Object-Oriented paradigm in practice

Advanced Programming
Barbara Russo

OO paradigm

- It is a method to model system at different stages
- The more we proceed in the project the more we know and the more we can represent

28 February 2014

Barbara Russo

Why is OO popular?

- The hope that it will increase productivity
- Natural way of structuring the world
 - Objects
 - Messages
 - Responsibility

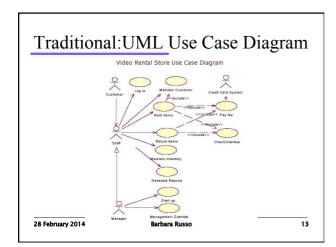
28 February 2014

Barbara Russo

,			
,			
,			
,			
,			

OO Principles • Means to achieve high quality, the four principles: - Encapsulation - Information Hiding - Abstraction - Modularization - Reuse 28 February 2014 Barbara Russo OO Principles: practical definitions • Encapsulation - Building classes and objects as proper data structures - Entities should be divided in logically related groups, keeping interactions between different groups at a minimum - Hide information not needed for the messaging exchange or object's service provision of an object/class - Information hiding is perfectly accomplished by furnishing a compiled version of the source code that is interfaced via a header file • In Java: Encapsulation and access identifiers; overriding or Reflection API can break encapsulation if understood as "information hiding" 28 February 2014

OO Principles: practical definitions

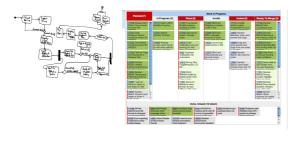

- Define entities that need not to exist in the real world but that capture the nature of the derived entities
- Modularization
 - Model the world in entities
- Reuse
 - Use services and attributes of ancestor entities in the inheritance tree
- Delegation

Barbara Russo

,			

Exercise • In group, make an example in each case - You can use class diagram or code chunks Key Concepts recap • classes - methods - inheritance - relations with other classes • objects: instances of classes - attributes with assigned values - instantiated relations • messages and methods to respond to a message 28 February 2014 Barbara Russo Classes and objects • Classes are organized in: - Hierarchies - A taxonomy is a classification of the real world (Animal tree, Person tree, etc) • Objects are instances of and belong to one class: - Objects know who they are 28 February 2014 Barbara Russo

OO paradigm: Three Views • Conceptual (OOAnalysis) · Shows concepts of the domain • Independent of implementation • Specification (OODesign) · General structure of the running system • Interfaces of software (types) • Implementation (OOProgramming) • Details of the implementation Most often the only used B. Russo and G. Succi OO Analysis (OOA) • OOA deals with modelling the system functionalities • OOA is about "what" is the system • Non-OO analysis uses data flow diagrams • OOA uses conceptual diagrams, to model the use of the system and its entities (classes) 28 February 2014 Barbara Russo Modeling OOA • Traditional • Agile (this course)


This course

• To render requirements of a system, we use the User Stories (XP approach) and back log (SCRUM).

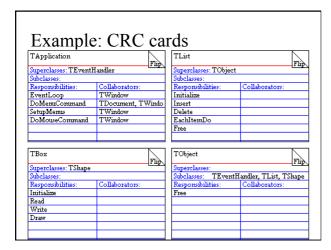
28 February 2014

Barbara Russo

This course: User Stories Diagrams

28 February 2014

Barbara Russo


15

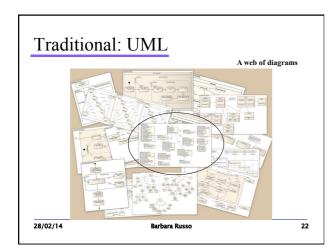
OO Design (OOD) Objective: finding the right objects and the correct	
relations among them	
• OOA is about "how" is the system and who does	
what	
Objects are	
- dependent on the domain	
 even a single object performing all system functionalities could work → traditional system analysis 	
But it does not get the best of OOD	
Modeling OOD	
• Traditional	
• Agile (this course)	-
OOD in this course	-
To design the credition in a creature was the CDC	
• To design the entities in a system, we use the CRC diagrams (agile approach) and the UML class diagrams	
(traditional approach)	

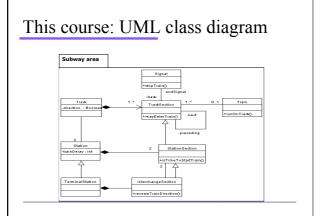
18

28 February 2014

Barbara Russo

OOD: CRC cards


- http://www.agilemodeling.com/artifacts/crcModel.htm
- remember ER diagrams?



CRC cards

• Can be used for analysis and design. In the analysis are used simple as sets of classes interacting among each other

28 February 2014 Barbara Russo 21

OO programming (OOP)

- The key computational entities are called "Objects"
- Objects know:
 - Who they are ontology
 - What they do behaviour
- The objects belong to classes

TI. OOD	
This course: OOP	
• We use:	
- Java language	
- Test Cases and Junit	
- Test Driven Development	
	•
F 4 F	
Further readings	
A. I	
A Laboratory For Teaching Object-Oriented Thinking	
- Beck and Cunningham	-
28 Eshware 2014 Roskur Bussa	
28 February 2014 Barbara Russo 26	
28 February 2014 Barbara Russo 26	
28 February 2014 Barbara Russo 26	
28 February 2014 Barbara Russo 26	
28 February 2014 Barbara Russo 26	
28 February 2014 Barbara Russo 26	
28 February 2014 Barbara Russo 26 Next Lecture	
Next Lecture	
Next Lecture	