Co-Evolution of Logical Couplings and Commits for Defect Estimation

Maximilian Steff, Barbara Russo
Faculty of Computer Science
Free University of Bozen-Bolzano
Bozen, Italy
{maximilian.steff,barbara.russo}@unibz.it

Abstract—Logical couplings between files in the commit history of a software repository are instances of files being changed together. The evolution of couplings over commits’ history has been used for the localization and prediction of software defects in software reliability. Couplings have been represented in class graphs and change histories on the class-level have been used to identify defective modules. Our new approach inverts this perspective and constructs graphs of ordered commits coupled by common changed classes. These graphs, thus, represent the co-evolution of commits, structured by the change patterns among classes. We believe that co-evolutionary graphs are a promising new instrument for detecting defective software structures. As a first result, we have been able to correlate the history of logical couplings to the history of defects for every commit in the graph and to identify sub-structures of bug-fixing commits over sub-structures of normal commits.

Keywords—change coupling, defects, commit graphs, commit history

I. INTRODUCTION

A logical coupling between files exists if those files change together over the course of development [1]. Logical couplings are typically derived from the commit history for individual files and are sometimes aggregated to modules of the system. A logical coupling between two files is an instance of those two files being changed together in the same commit. It can be complemented by an actual coupling, i.e. a syntactic relationship between the corresponding source code entities. If there is no syntactic relationship, a logical coupling might indicate possible or even necessary refactorings [2]. Logical couplings can also be used to provide additional information to developers pointing to non-obvious changes necessitated by what they have already or are intending to do [3], [4]. The presence of logical couplings arguably adds extra complexity to a system. In this vain, logical couplings can also be harnessed to estimate and predict defects in a system [5].

Typically, there is no logical coupling between all pairs of files in a system. Modularization and object-oriented programming decouple large parts of every system both logically and syntactically. That does not preclude the set of logical couplings for a file to change over time. Logical couplings among files confer a structure on the commits in which a set of files was changed. Hence, we gain a comprehensive, evolutionary perspective of the development of a system by examining the co-evolution of commits and files.

We create a graph from the commit history that represents the structure among commits as conveyed through logical couplings among the files in those commits. Figure 1 illustrates an example for a commit graph. Each node is a commit from the repository, the lower case letters in the nodes indicate the files changed in that commit. Edges are labeled with file names as well, denoting that two nodes are connected by a file that has been changed in both commits. Assuming that commit 17 is the last commit in this repository, the example is complete from the bottom.

We use bug-fixing commits in the commit history as an approximation of the number of defects related to the logical couplings of the history. In this setting, we investigate two hypotheses:

1) The history of a commit as conveyed by its files is correlated to defects.

2) Topological properties of the commit graph are correlated to fault-proneness of files.

In the remainder of this paper, we will first introduce our dataset and how we create a commit graph from it. Then, we will evaluate our hypotheses, present our findings and their limitations, and conclude with a discussion.

II. DATA

We have used a dataset from the Subversion repository of the Spring project¹. The Spring Framework is the premiere Java application framework. We consider the entire history of the repository used for the development of version 3 of the system, spanning the time from July 2008 up to commit 5116 in late-October 2011. We only consider commits to the trunk, comprising 2,960 commits for that timespan. Within those commits, we only consider Java source files and exclude all tests. Within this setting, the system grows from initially about 2,000 to 2,800 classes and from 7,000 to 13,000 syntactic dependencies between classes. In the following, we will use classes and files interchangeably since the system is written in Java.

The Spring development team maintains a JIRA issue tracker². We retrieved all defects labeled as affecting any

¹http://www.springsource.org
²http://jira.springsource.org
commit of Spring version 3 and a status of 'fixed' for a total of 1,060 defects. We mapped these defects to commits in our dataset using regular expressions matching the occurrence of unique defect identifiers from the tracker to commit messages. In this manner, we identified 432 commits as bug-fixing commits, out of which 147 change more than one file. We call the latter 'non-isolated' commit since the fault might not be contained within a single file. In this setting, the number of bug-fixing commits is a good approximation for the number of defects included in the commit history of a given commit. In what follows, any correlation with defects we perform will always assume this fact.

III. COMMIT GRAPHS

To create the commit graph, we collect all files in each commit and for each file the commit it was changed in last. Each commit now represents a node in the commit graph. An edge exists between two nodes if both commits changed one or more identical files and there is no other commit that changed any of these files in between. In other words, a commit is a tuple \((t, \mathcal{F})\) where \(t\) is a timestamp and \(\mathcal{F}\) a set of files. A commit graph \(G\) consists of

- a set of commits \(\{(t, \mathcal{F})\}\),
- a set of links between commits, \(\{\rightarrow_{i,j}\}\), such that
 \((t_1, \mathcal{F}_1) \rightarrow_{1,2} (t_2, \mathcal{F}_2)\) iff \(t_1 < t_2, \mathcal{F}_1 \cap \mathcal{F}_2 \neq \emptyset\), and
 \(\forall (t, \mathcal{F})\) with \(t_1 < t < t_2 : \mathcal{F}_1 \cap \mathcal{F}_2 \cap \mathcal{F} = \emptyset\).

In this way, we will have a graph with 2,960 nodes. The graph has one giant connected component comprising 2,948 nodes and 12 isolates having neither in- nor outgoing edges. They occur, for example, if a single file is added in a commit and never modified afterwards. The 2,948 nodes are connected by 5,828 edges, meaning the graph is rather sparse. Also, the average node degree - the total of all in- and outward links of a node - is slightly below 2, indicating that the average node has one in- and one out-going edge. This is one example for a commit graph but we expect similar graphs for other systems. As mentioned above, typically most files are not logically coupled in a system indicating that commit graphs would generally be sparse. Even in complex systems, modularization and decomposition are guiding design principles. Also, changing many files in a commit does not necessarily increase the density of the graph.

We have two special kinds of nodes in the commit graph, root and end nodes. A root node has no in-degree meaning none of its files has been changed before, i.e. they have been added in this commit. Similarly, an end node has no out-degree meaning none of its files have been changed later on. In our case, we have 86 root and 393 end nodes. For the moment we do not consider the 12 isolated nodes because they are not bug-fixing commits.

IV. RESULTS

A. Commit Histories

As the history of a commit, \(H(t, \mathcal{F})\), comprises information about the typical indicators of defective files such as frequently changed files [6] or logical coupling [5], we believe that measures based on \(H(t, \mathcal{F})\) will be at least a good indicator of the number of defects. As such, our first hypothesis is that \(H(t, \mathcal{F})\) is correlated to the number of defects. To prove this we first need to define the history of a commit \((t, \mathcal{F})\). To determine \(H(t, \mathcal{F})\) we first invert all the edges of \(G\) and calculate the shortest paths from \((t, \mathcal{F})\) to all its reachable roots. For a commit \((t, \mathcal{F})\), we define its history as \(H = H(t, \mathcal{F}) = \{(t_i, \mathcal{F}_i)| t_i < t, \mathcal{F}_i \cap \mathcal{F} \neq \emptyset\}\). We define as \(G_H\) the set of files changed in all the commits of \(H\). We set \(H^{Bugs} = \{(t, \mathcal{F})|(t, \mathcal{F}) \in H, (t, \mathcal{F})\) is a bug-fixing commit\} and \(G_{H}^{Bugs}\) the set of files changed in \(H^{Bugs}\). For example, the history of commit 8 in Figure 1 comprises of commit 7 and all predecessors of commit 7. The files we collect are a and b, and all files in predecessors of commit 7. In total, we get 89,610 shortest paths with an average length of 8.2 including original and root node.

For each commit \((t, \mathcal{F})\), we compute the cardinality of the four sets \(H, H^{Bugs}, G_H, G_H^{Bugs}\) to define the values of the variables \(h, h_b, g,\) and \(g_b\) respectively. Then we correlate the variables using Spearman correlation because the data is not normally distributed. Table I lists the correlations and shows that they are rather strong.

The correlations in Table I support our first hypothesis. Our method has two ramifications concerning related results [6], [5], though. First, as opposed to plain counting of changes to individual files, we consider the number...
TABLE I
CORRELATIONS BETWEEN THE HISTORY OF EACH COMMIT AND DEFECTS IN THIS HISTORY, SIGNIFICANT AT $\alpha = .001$.

<table>
<thead>
<tr>
<th>History as ...</th>
<th>Spearman’s ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of files with all defects</td>
<td>.865</td>
</tr>
<tr>
<td>number of files with non-isolated defects</td>
<td>.837</td>
</tr>
<tr>
<td>number of commits with all defects</td>
<td>.889</td>
</tr>
<tr>
<td>number of commits with non-isolated defects</td>
<td>.851</td>
</tr>
</tbody>
</table>

of changes to related, logically coupled files. Second, as opposed to traditional logical coupling, retrieving couplings from the commit graph expands on the original idea of logical couplings. Note that we are using set cardinalities for the correlations meaning that each file is counted only once in G_{HR} for a commit R. The same holds true for H_{R}, here, however, files are technically counted several times when they are changed in several commits in H_{R}. In Figure 1, there is a logical coupling between files a and d via commit 17. Since file d is logically coupled with files b and c in commit 14, we have a connection between a and c mediated by d. In general, when two classes are part of the same history but never of the same commit, we define their mediated relationship as a higher-order logical coupling. As such, classes might be connected not only through a single commit. This approach can reveal potential code dependencies that are not evident with logical couplings or code couplings (like with CK measures).

B. Topological Properties
Our second hypothesis is that topological properties of nodes in the graph are correlated to fault-proneness in files. In this exploratory analysis, we focus on non-isolated bug-fixing commits (NIBFC) where changes affect multiple files. It is reasonable to assume that bug-fixing commits affecting multiple files are generally indicative of a higher difficulty for fixing the corresponding defect. It is also reasonable to assume, especially considering the results in the previous section, that the more files a commit contains the more predecessors it has and, in turn, the more files its predecessors contain. Therefore, we expect a correspondence between topological properties of the commit graph and structurally complex bug fixes.

Figure 2 shows the subgraph for all NIBFC and their respective preceding commits. The graph has a total of 414 nodes (with 147 NIBFC) and 362 edges spread across 62 connected components. Only a small minority of NIBFC has a single predecessor. Roughly half of the components contain at least two NIBFC. This means that roughly half of all NIBFC occur close to another NIBFC, i.e. at most two steps removed in the graph. To understand how NIBFC are embedded in the overall graph, we calculated all shortest paths between the graph’s root and end nodes. This amounts to 10,965 shortest paths. On the subgraph that excludes the NIBFC, we find only 8,887 shortest paths, 19% less for about 5% less nodes. Thus, NIBFC are apparently well-connected and distributed across the whole graph.

Table II illustrates the number of commits with different degree values (in, out, and both) and the number (and percentage) of NIBFC for those same degree values. Under the aforementioned assumption on the relation between bug-fixing commits and defects, we can see that the incidence of defects in nodes with out-degree greater than 1 or total degree greater than 2 is significantly higher than in the complementary sets with lower node degrees. We also collected the 267 nodes that preceded those NIBFC with degree > 2 and found that 179 had a degree > 2 as well. This means that a total of 308 nodes with degree > 2 are immediately related to defects, a percentage of 24%. The complementary set for NIBFC and their predecessors with lower degree is below 9%. This supports our hypothesis.

V. FINDINGS AND LIMITATIONS
Our initial hypotheses were that the history of a commit in the commit graph is correlated to defects and that topological properties of nodes in the graph could point out fault-proneness. We first found that both number of commits and number of files occurring in a commit’s history are highly correlated to defects. The finding is somewhat expected as frequently changed files are defect-prone [6]. Secondly, we
found that bug-fixing commits are well-connected among themselves and distributed across the whole graph. In this sense, we found that defects are much more likely to occur in nodes with an above-average degree.

In terms of limitations, our method of reconstructing commits’ histories might not cover the whole graph and thus miss some information. As for the importance of information, we could have considered different ways of adding weights to the graph, e.g., the age and distance of a node to the original node or the order of the logical coupling between nodes in histories.

Furthermore, we have to evaluate our method on different datasets. Our findings are preliminary and derived from a single data set. This is a typical bias of empirical analysis that can be controlled by replicating the study for different software products. Similarly, we are only considering commits into the trunk, neglecting commits in the branches. This might create a partial view of the actual defects in the product but it is justified by the exploratory nature of our analysis.

VI. DISCUSSION AND FUTURE WORK

We present a novel method to investigate logical couplings and their relation with defect occurrences. In our method, we map commits to nodes in a directed graph and link them if they occur subsequently and share at least one file. We define size of a node’s history and its degree as measures on the commit graph. We use these measures and the topological structure of the graph for defect estimation and localization. We show that the co-evolution of commits and files provides valuable information on the fault-proneness of a system.

The co-evolution of commits and files warrants further attention. Higher-order couplings and topological properties of histories in the graph have the potential to reveal defective code structures in those files. In particular, they can be used to focus on recent commits in ongoing development and identify possible defects.

There are ways to further improve our current method. This includes considering nodes’ content, e.g., overall churn in that commit, and age when collecting a node’s history. The search itself could be improved by employing a different search algorithm, e.g., breadth-first search. Also, we should distinguish different kinds of nodes, e.g., refactorings or initial commits in our case.

REFERENCES

