methods 1 through 4 the Euler equation residuals decrease from about

4.E-2 to about 9.E-4, if n increases from 250 to 10,000. It, thus, requires a sizable

12

grid to obtain an accurate solution. Linear interpolation (method 5) achieves residuals

of size 6.E-4 already with n = 250. In the case of n = 10, 000 (i.e., with 40 times

more points), the Euler residual shrinks by a factor of 20 at the cost of many hours of

patience before we could discover this result. Cubic interpolation achieves very high

accuracy at n = 250 that cannot be increased by making the grid finer. The high

degree of accuracy that can be achieved with this method even for a small number of

grid-points is further illustrated in Figure 1.

Figure 1: Policy Functions of the Next-Period Capital Stock of the Infinite-Horizon Ramsey

Model

13

The upper panel of this figure plots the analytic policy function of the model, which is

given by K ′ = αβKα in the case of η = δ = 1 together with two approximate solutions.

Both use a grid of n = 100 points over [0.75K∗, 1.25K∗]. The solution obtained from

linear interpolation between the grid-points wriggles around the true solution, whereas

the solution based on cubic interpolation is visually not distinguishable from the latter.

Although even the first approximate solution is close to the true one (the maximum

absolute value of the distance to the true solution is less than 4.E-4) the second ap-

proximation is so close that the distance to the analytic solution is almost zero (see the

lower panel of Figure 1).

In summary, the cubic interpolation between grid-points outperforms the other five

methods. It needs only slightly more than a minute (see Table 1) to compute a highly

accurate approximate solution of the deterministic growth model (see the column n =

250 in Table 1).

4 Adapting and Evaluating the Algorithms for the Stochastic

Infinite-Horizon Ramsey Model

In this section, we extend our analysis from a one-dimensional to a two-dimensional

value function problem. We, therefore, introduce a productivity shock in the determin-

istic infinite-horizon model. Production Yt in period t is now given by:

Yt = Ztf(Kt).

The stochastic productivity Zt is assumed to follow a stationary stochastic process.

The central planner maximizes the expected discounted life-time utility:

U0 = E0

∞∑
t=0

βtu(Ct), β ∈ (0, 1),

subject to the resource constraint

Ztf(Kt) + (1− δ)Kt ≥ Ct + Kt+1,

and non-negativity constraints on consumption Ct and the capital stock Kt+1. Expec-

tations E0 are taken conditional on the information available at time t = 0.

We can also reformulate the problem in a recursive representation. As the problem is

independent of time, we, again, drop the time index. The solution of the problem is a

value function v(K, Z) that solves the Bellman equation

v(K,Z) = max
K′∈DK,Z

u(Z, K, K ′) + βE [v(K ′, Z ′)|Z] (7)

14

where E[·|Z] is the mathematical expectations operator conditional on the realization of

Z at the time the decision on K ′ is to be made, u(Z, K, K ′) = u(Zf(K)+(1−δ)K−K ′),

and DK,Z := {K ′ : 0 ≤ K ′ ≤ Zf(K) + (1− δ)K}.

Approximations of E[·|Z] As in the previous section, we replace the original prob-

lem by a discrete valued problem and approximate the value function by an n×m matrix

V = (vij), whose row i and column j argument gives the value of the optimal policy,

if the current state of the system is the pair (Ki, Zj), Ki ∈ K = {K1, K2, . . . , Kn},
Zj ∈ Z = {Z1, Z2, . . . , Zm}.

The further procedure depends on the model’s assumptions with respect to Z. There

are models that assume that Z is governed by a Markov chain with realizations given

by the set Z and transition probabilities given by a matrix P = (pjl), whose row j

and column l element is the probability of moving from Zj to state Zl. Given Z and

the matrix P , the Bellman equation of the discrete valued problem is

vij = max
Kk∈Dij

u(Zj, Ki, Kk) + β

m∑

l=1

pjlvkl,

i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (8)

where we use Dij as a shorthand for the set DKi,Zj
. As in the previous section, we can

use iterations over this equation to determine the matrix V .

Suppose, as it is often the case in the modelling of business cycle fluctuations, that

ln Z follows an AR(1)-process:

ln Z ′ = % ln Z + σε′, % ∈ [0, 1), ε′ ∼ N(0, 1). (9)

The first approach to tackle this case is to use Tauchen’s algorithm that provides

a Markov chain approximation of the continuous valued AR(1)-process (see Tauchen,

1986). To use this algorithm, one must provide the size of the interval IZ = [Z1, Zm] and

the number of grid-points m. The algorithm determines the grid Z = {Z1, Z2, . . . , Zm}
and the matrix of transition probabilities P = (pjl) so that the discrete-valued Bellman

equation (8) still applies. The boundaries of Z must be chosen so that Z remains in

the interval IZ . The usual procedure is to set Zm − Z1 equal to a multiple of the

unconditional standard deviation of the process (9), which equals13

σZ =

√
σ2

1− %2
.

13See, e.g., Hamilton (1994), pp. 53-56 for a derivation of this formula.

15

One can use simulations of this process to find out if it leaves a given interval. Usually,

an interval of size equal to 9σZ or 10σZ is large enough. Tauchen (1986) provides

evidence that even 9 grid-points are sufficient for a reasonably good approximation of

(9).

The second approach to approximate the conditional expectation on the rhs of the

Bellman equation (7) rests on the analytic expression for E(·|Z). In the case of the

process (9) this equals

E [v(K ′, Z ′)|Z] =

∫ ∞

−∞
v

(
K ′, e% ln Z+σε′

) e
−(ε′)2

2√
2π

dε′.

If the value function is tabulated in the matrix V = (vij), we can interpolate between

the row-elements of V to obtain an integrable function of Z, which allows us to employ

numeric integration techniques to compute E[·|Z]. For the normal distribution, Gauss-

Hermite quadrature is a suitable method since the weight function is given by w(x) =

e−x2
. In Heer and Maußner (2008a), however, we point to a serious drawback of

this approach. Gauss-Hermite quadrature requires a much larger interval for Z than

it will be necessary for simulations of the model. IZ must contain the integration

nodes ±√2σx, where x denotes the largest node used by the respective Gauss-Hermite

formula. For instance, x ' 1.65 in the four-nodes formula that we usually employ to

compute a conditional expectation. In particular, we have to ascertain that % ln Zm +√
2σx ≤ ln Zm and % ln Z1−

√
2σx ≥ ln Z1. For given %, σ, and x these equations can be

solved for the lower and the upper bound Z1 and Zm, respectively. For our parameter

values this delivers | ln Zm − ln Z1| ' 21σZ . Thus, instead of using an interval of size

10σZ , one must use an interval of size 21σZ . Yet, as explained below, the boundaries

of K will usually depend on the boundaries of Z . For a given number of grid-points

n, a larger interval IK = [K1, Kn] implies a less accurate solution that may outweigh

the increase of precision provided by the continuous-valued integrand. With respect

to the stochastic infinite-horizon Ramsey model we indeed find that the Markov chain

approximation allows a much faster computation of the value function for a given degree

of accuracy.14 For this reason, we will consider this approach only.

14See Heer and Maußner (2008a).

16

The Basic Algorithm The problem that we, thus, have to solve, is to determine V

iteratively from

vs+1
ij = max

Kk∈Dij

u(Zj, Ki, Kk) + β

m∑

l=1

pjlv
s
kl,

i = 1, 2, . . . , n, j = 1, 2, . . . , m. (10)

This process will also deliver the policy function H = (hij). In our basic algorithm,

this matrix stores the index k∗ij of the optimal next-period state variable K ′
k ∈ K in

its ith row and jth column element. The pair of indices (i, j) denotes the current state

of the system, that is, (Ki, Zj). We assume that the value function v of our original

problem is concave in K and that the policy function h is monotone in K so that we

can continue to use all of the methods encountered in Section 2. As we have seen in

Section 3, a reasonable fast algorithm should at least exploit the concavity of v and

the monotonicity of h. Our basic algorithm, thus, consists of steps 1, 2.1, and 2.2i of

Algorithm 4.1. We first discuss the choice of K and V 0 in Step 1 before we turn to

methods that accelerate convergence and increase precision in Step 2.

Algorithm 4.1 (Value Function Iteration 2)

Purpose: Find an approximate policy function of the recursive problem (7) given a

Markov chain with elements Z = {Z1, Z2, . . . , Zm} and transition matrix P .

Steps:

Step 1: Choose a grid

K = {K1, K2, . . . , Kn} , Ki < Kj, i < j = 1, 2, . . . n,

and initialize V 0.

Step 2: Compute a new value function V 1 and an associated policy function H1: For

each j = 1, 2, . . . , m repeat these steps:

Step 2.1: Initialize: k∗0j = 1.

Step 2.2: i) For each i = 1, 2, . . . , n and k∗i−1j use Algorithm 2.1 to find the

index k∗ that maximizes

wk = u(Zj, Ki, Kk) + β

m∑

l=1

pjlv
0
kl

17

in the set of indices k ∈ {k∗i−1j, k
∗
i−1j + 1, . . . , n}. Set k∗ij = k∗. If

interpolation is not desired, set h1
ij = k∗ and v1

ij = wk∗, else proceed

as follows: ii) (optional) If k∗ = 1 evaluate the function φ̂ defined by

equation (14) at a point close to K1. If this returns a smaller value

than at K1, set K̃ = K1, else use Golden Section Search to find the

maximizer K̃ of φ̂ in the interval [K1, K2]. Store K̃ in h1
ij and φ̂(K̃)

in v1
ij. Proceed analogously if k∗ = n. If k∗ equals neither 1 nor

n, find the maximizer K̃ of φ̂ in the interval [Kk∗−1, Kk∗+1] and put

h1
ij = K̃ and v1

ij = φ̂(K̃).

Step 2.3: (optional, if Step 2.2.i was taken) Set w1 = vec V 1, and for l =

1, 2, . . . , k iterate over

wl+1 = vec U + βQ1wl,

and replace V1 by the respective elements of wk+1.

Step 3: Check for convergence: if

max
i=1,...n
j=1,...m

|v1
ij − v0

ij| ≤ ε(1− β), ε ∈ R++

(or if the policy function has remained unchanged for a number of consecutive

iterations) stop, else replace V 0 with V 1 and H0 with H1 and return to Step 2.

Choice of K and V 0 This choice is a bit more delicate than the respective step of

Algorithm 2.2. In the deterministic growth model considered in the previous sections

the optimal sequence of capital stocks is either increasing or decreasing, depending on

the given initial capital stock K0. This makes the choice of K easy. In a stochastic

model, the future path of K depends on the expected path of Z, and we do not know

in advance whether for any given pair (Ki, Zj) the optimal policy is to either increase

or decrease K. For this reason, our policy to choose K is ”guess and verify”. We will

start with a small interval. If the policy function hits the boundaries of this interval,

that is, if hij = 1 or hij = n for any pair of indices, we will enlarge K . In the case of

the stochastic growth model an educated guess is the following: If the current shock

is Zj and we assume that Z = Zj forever, the sequence of capital stocks will approach

K∗
j determined from

1 = β(1− δ + Zjf
′(K∗

j)). (11)

18

Approximate lower and upper bounds are, thus, given by K∗
1 and K∗

m, respectively.

Since, the stationary solution of the discrete-valued problem will not be equal to the

solution of the continuous-valued problem, K1 (Kn) should be chosen as a fraction (a

multiple) of K∗
1 (K∗

m).

As the computation time also depends on the initial V 0, using the zero matrix is usually

not the best choice, but it may be difficult to find a better starting value. For instance,

in the stochastic growth model we may try v0
ij = u(Zjf(Ki)− δKi), that is, the utility

obtained from a policy that maintains the current capital stock for one period. Or, we

may compute V 0 from the m different stationary solutions that result if Z equals Zj

forever:

v0
ij = u(Zjf(K∗

j)− δK∗
j) + β

m∑

l=1

pjlv
0
il,

where K∗
j solves (11). This is a system of linear equations in the nm unknowns v0

ij

with solution

V 0 = (I − βP ′)−1
U,

U = (uij), uij = u(Zjf(K∗
j)− δK∗

j), ∀i, j.

A third choice is v0
ij = u(f(K∗) − δK∗)/(1 − β), that is, the value obtained from the

stationary solution of the deterministic growth model.

As we will show below, there is, however, an even better strategy: i) start with a

coarse grid on the interval [K1, Kn]; ii) use the basic algorithm to compute the value

function V ∗ on this grid; iii) make the grid finer by using more points n. iv) interpolate

column-wise between neighboring points of the old grid and the respective points of

V ∗ to obtain an estimate of the initial value function on the finer grid. Since on a

coarse grid the algorithm will converge quickly, the choice of V 0 in step i) is not really

important and V 0 = 0 may be used.

Acceleration In Section 3, we discovered that policy function iteration is a method

to accelerate convergence. This method assumes that a given policy H1 is maintained

forever. In the context of the Bellman equation (8) this provides a linear system of

equation in the nm unknowns vij (for the moment, we suppress the superscript of V):

vij = uij + β

m∑

l=1

pjlvhij l,

uij := u(Zj, Ki, Khij
), i = 1, 2, . . . , n, j = 1, 2, . . . , m. (12)

19

In matrix notation, this may be written as

vec V = vec U + βQ vec V, U = (uij). (13)

vec V (vec U) is the nm column vector obtained from vertically stacking the rows of

V (U). The nm× nm matrix Q is obtained from H and P : Its row r = (i− 1)m + j

elements in columns c1 = (hij − 1)m + 1 through cm = (hij − 1)m + m equal the row

j elements of P . All other elements of Q are zero. Even for a grid Z with only a few

elements m, Q is much larger than its respective counterpart in equation (3). In the

previous section we have seen that for n > 500 (and, in the notation of this section

m = 1), modified policy iteration is faster than full policy iteration. For this reason,

we only will implement modified policy iteration into our algorithm. This is done in

Step 2.3 of Algorithm 4.1

Interpolation We know from the results obtained in Section 3 that interpolation

between the points of K is one way to increase the precision of the solution. Within

the current framework the objective is to obtain a continuous function φ̂(K) that

approximates the rhs of (7) given the tabulated value function in the matrix V and

the grid K . We achieve this by defining

φ̂(K) = u(Zj, Ki, K) + β

m∑

l=1

pjlv̂l(K). (14)

The function v̂l(K) is obtained from interpolation between two neighboring points Ki

and Ki+1 from K and the respective points vil and vi+1l from the matrix V . Thus,

each time the function φ̂(K) is called by the maximization routine, m interpolation

steps must be performed. For this reason, interpolation in the context of a stochastic

model is much more time consuming than in the case of a deterministic model. Our

algorithm allows for either linear or cubic interpolation in the optional Step 2.2.ii.

Evaluation The four methods 2, 4, 5, and 6 for the value function iteration are

applied to the computation of the stochastic infinite-horizon Ramsey model. We use

the functions u(C) = [C1−η − 1]/(1− η) and f(K) = Kα and measure the accuracy of

the solution by the residuals of the Euler equation

((1 + e)C)−η = E
{[

β(C ′)−η
(
1− δ + α(e% ln Z+σε′)(K ′)α−1

)]∣∣∣ Z
}

.

Again, C, C ′ and K ′ are computed by the policy functions. For example, the police

function for consumption is given by

ĥC(K, Z) = ZKα + (1− δ)K − ĥK(K,Z).

20

The policy function for the next-period capital stock ĥK is obtained from bilinear

interpolation between the elements of the matrix H. The residuals are computed over

a grid of 2002 points over the interval [0.8K∗, 1.2K∗] × [0.95, 1.05]. Table 2 displays

the maximum absolute value of the 2002 residuals. We used a notebook with a dual

core 2 gigahertz processor.15 The parameters of the model are set equal to α = 0.27,

β = 0.994, η = 2.0, δ = 0.011, % = 0.90, and σ = 0.0072. The value and the policy

function are computed on a grid of n×m points. The size of the interval IZ = [Z1, Zm]

equals 11 times the unconditional standard deviation of the AR(1)-process in equation

(9). We stopped iterations, if the maximum absolute difference between successive

approximations of the value function became smaller than 0.01(1− β) or if the policy

function remained unchanged in 50 consecutive iterations (this latter criterium is only

applicable for methods 2 and 4.) Modified policy iterations use k = 30.

Table 2

Method n m Run Time Euler Equation Residual

i ii

2 250 9 0:00:22:06 7.407E-2

4 250 9 0:00:22:94 7.407E-2

5 250 9 2:13:37:84 0:13:31:16 1.272E-3

6 250 9 2:04:01:67 0:21:01:69 1.877E-4

6 500 9 5:12:58:44 0:23:17:52 1.876E-4

6 250 15 1:04:39:22 4.930E-6

2 10,000 9 2:33:26:16 0:20:10:94 1.933E-3

4 10,000 9 1:06:48:58 0:03:52:42 1.933E-3

4 10,000 31 1:06:49:52 0:13:40:80 1.931E-3

4 100,000 15 0:17:59:56 2.089E-4

4 500,000 15 3:43:03:81 4.387E-5

Notes: The method numbers are explained in the main text. Run time is given in
hours:minutes:seconds:hundreth of seconds on a dual core 2 gigahertz processor. The column labeled i
gives the run time where the initial value function was set equal to u(f(K∗) − δK∗)/(1 − β), column ii
presents computation time from a sequential approach: we start with a coarse grid of n = 250 and increase
the number of grid points in a few steps to the desired value of n given in the second column. Except in
the first step – where we use the same initial V 0 as in the third column – each step uses the value function
obtained in the previous step to initialize V 0. Euler equation residuals are computed as maximum absolute
value of 2002 residuals computed on an equally spaced grid over the interval [0.8K∗, 1.2K∗] × [0.95, 1.05].
Empty entries indicate simulations, which we have not performed for obvious reasons.

15The source code is available in the Gauss program Ramsey3d.g from Alfred Maußner’s homepage.

Also available is a Fortran version of Algorithm 4.1.

21

On a coarse grid for the capital stock, n = 250, the first four rows in Table 2 confirm our

intuition. Interpolation increases computation time drastically, from about 25 seconds

(for methods 2 and 4) to over 2 hours but provides reasonably accurate solutions. In

the case of method 5 (method 6) the Euler equation residual is about 50 times (400

times) smaller than that obtained from methods 2 and 4.

The run times given in column ii highlight the importance of a good initial guess for the

value function. The results presented there were obtained in the following way. We used

method 4 to compute the value function on a grid of n = 250 points (given the choice of

m as indicated in the table). For this initial step we use vij = u(f(K∗)− δK∗)/(1− β)

as our guess of V . In successive steps we made the grid finer until the number of points

given in column 2 was reached. Each step used the previous value function, employed

linear interpolation to compute the additional points in the columns of V , and took

the result as initial guess of the value function. The computation time in column ii

is the cumulative sum over all steps. In the case of method 5 this procedure reduced

computation time by about 2 hours! The entries for method 2 and 4 and n = 10, 000

in column i confirm our findings from the deterministic Ramsey model that modified

policy iteration is an adequate way to reduce computation time (by almost one and

half an hour). Since it is faster close to the true solution, it clearly outperforms method

2 in successive iterations (see the entries for n = 10, 000 and n = 9 in column i and ii):

it is about 5 times faster as compared to 2.3 times in the simulations without a good

initial value function.

The entries for method 6 document that increased precision does not result from addi-

tional points in the grid for the capital stock but in the grid for the productivity shock.

In the case n = 250 and m = 15 the Euler equation residual of about 5.E-6 indicates

a very accurate solution. However, even with good starting values, it takes about an

hour to compute this solution.

There are two adequate ways to compute a less precise but still sufficiently accurate

solution with Euler equation residual of about 2.E-4: either with method 6 on a coarse

grid, n = 250 and m = 9 or with method 4 on a much finer grid, n = 100, 000 and

m = 15. Both methods require about 20 minutes to compute the policy function.

Thus, different from our findings in the previous section, cubic interpolation is not

unambiguously the most favorable method.

However, if high precision is needed, cubic interpolation on a coarse grid is quite faster

than method 4. As the last row of Table 2 shows, even on a fine grid of n = 500, 000

points the Euler equation residual is still about 10 times larger than that from method

22

6 for n = 250 and m = 15. Yet, whereas method 6 requires about an hour to compute

the policy function, method 4 needs almost four hours.

5 Conclusion

We find that modified policy function iteration dominates Howard’s algorithm in terms

of speed for high accuracy and in higher dimensional state space. Modified policy

function iteration is also shown to be an ideal candidate for the provision of an initial

guess for the value function, which may speed up the computation by the factor 10.

Value function iteration with cubic spline interpolation dominates the other algorithms

in terms of speed in both the deterministic and stochastic infinite-horizon model if high

accuracy is needed. This might be the case, for example, if the researcher would like

to study the mean return on equity in the Ramsey model as pointed out by Christiano

and Fisher (2002). We, therefore, carefully advocate the use of value function iteration

with cubic spline interpolation where the initial value is found in a tatônnement process

over a coarser grid with the help of modified policy function iteration. If our results

generalize to more complex models with three- or four-dimensional state space is an

open question which requires more experience in a variety of alternative models.

23

References

Aruoba, S.B., J. Fernández-Villaverde, and J.F. Rubrio-Ramı́rez. 2006. Comparing
Solution Methods for Dynamic Equilibrium Economies. Journal of Economic
Dynamics and Control. Vol. 30. pp. 2477-2508.

Christiano, L.J., and J.D.M. Fisher. 2000. Algorithms for Solving Dynamic Models
with Occasionally Binding Constraints. Journal of Economic Dynamics and
Control. Vol. 24. pp. 1179-1232.

Erosa, A., and G. Ventura. 2002. On inflation as a regressive consumption tax. Journal
of Monetary Economics. Vol. 49. pp. 761-95.

Hamilton, J. 1994. Time Series Analysis, Princeton, N.J.: Princeton University Press.

Heer, B., 2007, On the modeling of the income distribution business cycle dynamics.
CESifo working paper No. 1945.

Heer, B., and A. Maußner. 2008a. Computation of Business Cycle Models: A Com-
parison of Numerical Methods. Macroeconomic Dynamics. forthcoming.

Heer, B., and A. Maußner. 2008b. Dynamic General Equilibrium Modelling: Compu-
tational Methods and Applications. 2nd edition. Berlin: Springer. forthcoming.

Judd, K.L. 1998. Numerical Methods in Economics, Cambridge, MA.: MIT Press.

Kremer, J. Arbeitslosigkeit, Lohndifferenzierung und wirtschaftliche Entwicklung. 2001.
Köln: Josef Eul Verlag.

McGrattan, E.R. 1999. Application of Weighted Residual Methods to Dynamic Eco-
nomic Models, in: R. Marimon and A. Scott (Eds.), Computational Methods
for the Study of Dynamic Economies. Oxford and New York: Oxford University
Press. pp. 114-142.

Puterman, Martin L. and Moon Chirl Shin. 1978. Modified Policy Iteration Algo-
rithms for Discounted Markov Decision Problems. Management Science. Vol. 24.
pp. 1127-1237.

Puterman, Martin L. and Shelby Brumelle. 1979. On the Convergence of Policy
Iteration in Stationary Dynamic Programming. Mathematics of Operations Re-
search. Vol. 4. pp. 1979, 60-69.

Tauchen, G. 1986. Finite State Markov-Chain Approximations to Univariate and Vec-
tor Autoregressions. Economics Letters. Vol. 20. pp. 177-181.

Taylor, J.B., and H. Uhlig. 1990. Solving Nonlinear Stochastic Growth Models: A
Comparison of Alternative Solution Methods. Journal of Business and Economic
Statistics. Vol. 8. 1-17.

24

