
Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Software Reliability and Testing
Summer semester 2013/2014

Fundamentals

prof. Barbara Russo

February 27, 2014

1 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Table of Contents

1 Verification and Validation
Dependability of software

2 Verification: no perfect technique

3 Program analysis in dependability

2 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Verification and Validation

• Software products is imperfect. It is created by human
beings

• Verification and validation practices are a set of
methods to ensure the final product quality

• Among them software analysis and testing is a
technique to analyze a software item and detect the
differences between existing and required conditions and
to evaluate the features of the software item

3 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Definition of Verification

• Check of consistency of an implementation with a
specification

• It is about “How” – the process of building

• “Are we building the product right?” (B. Boehm)

• Example: A music player plays (it does play) the music
when I press Play

4 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Definition of Verification

• Check of consistency between two descriptions (roles)
of the system at different stages of the development
process, e.g.,

• UML class diagram and its implementation in code
• Specification document and UML class diagram

• Chain of Two Roles: Specification → Implementation
(Specification) → Implementation

5 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Definition of Validation

• Degrees to which a software system fulfils the user
requirements

• It is about “What” – the product itself

• “Are we building the right product ? (B. Boehm)

• A music player plays a music (it does not show a video)
when I press Play

6 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Usefulness vs. dependability

• Requirements are goals of a software system

• Specifications are solution to achieve the goals / user
needs (requirements)

• Software that matches requirements → useful software
• Software that matches specifications → dependable

software

7 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Definition of dependability

• Degrees to which a software system complies with its
specifications (focus on verification)

• Specifications are solutions to a problem described in
the requirement analysis

• They are prone to defects as they have been written by
human beings

8 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Validation vs. Verifications activities

Figure : Verification vs. validation. Source: Pezze and Young,
Software Testing and Analysis, Wiley, 2008

9 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Validation vs. Verification

Validation involves stakeholders’ judgment

Exercise: Discuss a validation technique

10 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Validation vs. Verification

Verification manly focuses on dependability and concerns
five software properties:

• Correctness: consistency with specification

• Reliability: statistical approximation to correctness:
probability that a system deviates form the expected
behavior

• Robustness: evaluate properties that can maintain
system operations also under exception circumstances
of not full-functionality

• Safety: robustness in case of hazardous behavior
(attacks)

• Self-Consistency
• Consistency (Specification vs specification, no conflict)
• Ambiguity (open to interpretations)
• Adherence to standards

11 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Undecidability of problems

Given a set of specifications and a program we want to find
some logical procedure to say that the program satisfies the
specifications.

• Alan Turing: some problems cannot be solved by any
computer program

• Logical paradox: If there exists a program P that can
determine whether for some arbitrary input I and
program Q, Q eventually halts, then there should be a
program P’ that can determine for some arbitrary input
I’ whether P halts.

12 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Halting problem

• Halting problem: given a program P and an input I, it is
not decidable whether P will eventually halt when it
runs with that input or it runs forever

• There is no infallible algorithm that can check a
property of interest

13 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Checking a property with algorithms

... and even when checking is feasible it might be very
expensive

14 / 27



Example 

Repeat 20 times

2/24/14 Barbara Russo 9 

Assume that 
there are 32 
possible different 
execution flows 
repeated 20 
times. If we 
execute one test 
per millisecond, 
it would take 
more than two 
days to test this 
program!! 

 



Why such number? 

•  2 execution flows per decision point 

•  5 decision points 

•  You have to determine all possible ways to combine 32 
tokens 20 times… 

•  Combination with repetition of 32 elements in 20 
groups 

•  See Pressman’s book at pg. 448 for further discussion 
2/24/14 Barbara Russo 10 



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Analysis of a property

Analysis output

Pos. output Neg. output

Pos. TP FN
Neg. FP TN

Exercise: property = correctness. Suppose we know how
many classes are correct/incorrect in our program. Use test
coverage technique to determine whether a class is correct.

15 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Optimistic and Pessimistic accuracy of
techniques

• Undecidability implies that for each verification
technique there exists a program that cannot be verified
in finite time.

• Techniques for verification are inaccurate:
• Optimistic inaccuracy: technique that verifies a property

S can return TRUE on programs that does not have the
property (FALSE POSITIVE)

• Testing is an optimist technique. It returns that a
program is correct even if no finite number of tests can
guarantee correctness

• Pessimistic inaccuracy: technique that verifies a
property S can return FALSE on programs that have the
property (FALSE NEGATIVE). Conservative technique.

• Automated programs might be pessimistic.

16 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Analysis of programs for correctness

Assume that we want to verify the property “Correctness:”

• Safe analysis accepts only correct programs

• Optimistic analysis might also return TRUE for non
correct programs

• Pessimistic analysis might also return FALSE also for
correct programs

17 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Sound analysis for correctness

P= program, A=analysis

• A of P is TRUE =⇒ P is correct

You can substitute any other property.

18 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Complete analysis for correctness

P=program A=analysis

• P is correct =⇒ A of P is TRUE

You can substitute any other property.

19 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Sound and complete analyses

	  

TRUE	   FALSE	  

Sound	  

TRUE	   FALSE	  

Complete	  

Figure : Sound and Complete analysis

20 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Substituting principle

In complex system, verifying properties can be infeasible.
Often this happens when properties are related to specific
human judgements:

• Substituting a property with one that can be easier
verified or contain the class of programs to verify

• Example: “Race condition”: interference between
writing data in one process and reading or writing
related data in another process (an array accessed by
different threads). Testing the integrity of shared data
is difficult as it is checked at run time. Typical solution
is to adhere to a protocol of serialization

21 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Serialization
Definition of serialization:

• When group of objects or states can be transmitted as
one entity and then at arrival reconstructed into a the
original distinct objects.

• Like the Transporter of Star Trek!!

22 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Serialization

• The 2 phase locking (2PL) is typically used with
transactions

• Expanding phase: locks are acquired and no locks are
released (the number of locks can only increase)

• Shrinking phase: locks are only released (the number of
locks can only decrease)

23 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Serialization

Solution for serialization in transactions

• 2PL is a sufficient property for serialization:
• 2PL =⇒ serialization,

• but it is not necessary as there are other techniques.
• serialization 6 =⇒ 2PL ,

24 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Serialization

Another solution is provided by some programming languages

25 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Java object serialization:

• An object can be represented as a sequence of bytes
that includes the object’s data as well as information
about the object’s type and its types of data.

• After a serialized object has been written into a file, it
can be read from the file and deserialized: the type
information and bytes that represent the object and its
data can be used to recreate the object in memory.

26 / 27



Software Reliability
and Testing

prof. Barbara
Russo

Verification and
Validation

Dependability of
software

Verification: no
perfect technique

Program analysis
in dependability

Java object serialization:

• The ObjectOutputStream class contains:
public final void writeObject(Object x)

throws IOException

• The method serializes an Object and sends it to the
output stream.

• Similarly, the ObjectInputStream class contains the
method for deserializing an object:
public final Object readObject() throws

IOException, ClassNotFoundException

• This method retrieves the next Object out of the stream
and deserializes it.

27 / 27


	Verification and Validation
	Dependability of software

	Verification: no perfect technique
	Program analysis in dependability

