
Parametric Classification over Multiple Samples
Barbara Russo

Faculty of Computer Science
Free University of Bozen-Bolzano

Bolzano, Italy
Barbara.Russo@unibz.it

Abstract—This pattern was originally designed to classify
sequences of events in log files by error-proneness. Sequences
of events trace application use in real contexts. As such,
identifying error-prone sequences helps understand and predict
application use. The classification problem we describe is typical
in supervised machine learning, but the composite pattern we
propose investigates it with several techniques to control for data
brittleness. Data pre-processing, feature selection, parametric
classification, and cross-validation are the major instruments that
enable a good degree of control over this classification problem.
In particular, the pattern includes a solution for typical problems
that occurs when data comes from several samples of different
populations and with different degree of sparcity.

I. PROBLEM

The pattern we propose applies in the case of classification
problems with two parametric output categories, replicated
over several independent samples (not drawn from the same
population), but with common research objectives. The pattern
applies in case of curse of dimensionality of samples, that is
when the feature spaces are highly dimensional. Large samples
are needed to apply cross validation techniques over sample
splittings. Techniques of balancing categories in samples might
be necessary if any category is scarcely represented.

II. SOLUTION

The classification problem is illustrated in Fig. 1. The
solution we propose is structured in answers to a series of
questions that drive the structure of our composite pattern.

Should I merge all my samples? This is a typical question
when multiple samples are available. The answer depends on
whether there is a common population for all / part or no
samples. The pattern we propose here concerns the last case
in which samples are not drawn from any common population,
but still the research we want to perform on them has the same
common objectives. In this case, we do not merge the samples
and apply the classification on the merged set, but we rather
replicate the analysis on each sample and then use technique
of meta-analysis over samples to draw sample independent
conclusion.

Which features should I consider? In the single-sample
case, we can correlate the variables describing the input with
the variable determining the output categories. Significant
high correlation values can be used to indicate variables to
consider as input features. The significance and the value of the
correlations vary over samples, though. A sound technique to
select the types of features relevant in a classification problem

independently from the samples is the weighted estimators of a
common correlation, a meta-analysis technique that determines
whether the weighted mean of correlations is a good estimator
of the correlation across samples, [2]. It is based on the
homogeneity test of the estimations across the samples with
the Null Hypothesis:
N0 : All correlations of the samples are equal.
The Cochran Q statistics for homogeneity test of the cor-

relation mean with significance level 0, 05 is used to test N0

against the chi-square threshold value for a suitable degree of
freedom [3].

Which features are redundant? This is a typical problem
that relates to curse of dimensionality: data can be scarce
in high dimensional spaces and classifiers’ performance is
low with scarce data. In machine learning theory, there are
various approaches; the one we propose here is Information
Gain (IG). IG ranks attributes from the most informative to
least informative. Compared with other techniques as Principal
Component Analysis, IG is rather intuitive and gives ready-
available sets of variables that most influence the information
to be used with the classifier. As illustrated in [6], IG measures
the reduction in entropy of one class distribution C achieved
by conditioning it with a new variable X:

Information Gain(X) = H(C)−H(C|X)

where H() is the expected mean of number of bits required to
encode C:

H(C) = −
∑
o∈C

p(o)log2p(o)

How do I classify my features? The answer depends on
the context of research or the percentage of available faulty
sequence types. We propose a parametric approach that defines
the output categories as function of a parameter that can be
valued ex-ante to satisfy specific research constraints or data
scarcity (as in traditional literature) or ex-post by the best
accuracy of the classifiers.

Given ρ the variable defining the output categories and c a
parameter, we define the two parametric output groups as:

G1(c) = {feature : ρ(feature) ≥ c}
G2(c) = {feature : ρ(feature) < c}

For each value of the parameter c, we get a variation of the
classification problem.

978-1-4673-6296-2/13 c© 2013 IEEE DAPSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

23

FeatureSpace1
sequence1,1

...
sequence1,m

FeatureSpace...
sequence...,1

...
sequence...,m

FeatureSpacen
sequencen,1

...
sequencen,m

- Classifier

-

-

G1(c)

G2(c)

Fig. 1. Input and output of a classifier in case of multiple samples

Which model should I select? With classifiers the answer
depends on the good use of the cross validation technique.
We illustrate here the approach presented in [4] and a way to
compare different models by their accuracy.

Cross-validation provides techniques to measure the ability
of a model to predict on new instances. The approach in
[4] consists of three stages: training, validating, and testing
a model. First a sample is randomly split into a fit set and a
validation set and then the fit set is in turn randomly split into
a training set and test set. The percentage of splitting can be
fixed (typically 70-30) or variable (1/k - (k-1)/k) depending
whether we want to control for the splitting size. The model
learns its parameters on a training set (Training), calculates
its error on a validation set (Generalization), and measure its
accuracy on the test set (Quality of fit). The quality is evaluated
averaging accuracy measures over the n-folds cross-validation
(typically n = 10) on the test set.

We use the balance measure greater than a given threshold
to determine the top ranked models for generalization and
quality. Choosing the threshold is a key issue. Literature on
classification problems in software can help to set it, (e.g.,
[6]). The balance measure is a distance from the ideal value
(1, 0) and the actual pair (true prediction rate, false prediction
rate):

bal= 1− dist((TPr, FPr), (1, 0)) = 1−
√

(TPr−1)2+(FPr)2√
2

.

High values of balance indicates proximity to the ideal value
(1,0). Top ranked model are evaluated over all the sample
splittings. Finally, we can compare different classification
problems, by repeating this procedure at different values of
c.

III. CONSEQUENCE

Each of the technique that composes the pattern has some
subtle aspects to consider and some limitations.
• The meta-analysis technique assumes that samples come

from normally-distributed populations with the same cor-
relation and sample correlations are computed according
to Pearsons definition of correlation. When we cannot
assume any normality in the distributions of our in-
put variables, we need to normalize the sample cor-
relations with the Fisher z transformation, compute of
the 95% confidence interval confidence interval for the
transformed correlations, and apply the inverse Fisher z
transformation on the resulting range as in [8].

• With the homogeneity test, we aim at accepting the null
hypothesis. The type of error we must control is the
statistical power of the test and reducing the type II error
for which we accept the null hypothesis when it is false.
A typical means to increase statistical power of a test is
to increase the individual sample size and the number of
samples, [3], [2], [7], [8].

• The cross validation technique we propose requires a
large number of instances in the samples and a sufficient
representation of the categories in the samples. Large
samples are needed to have sufficient number of instances
in the three sets, training, test, and validation sets. In
addition, each set must have a sufficient representation
of the categories. When one category is not represented
in one of the three sets derived from the sample, the
sample must be discarded. Splitting the sample at dif-
ferent percentages can increase the chance (but does not
ensure it) to get three sets with some representation of
the categories. “Some” representation might also not be
enough. Literature reports that classification machines
need to run with at least 5-20% instances of each category
[4]. In this case, we ca use techniques to artificially create
splittings of samples with sufficient representations of
categories, [5], [1], but again large samples are needed.

• High values of the parameter c in the definition of the
output categories can decrease the balance of the cate-
gories in the samples and consequently the performance
of the classifiers. For example, if we classify software
classes by the number of errors they have, the number of
classes that have more than three errors G1(3) is smaller
or equal to the number of classes that have more than
one error G1(1).

IV. EXAMPLE

The example is adapted from a manuscript under review
co-authored by the author.

Log files store sequence of events determined by a given
application. A sequence starts with “log-in” event and ends
with the last event at the end of the day, before a new “log-in”
event, or with an event that is labeled as error. Each application
is characterized by a set of event types and each sequence can
be represented as a vector of multiplicities over this set of
event types. For example, the event sequence {Login, Order,
Order, Order, Run} of a given application is mapped into the

24

vector [1, 0, 3, 1], if the event types for that application are
{Login, Maintain, Order, Run}.

The feature spaces. The input vector is the vector of event
multiplicities v augmented by the multiplicity of v, µ, and the
number of users that generate the events v, ν. In this way,
each input vector represents a unique feature [v, µ, ν] that we
call sequence type. A sequence type can have no, one or more
errors, ρ, depending whether the sequences that it represents
have errors. For each application, the final sample consists
of sequence types equipped by the number of errors and the
feature space consists of the sequence types.

Thus, we might have {Login, Order, Order, Order, Run} and
{Login, Order, Order, Run, Order}. They are both represented
by [1, 0, 3, 1], and the users that generated the events in
each sequence are {Smith, Taylor, Taylor, Taylor, Smith} and
{Smith, Taylor, Murphy, Murphy, Wang} respectively. Thus
the sequence type is [1, 0, 3, 1, 2, 4] as there are two sequences
that correspond to the vector [1, 0, 3, 1] and four distinct users
that have generated the two sequences. Assuming that only
the sequence {Login, Order, Order, Order, Run} ends because
the event “Run” is “error,” the sequence type [1, 0, 3, 1, 2, 4]
has one error, ρ = 1.

Should I merge all my samples? In our example, the answer
is no. Sequences generated by different applications are in
general composed by different event types (the typical com-
mon even type is “Log-in”). As such, the sample of sequence
types we get form each application is likely to come from
an independent population. At the end, we may get as many
populations as the number of applications running in a system.

Which features should I consider? The weighted estimators
of a common correlation is applied to µ, ν, vs. ρ to understand
whether the first two variables have any impact on the last
across all our samples. We keep both variables as we cannot
reject the null hypothesis when it is true and the sample
size and the number of samples are large enough to get high
statistical power, [3].

Which features are redundant? Altogether the information
carried in sequence types can be redundant, for example not
all entries (event types) in v contribute to the classification
problem. In our case, we have found, for example, that after
feature reduction, the number of event types reduces in the
majority of the samples. This indicates that not all the types
of events in a sequence contribute to the error-proneness of a
sequence.

How do I classify my features? The output groups consist of
sequence types with a number of errors greater or equal to c,
(G1(c)), and sequence types with number of errors less than
c, (G2(c)). In the previous example, for c = 1, the sequence
type [1, 0, 3, 1, 2, 4] is classified in G1(1) and for c = 2 it is
classified in G2(2). Varying the value of c allows investigating

sequence types at different degrees of error proneness. If we
want to classify the most risky sequence types we increase the
value of c.

Which model should I select? We have cross validated
three types of classifiers: Linear Classifier (L), Radial Basis
Function neural network (RBF) and Multilayer Perceptron
neural network (MP) for five values of c and across four
different splittings for cross validation (k = 2, ...5). We found
that:
• When the performance is set at high values for quality

of fit and generalization, MP generally outperforms, but
there are samples in which the type of the classifier is
uncertain as performance depends on the data distribution
of the classification groups and the nature of classifier
itself. Specifically, L appears to outperform with low
percentages of defective sequence types and no feature
selection. RBF is more flexible and can outperform with
different percentages of defective sequence types and test
sets.

• Feature selection helps determine with more precision the
classifier for a specific sample reducing uncertainty and
increasing the robustness of the classifier over different
splittings. In particular, the linear classifier is less repre-
sented among the top ranked models.

V. R SNIPPETS

Key R Snippets can be downloaded from
https://pro.unibz.it/staff/brusso/WorkInProgress.html

REFERENCES

[1] N. Chawla, and K. Bowyer, and L. Hall, and W. Kegelmeyer, “SMOTE:
Synthetic Minority Over-sampling Technique,” Journal of Artificial
Intelligence Research vol. 16, pp. 321-357,2002.

[2] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, L.
Erlbaum Associates, 1988.

[3] V.L. Hedges and I. Olkin, Statistical Methods for Meta-Analysis, 1st ed.
Academic Press, 1985.

[4] T. M. Khoshgoftaar and D. L. Lanning, “A neural network approach for
early detection of program modules having high risk in the maintenance
phase,” in Selected papers of the sixth annual Oregon workshop on
Software metrics. New York, NY, USA: Elsevier Science Inc., 1995,
pp. 85–91.

[5] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and
imbalanced data: Problems in software defect prediction,” in Tools with
Artificial Intelligence (ICTAI), 2010 22nd IEEE International Confer-
ence on, vol. 1, oct. 2010, pp. 137 –144.

[6] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[7] J. Sanchez-Meca, and F. Martin-Martinez,“Homogeneity tests in meta-
analysis: a Monte Carlo comparison of statistical power and Type I
error”,Quality and Quantity,vol. 31, no. 4, pp. 385–399,

[8] G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, and B. Russo, “An empirical
exploration of the distributions of the Chidamber and Kemerer object-
oriented metrics suite,” Empirical Softw. Eng., vol. 10, no. 1, pp. 81–104,
Jan. 2005.

25

